ACS Publications. Most Trusted. Most Cited. Most Read
Molecular-Scale Investigations of Cellulose Microstructure during Enzymatic Hydrolysis
My Activity

Figure 1Loading Img
    Article

    Molecular-Scale Investigations of Cellulose Microstructure during Enzymatic Hydrolysis
    Click to copy article linkArticle link copied!

    View Author Information
    Biological and Agricultural Engineering, University of California, One Shields Avenue, Davis, California 95616
    * To whom correspondence should be addressed. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Biomacromolecules

    Cite this: Biomacromolecules 2010, 11, 8, 2000–2007
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm100366h
    Published June 29, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Changes in cellulose microstructure have been proposed to occur throughout hydrolysis that impact enzyme access and hydrolysis rates. However, there are very few direct observations of such changes in ongoing reactions. In this study, changes in the microstructure of cellulose are measured by simultaneous confocal and atomic force microscopy and are correlated to hydrolysis extents and quantities of bound enzyme in the reaction. Minimally processed and never-dried cellulose I was hydrolyzed by a purified cellobiohydrolase, Trichoderma reesei Cel7A. Early in the reaction (∼30% hydrolysis), at high hydrolysis rates and high bound cellulase quantities, untwisting of cellulose microfibrils was observed. As the hydrolysis reaction neared completion (>80% hydrolysis), extensively thinned microfibrils (diameters of 3−5 nm) and channels (0.3−0.6 nm deep) along the lengths of the microfibrils were observed. The prominent microstructural changes in cellulose due to cellobiohydrolase action are discussed in the context of the overall hydrolysis reaction.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Data on the enzymatic conversion of native versus DTAF-grafted bacterial cellulose, AFM data for undigested controls, and larger scans and height AFM data of the figures presented in this manuscript. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 45 publications.

