ACS Publications. Most Trusted. Most Cited. Most Read
Poly(l-lactide)-Vitamin E TPGS Nanoparticles Enhanced the Cytotoxicity of Doxorubicin in Drug-Resistant MCF-7 Breast Cancer Cells
My Activity

Figure 1Loading Img
    Article

    Poly(l-lactide)-Vitamin E TPGS Nanoparticles Enhanced the Cytotoxicity of Doxorubicin in Drug-Resistant MCF-7 Breast Cancer Cells
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
    * To whom correspondence should be addressed. Tel.: +886-4-22840411, ext. 428. Fax: +886-4-22862547. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Biomacromolecules

    Cite this: Biomacromolecules 2010, 11, 10, 2576–2582
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm1005195
    Published August 19, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Multiple drug resistance (MDR) seriously reduces the efficacy of many chemotherapeutic agents for cancer. P-Glycoprotein, an efflux pump overexpressed on the cell surface, plays an important role in drug resistance, but several surfactants, such as vitamin E TPGS, can inhibit P-glycoprotein. In this study, a polylactide-surfactant block copolymer poly(l-lactide)-vitamin E TPGS (PLA-TPGS) was synthesized using bidentate sulfonamide zinc ethyl complex as an efficient catalyst, and its self-assembled nanoparticles were used as carriers of doxorubicin. We first found that the activity of P-glycoprotein in drug-resistant breast cancer MCF-7/ADR cells was decreased after incubation with PLA-TPGS nanoparticles. In addition, the nuclear accumulation and cytotoxicity of doxorubicin were significantly increased by encapsulation into the nanoparticles. The enhanced efficacy of the doxorubicin-loaded PLA-TPGS nanoparticles may result from the combination of inhibition of efflux and increased entry of doxorubicin into the nucleus in drug-resistant MCF-7/ADR cells. Therefore, this innovative delivery system has potential to act as a nanomedicine for therapy of both drug-sensitive and drug-resistant cancer.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Synthetic procedure and structure of Zn-complex catalyst, 1H NMR for PLA-TPGS copolymer, stability of nanoparticles, P-gp expression, and intracellular distribution of doxorubicin for polymer-treated cells. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 87 publications.

    1. Guangfu Zhao, Yan Sun, Xiaoyan Dong. Zwitterionic Polymer Micelles with Dual Conjugation of Doxorubicin and Curcumin: Synergistically Enhanced Efficacy against Multidrug-Resistant Tumor Cells. Langmuir 2020, 36 (9) , 2383-2395. https://doi.org/10.1021/acs.langmuir.9b03722
    2. Amey S. Puranik, Ludovic P. Pao, Vanessa M. White, and Nicholas A. Peppas . In Vitro Evaluation of pH-Responsive Nanoscale Hydrogels for the Oral Delivery of Hydrophobic Therapeutics. Industrial & Engineering Chemistry Research 2016, 55 (40) , 10576-10590. https://doi.org/10.1021/acs.iecr.6b02565
    3. Jintian Wu, Jian Zhang, Chao Deng, Fenghua Meng, and Zhiyuan Zhong . Vitamin E-Oligo(methyl diglycol l-glutamate) as a Biocompatible and Functional Surfactant for Facile Preparation of Active Tumor-Targeting PLGA Nanoparticles. Biomacromolecules 2016, 17 (7) , 2367-2374. https://doi.org/10.1021/acs.biomac.6b00380
    4. Raquel Palao-Suay, María Rosa Aguilar, Francisco J. Parra-Ruiz, Mar Fernández-Gutiérrez, Juan Parra, Carolina Sánchez-Rodríguez, Ricardo Sanz-Fernández, Laura Rodrigáñez, and Julio San Román . Anticancer and Antiangiogenic Activity of Surfactant-Free Nanoparticles Based on Self-Assembled Polymeric Derivatives of Vitamin E: Structure–Activity Relationship. Biomacromolecules 2015, 16 (5) , 1566-1581. https://doi.org/10.1021/acs.biomac.5b00130
    5. Yuling Bao, Yuanyuan Guo, Xiangting Zhuang, Dan Li, Bolin Cheng, Songwei Tan, and Zhiping Zhang . d-α-Tocopherol Polyethylene Glycol Succinate-Based Redox-Sensitive Paclitaxel Prodrug for Overcoming Multidrug Resistance in Cancer Cells. Molecular Pharmaceutics 2014, 11 (9) , 3196-3209. https://doi.org/10.1021/mp500384d
    6. Yuanyuan Guo, Min Chu, Songwei Tan, Shuang Zhao, Hanxiao Liu, Ben Oketch Otieno, Xiangliang Yang, Chuanrui Xu, and Zhiping Zhang . Chitosan-g-TPGS Nanoparticles for Anticancer Drug Delivery and Overcoming Multidrug Resistance. Molecular Pharmaceutics 2014, 11 (1) , 59-70. https://doi.org/10.1021/mp400514t
    7. Tianbin Ren, Wei Wu, Menghong Jia, Haiqing Dong, Yongyong Li, and Zhouluo Ou . Reduction-Cleavable Polymeric Vesicles with Efficient Glutathione-Mediated Drug Release Behavior for Reversing Drug Resistance. ACS Applied Materials & Interfaces 2013, 5 (21) , 10721-10730. https://doi.org/10.1021/am402860v
    8. Shuang Zhao, Songwei Tan, Yuanyuan Guo, Jing Huang, Min Chu, Hudan Liu, and Zhiping Zhang . pH-Sensitive Docetaxel-Loaded d-α-Tocopheryl Polyethylene Glycol Succinate–Poly(β-amino ester) Copolymer Nanoparticles for Overcoming Multidrug Resistance. Biomacromolecules 2013, 14 (8) , 2636-2646. https://doi.org/10.1021/bm4005113
    9. Jingling Tang, Yongjun Wang, Dun Wang, Yuhua Wang, Zhenghong Xu, Kelly Racette, and Feng Liu . Key Structure of Brij for Overcoming Multidrug Resistance in Cancer. Biomacromolecules 2013, 14 (2) , 424-430. https://doi.org/10.1021/bm301661w
    10. Amrita Ghosh Majumdar, Biswajit Pany, Sankha Subhra Parua, Debdeepto Mukherjee, Agnihotri Panda, Madhuchhanda Mohanty, Biswadeep Das, Satyabrata Si, Priti S. Mohanty. Stimuli-Responsive Nanogel/Microgel Hybrids as Targeted Drug Delivery Systems: A Comprehensive Review. BioNanoScience 2024, 14 (3) , 3496-3521. https://doi.org/10.1007/s12668-024-01577-9
    11. Chao Shen, Jianchao Li, Cong Li, Lihong Wang, Zeyu Wang, Kexin Zhang, Zehao Li, Lianrui Cao, Lijiang Chen. Construction and antitumor evaluation of stimulus-responsive dual-drug micelles based on computer simulation. Journal of Drug Delivery Science and Technology 2024, 93 , 105366. https://doi.org/10.1016/j.jddst.2024.105366
    12. Zahra Hamidia, Kahin Shahanipour, Nasrin Talebian, Ramesh Monajemi. Surface Modification of Poly(lactide-co-glycolide) Nanoparticles for the Sustained in vitro Release and the Enhanced Cytotoxicity of Chelidonine. Anti-Cancer Agents in Medicinal Chemistry 2023, 23 (15) , 1774-1782. https://doi.org/10.2174/1871520623666230502095349
    13. Renata S. Fernandes, Raquel Gregório Arribada, Juliana O. Silva, Armando Silva-Cunha, Danyelle M. Townsend, Lucas A. M. Ferreira, André L. B. Barros. In Vitro and In Vivo Effect of pH-Sensitive PLGA-TPGS-Based Hybrid Nanoparticles Loaded with Doxorubicin for Breast Cancer Therapy. Pharmaceutics 2022, 14 (11) , 2394. https://doi.org/10.3390/pharmaceutics14112394