    1. Krisztina Zajki-Zechmeister, Gaurav Singh Kaira, Manuel Eibinger, Klara Seelich, Bernd Nidetzky. Processive Enzymes Kept on a Leash: How Cellulase Activity in Multienzyme Complexes Directs Nanoscale Deconstruction of Cellulose. ACS Catalysis 2021, 11 (21) , 13530-13542. https://doi.org/10.1021/acscatal.1c03465
    2. Alixander Perzon, Benedikt M. Blossom, Claus Felby, Tina Jeoh, Alex Hitomi, Peter Ulvskov, Bodil Jørgensen. Cellulose Nanofibrils as Assay Substrates for Cellulases and Lytic Polysaccharide Monooxygenases. ACS Applied Nano Materials 2020, 3 (7) , 6729-6736. https://doi.org/10.1021/acsanm.0c01155
    3. Jennifer Danger Nill, Tina Jeoh. The Role of Evolving Interfacial Substrate Properties on Heterogeneous Cellulose Hydrolysis Kinetics. ACS Sustainable Chemistry & Engineering 2020, 8 (17) , 6722-6733. https://doi.org/10.1021/acssuschemeng.0c00779
    4. Shengyang Zhou, Leif Nyholm, Maria Strømme, Zhaohui Wang. Cladophora Cellulose: Unique Biopolymer Nanofibrils for Emerging Energy, Environmental, and Life Science Applications. Accounts of Chemical Research 2019, 52 (8) , 2232-2243. https://doi.org/10.1021/acs.accounts.9b00215
    5. Takuya Uto, Toshifumi Yui. DFT Optimization of Isolated Molecular Chain Sheet Models Constituting Native Cellulose Crystal Structures. ACS Omega 2018, 3 (7) , 8050-8058. https://doi.org/10.1021/acsomega.8b00834
    6. Cesare Rovera, Masoud Ghaani, Nadia Santo, Silvia Trabattoni, Richard T. Olsson, Diego Romano, Stefano Farris. Enzymatic Hydrolysis in the Green Production of Bacterial Cellulose Nanocrystals. ACS Sustainable Chemistry & Engineering 2018, 6 (6) , 7725-7734. https://doi.org/10.1021/acssuschemeng.8b00600
    7. Sonali Mohapatra, Sivakumar Pattathil, and Hrudayanath Thatoi . Structural and Functional Characterization of Two Pennisetum sp. Biomass during Ultrasono-Assisted Alkali Pretreatment and Enzymatic Hydrolysis for Understanding the Mechanism of Targeted Delignification and Enhanced Saccharification. ACS Sustainable Chemistry & Engineering 2017, 5 (8) , 6486-6497. https://doi.org/10.1021/acssuschemeng.7b00596
    8. Mehedi Reza, Carlo Bertinetto, Janne Ruokolainen, and Tapani Vuorinen . Cellulose Elementary Fibrils Assemble into Helical Bundles in S1 Layer of Spruce Tracheid Wall. Biomacromolecules 2017, 18 (2) , 374-378. https://doi.org/10.1021/acs.biomac.6b01396
    9. Xianzhi Meng, Qining Sun, Matyas Kosa, Fang Huang, Yunqiao Pu, and Arthur J. Ragauskas . Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis. ACS Sustainable Chemistry & Engineering 2016, 4 (9) , 4563-4572. https://doi.org/10.1021/acssuschemeng.6b00603
    10. Klara H. Malinowska, Thomas Rind, Tobias Verdorfer, Hermann E. Gaub, and Michael A. Nash . Quantifying Synergy, Thermostability, and Targeting of Cellulolytic Enzymes and Cellulosomes with Polymerization-Based Amplification. Analytical Chemistry 2015, 87 (14) , 7133-7140. https://doi.org/10.1021/acs.analchem.5b00936
    11. Christina M. Payne, Brandon C. Knott, Heather B. Mayes, Henrik Hansson, Michael E. Himmel, Mats Sandgren, Jerry Ståhlberg, and Gregg T. Beckham . Fungal Cellulases. Chemical Reviews 2015, 115 (3) , 1308-1448. https://doi.org/10.1021/cr500351c
    12. Jingpeng Wang, Amanda Quirk, Jacek Lipkowski, John R. Dutcher, and Anthony J. Clarke . Direct in Situ Observation of Synergism between Cellulolytic Enzymes during the Biodegradation of Crystalline Cellulose Fibers. Langmuir 2013, 29 (48) , 14997-15005. https://doi.org/10.1021/la403401c
    13. Jingpeng Wang, Amanda Quirk, Jacek Lipkowski, John R. Dutcher, Christopher Hill, Adam Mark, and Anthony J. Clarke . Real-Time Observation of the Swelling and Hydrolysis of a Single Crystalline Cellulose Fiber Catalyzed by Cellulase 7B from Trichoderma reesei. Langmuir 2012, 28 (25) , 9664-9672. https://doi.org/10.1021/la301030f
    14. James F. Matthews, Gregg T. Beckham, Malin Bergenstråhle-Wohlert, John W. Brady, Michael E. Himmel, and Michael F. Crowley . Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields. Journal of Chemical Theory and Computation 2012, 8 (2) , 735-748. https://doi.org/10.1021/ct2007692
    15. Gregg T. Beckham, James F. Matthews, Baron Peters, Yannick J. Bomble, Michael E. Himmel, and Michael F. Crowley . Molecular-Level Origins of Biomass Recalcitrance: Decrystallization Free Energies for Four Common Cellulose Polymorphs. The Journal of Physical Chemistry B 2011, 115 (14) , 4118-4127. https://doi.org/10.1021/jp1106394
    16. James F. Matthews, Malin Bergenstråhle, Gregg T. Beckham, Michael E. Himmel, Mark R. Nimlos, John W. Brady, and Michael F. Crowley . High-Temperature Behavior of Cellulose I. The Journal of Physical Chemistry B 2011, 115 (10) , 2155-2166. https://doi.org/10.1021/jp1106839
    17. Tina Jeoh, Jennifer Danger Nill, Wujun Zhao, Sankar Raju Narayanasamy, Liang Chen, Hoi-Ying N. Holman. Spatiotemporal dynamics of cellulose during enzymatic hydrolysis studied by infrared spectromicroscopy. Green Chemistry 2024, 26 (1) , 396-411. https://doi.org/10.1039/D3GC03279E
    18. Evandro A. Araújo, Artur Hermano Sampaio Dias, Marco A.S. Kadowaki, Vasily Piyadov, Vanessa O.A. Pellegrini, Mateus B. Urio, Luiz P. Ramos, Munir S. Skaf, Igor Polikarpov. Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: Structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase. Carbohydrate Polymers 2021, 264 , 118059. https://doi.org/10.1016/j.carbpol.2021.118059
    19. Akshata R. Mudinoor, Peter M. Goodwin, Raghavendra U. Rao, Nardrapee Karuna, Alex Hitomi, Jennifer Nill, Tina Jeoh. Interfacial molecular interactions of cellobiohydrolase Cel7A and its variants on cellulose. Biotechnology for Biofuels 2020, 13 (1) https://doi.org/10.1186/s13068-020-1649-7
    20. Yingji Wu, Shengbo Ge, Changlei Xia, Liping Cai, Changtong Mei, Christian Sonne, Young-Kwon Park, Young-Min Kim, Wei-Hsin Chen, Jo-Shu Chang, Su Shiung Lam. Using low carbon footprint high-pressure carbon dioxide in bioconversion of aspen branch waste for sustainable bioethanol production. Bioresource Technology 2020, 313 , 123675. https://doi.org/10.1016/j.biortech.2020.123675
    21. Ayodele Fatona, Andrew Osamudiamen, Jose Moran‐Mirabal, Michael A. Brook. Rapid, catalyst‐free crosslinking of silicones using triazines. Journal of Polymer Science 2020, 58 (14) , 1949-1959. https://doi.org/10.1002/pol.20200289
    22. Shengbo Ge, Yingji Wu, Wanxi Peng, Changlei Xia, Changtong Mei, Liping Cai, Sheldon Q. Shi, Christian Sonne, Su Shiung Lam, Yiu Fai Tsang. High-pressure CO2 hydrothermal pretreatment of peanut shells for enzymatic hydrolysis conversion into glucose. Chemical Engineering Journal 2020, 385 , 123949. https://doi.org/10.1016/j.cej.2019.123949
    23. Soon Mo Choi, Eun Joo Shin. The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. Nanomaterials 2020, 10 (3) , 406. https://doi.org/10.3390/nano10030406
    24. Paavo A. Penttilä, Tomoya Imai, Jarl Hemming, Stefan Willför, Junji Sugiyama. Enzymatic hydrolysis of biomimetic bacterial cellulose–hemicellulose composites. Carbohydrate Polymers 2018, 190 , 95-102. https://doi.org/10.1016/j.carbpol.2018.02.051
    25. Tina Jeoh, Maria J. Cardona, Nardrapee Karuna, Akshata R. Mudinoor, Jennifer Nill. Mechanistic kinetic models of enzymatic cellulose hydrolysis—A review. Biotechnology and Bioengineering 2017, 114 (7) , 1369-1385. https://doi.org/10.1002/bit.26277
    26. Nardrapee Karuna, Tina Jeoh. The productive cellulase binding capacity of cellulosic substrates. Biotechnology and Bioengineering 2017, 114 (3) , 533-542. https://doi.org/10.1002/bit.26193
    27. Amanda A. Domingues, Fabiano V. Pereira, Maria Rita Sierakowski, Orlando J. Rojas, Denise F. S. Petri. Interfacial properties of cellulose nanoparticles obtained from acid and enzymatic hydrolysis of cellulose. Cellulose 2016, 23 (4) , 2421-2437. https://doi.org/10.1007/s10570-016-0965-3
    28. Kevin Conley, Louis Godbout, M.A. (Tony) Whitehead, Theo G.M. van de Ven. Origin of the twist of cellulosic materials. Carbohydrate Polymers 2016, 135 , 285-299. https://doi.org/10.1016/j.carbpol.2015.08.029
    29. Kabindra Kafle, Heenae Shin, Christopher M. Lee, Sunkyu Park, Seong H. Kim. Progressive structural changes of Avicel, bleached softwood and bacterial cellulose during enzymatic hydrolysis. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep15102
    30. Mihhail Kurašin, Silja Kuusk, Piret Kuusk, Morten Sørlie, Priit Väljamäe. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases. Journal of Biological Chemistry 2015, 290 (48) , 29074-29085. https://doi.org/10.1074/jbc.M115.684977