    14. Yang Yang, Quanfeng Zhao, Zhe Peng, Yunjiang Zhou, Miao-Miao Niu, Lin Chen. A GSH/CB Dual-Controlled Self-Assembled Nanomedicine for High-Efficacy Doxorubicin-Resistant Breast Cancer Therapy. Frontiers in Pharmacology 2022, 12 https://doi.org/10.3389/fphar.2021.811724
    15. Ke Son Phan, Phuong Thu Ha, Huu Nghi Do, Trung Anh Nguyen, Thuc Quang Bui, Hong Nam Pham, Mai Huong Le, Thi Thu Huong Le. Dual Loading of Doxorubicin and Magnetic Iron Oxide into PLA‐TPGS Nanoparticles: Design, in vitro Drug Release Kinetics, and Biological Effects on Cancer Cells. ChemMedChem 2021, 16 (23) , 3615-3625. https://doi.org/10.1002/cmdc.202100535
    16. Mingming Zhang, Shan Gao, Dongjuan Yang, Yan Fang, Xiaojie Lin, Xuechao Jin, Yuli Liu, Xiu Liu, Kexin Su, Kai Shi. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B 2021, 11 (8) , 2265-2285. https://doi.org/10.1016/j.apsb.2021.03.033
    17. Shangui Liu, Abdur Rauf Khan, Xiaoye Yang, Bo Dong, Jianbo Ji, Guangxi Zhai. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. Journal of Controlled Release 2021, 335 , 1-20. https://doi.org/10.1016/j.jconrel.2021.05.012
    18. Vrinda Gote, Dhananjay Pal. Octreotide-Targeted Lcn2 siRNA PEGylated Liposomes as a Treatment for Metastatic Breast Cancer. Bioengineering 2021, 8 (4) , 44. https://doi.org/10.3390/bioengineering8040044
    19. Milad Ashrafizadeh, Ali Zarrabi, Farid Hashemi, Amirhossein Zabolian, Hossein Saleki, Morteza Bagherian, Negar Azami, Atefe Kazemzade Bejandi, Kiavash Hushmandi, Hui Li Ang, Pooyan Makvandi, Haroon Khan, Alan Prem Kumar. Polychemotherapy with Curcumin and Doxorubicin via Biological Nanoplatforms: Enhancing Antitumor Activity. Pharmaceutics 2020, 12 (11) , 1084. https://doi.org/10.3390/pharmaceutics12111084
    20. Tanweer Haider, Vikas Pandey, Nagma Banjare, Prem N. Gupta, Vandana Soni. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacological Reports 2020, 72 (5) , 1125-1151. https://doi.org/10.1007/s43440-020-00138-7
    21. Yachao Li, Xianghui Xu. Nanomedicine solutions to intricate physiological-pathological barriers and molecular mechanisms of tumor multidrug resistance. Journal of Controlled Release 2020, 323 , 483-501. https://doi.org/10.1016/j.jconrel.2020.05.007
    22. Roya Karimi Alavijeh, Kamran Akhbari. Vitamin E-Based Nanomedicines for Anticancer Drug Delivery. 2020, 11-70. https://doi.org/10.1007/978-981-15-1664-1_2
    23. Jun Chen, Amin Ding, Yifeng Zhou, Pengpeng Chen, Ying Xu, Wangyan Nie. Indometacin-loaded micelles based on star-shaped PLLA-TPGS copolymers: effect of arm numbers on drug delivery. Colloid and Polymer Science 2019, 297 (10) , 1321-1330. https://doi.org/10.1007/s00396-019-04542-1
    24. Carolina F. Rodrigues, Catarina A. Reis, André F. Moreira, Paula Ferreira, Ilídio J. Correia. Optimization of gold core-mesoporous silica shell functionalization with TPGS and PEI for cancer therapy. Microporous and Mesoporous Materials 2019, 285 , 1-12. https://doi.org/10.1016/j.micromeso.2019.04.064
    25. Ajit Singh, Kalpesh Vaishagya, Rahul K. Verma, Rahul Shukla. Temperature/pH-Triggered PNIPAM-Based Smart Nanogel System Loaded With Anastrozole Delivery for Application in Cancer Chemotherapy. AAPS PharmSciTech 2019, 20 (5) https://doi.org/10.1208/s12249-019-1410-3
    26. Bee Ling Tan, Mohd Esa Norhaizan. Curcumin Combination Chemotherapy: The Implication and Efficacy in Cancer. Molecules 2019, 24 (14) , 2527. https://doi.org/10.3390/molecules24142527