    31. Patrick J. O’Dell, Akshata R. Mudinoor, Sanjai J. Parikh, Tina Jeoh. The effect of fibril length and architecture on the accessibility of reducing ends of cellulose Iα to Trichoderma reesei Cel7A. Cellulose 2015, 22 (3) , 1697-1713. https://doi.org/10.1007/s10570-015-0618-y
    32. Jeremy S. Luterbacher, Jose M. Moran‐Mirabal, Eric W. Burkholder, Larry P. Walker. Modeling enzymatic hydrolysis of lignocellulosic substrates using fluorescent confocal microscopy II: Pretreated biomass. Biotechnology and Bioengineering 2015, 112 (1) , 32-42. https://doi.org/10.1002/bit.25328
    33. Jeremy S. Luterbacher, Jose M. Moran‐Mirabal, Eric W. Burkholder, Larry P. Walker. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: Filter paper cellulose. Biotechnology and Bioengineering 2015, 112 (1) , 21-31. https://doi.org/10.1002/bit.25329
    34. Klara H. Malinowska, Tobias Verdorfer, Aylin Meinhold, Lukas F. Milles, Victor Funk, Hermann E. Gaub, Michael A. Nash. Redox‐Initiated Hydrogel System for Detection and Real‐Time Imaging of Cellulolytic Enzyme Activity. ChemSusChem 2014, 7 (10) , 2825-2831. https://doi.org/10.1002/cssc.201402428
    35. Nardrapee Karuna, Lu Zhang, Jeffrey H. Walton, Marie Couturier, Mecit H. Oztop, Emma R. Master, Michael J. McCarthy, Tina Jeoh. The impact of alkali pretreatment and post-pretreatment conditioning on the surface properties of rice straw affecting cellulose accessibility to cellulases. Bioresource Technology 2014, 167 , 232-240. https://doi.org/10.1016/j.biortech.2014.05.122
    36. Jose M. Moran-Mirabal. The study of cell wall structure and cellulose–cellulase interactions through fluorescence microscopy. Cellulose 2013, 20 (5) , 2291-2309. https://doi.org/10.1007/s10570-013-0010-8
    37. Tina Jeoh, Monica C. Santa-Maria, Patrick J. O’Dell. Assessing cellulose microfibrillar structure changes due to cellulase action. Carbohydrate Polymers 2013, 97 (2) , 581-586. https://doi.org/10.1016/j.carbpol.2013.05.027
    38. Jaemyeong Jung, Anurag Sethi, Tiziano Gaiotto, Jason J. Han, Tina Jeoh, Sandrasegaram Gnanakaran, Peter M. Goodwin. Binding and Movement of Individual Cel7A Cellobiohydrolases on Crystalline Cellulose Surfaces Revealed by Single-molecule Fluorescence Imaging. Journal of Biological Chemistry 2013, 288 (33) , 24164-24172. https://doi.org/10.1074/jbc.M113.455758
    39. Patricia Bubner, Harald Plank, Bernd Nidetzky. Visualizing cellulase activity. Biotechnology and Bioengineering 2013, 110 (6) , 1529-1549. https://doi.org/10.1002/bit.24884
    40. Paavo A. Penttilä, Anikó Várnai, Manuel Fernández, Inkeri Kontro, Ville Liljeström, Peter Lindner, Matti Siika-aho, Liisa Viikari, Ritva Serimaa. Small-angle scattering study of structural changes in the microfibril network of nanocellulose during enzymatic hydrolysis. Cellulose 2013, 20 (3) , 1031-1040. https://doi.org/10.1007/s10570-013-9899-1
    41. Maxim Kostylev, David Wilson. Synergistic interactions in cellulose hydrolysis. Biofuels 2012, 3 (1) , 61-70. https://doi.org/10.4155/bfs.11.150
    42. Anwesha N. Fernandes, Lynne H. Thomas, Clemens M. Altaner, Philip Callow, V. Trevor Forsyth, David C. Apperley, Craig J. Kennedy, Michael C. Jarvis. Nanostructure of cellulose microfibrils in spruce wood. Proceedings of the National Academy of Sciences 2011, 108 (47) https://doi.org/10.1073/pnas.1108942108
    43. Lisbeth Garbrecht Thygesen, Budi Juliman Hidayat, Katja Salomon Johansen, Claus Felby. Role of supramolecular cellulose structures in enzymatic hydrolysis of plant cell walls. Journal of Industrial Microbiology & Biotechnology 2011, 38 (8) , 975-983. https://doi.org/10.1007/s10295-010-0870-y
    44. Shishir P.S. Chundawat, Gregg T. Beckham, Michael E. Himmel, Bruce E. Dale. Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals. Annual Review of Chemical and Biomolecular Engineering 2011, 2 (1) , 121-145. https://doi.org/10.1146/annurev-chembioeng-061010-114205
    45. Katrina M. Roberts, David M. Lavenson, Emilio J. Tozzi, Michael J. McCarthy, Tina Jeoh. The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 2011, 18 (3) , 759-773. https://doi.org/10.1007/s10570-011-9509-z

    Biomacromolecules

    Cite this: Biomacromolecules 2010, 11, 8, 2000–2007
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm100366h
    Published June 29, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    1774

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.