    27. María J. Limeres, Marcela A. Moretton, Ezequiel Bernabeu, Diego A. Chiappetta, María L. Cuestas. Thinking small, doing big: Current success and future trends in drug delivery systems for improving cancer therapy with special focus on liver cancer. Materials Science and Engineering: C 2019, 95 , 328-341. https://doi.org/10.1016/j.msec.2018.11.001
    28. Sebastian Pieper, Hannah Onafuye, Dennis Mulac, Jindrich Cinatl, Mark N Wass, Martin Michaelis, Klaus Langer. Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. Beilstein Journal of Nanotechnology 2019, 10 , 2062-2072. https://doi.org/10.3762/bjnano.10.201
    29. Mengxue Zhou, Xingcai Zhang, Jin Xie, Rongxiang Qi, Huiru Lu, Stefano Leporatti, Jun Chen, Yi Hu. pH-Sensitive Poly(β-amino ester)s Nanocarriers Facilitate the Inhibition of Drug Resistance in Breast Cancer Cells. Nanomaterials 2018, 8 (11) , 952. https://doi.org/10.3390/nano8110952
    30. Omkara Swami Muddineti, Preeti Kumari, Balaram Ghosh, Swati Biswas. Transferrin-Modified Vitamin-E/Lipid Based Polymeric Micelles for Improved Tumor Targeting and Anticancer Effect of Curcumin. Pharmaceutical Research 2018, 35 (5) https://doi.org/10.1007/s11095-018-2382-9
    31. Aliyeh Ghamkhari, Bakhshali Massoumi, Samira Agbolaghi. An in vitro focus on doxorubicin hydrochloride delivery of novel pH‐responsive poly(2‐succinyloxyethylmethacrylate) and poly[( N ‐4‐vinylbenzyl), N , N ‐diethylamine] diblock copolymers. Polymer International 2018, 67 (3) , 283-291. https://doi.org/10.1002/pi.5504
    32. Guobin Xu, Ying Chen, Renfei Shan, Xiandan Wu, Lijun Chen. Transferrin and tocopheryl-polyethylene glycol-succinate dual ligands decorated, cisplatin loaded nano-sized system for the treatment of lung cancer. Biomedicine & Pharmacotherapy 2018, 99 , 354-362. https://doi.org/10.1016/j.biopha.2018.01.062
    33. Aliyeh Ghamkhari, Samira Agbolaghi, Nahid Poorgholy, Bakhshali Massoumi. pH-responsive magnetic nanocomposites based on poly(2-succinyloxyethyl methacrylate-co-methylmethacrylate) for anticancer doxorubicin delivery applications. Journal of Polymer Research 2018, 25 (2) https://doi.org/10.1007/s10965-017-1431-0
    34. Ming-Hsiang Chang, Chin-Ling Pai, Ying-Chen Chen, Hsiu-Ping Yu, Chia-Yen Hsu, Ping-Shan Lai. Enhanced Antitumor Effects of Epidermal Growth Factor Receptor Targetable Cetuximab-Conjugated Polymeric Micelles for Photodynamic Therapy. Nanomaterials 2018, 8 (2) , 121. https://doi.org/10.3390/nano8020121
    35. Liang Ge, Xinru You, Keqing Huang, Yang Kang, Yuejian Chen, Ying Zhu, Yuan Ren, Yuan Zhang, Jun Wu, Hai Qian. Screening of novel RGD peptides to modify nanoparticles for targeted cancer therapy. Biomaterials Science 2018, 6 (1) , 125-135. https://doi.org/10.1039/C7BM00776K
    36. Tengfei Liu, Xiaoyan Liu, Hui Xiong, Cheng Xu, Jianxu Yao, Xiumei Zhu, Jianping Zhou, Jing Yao. Mechanisms of TPGS and its derivatives inhibiting P-glycoprotein efflux pump and application for reversing multidrug resistance in hepatocellular carcinoma. Polymer Chemistry 2018, 9 (14) , 1827-1839. https://doi.org/10.1039/C8PY00344K
    37. Aliyeh Ghamkhari, Bakhshali Massoumi, Roya Salehi. A new style for synthesis of thermo-responsive Fe 3 O 4 /poly (methylmethacrylate- b - N -isopropylacrylamide- b -acrylic acid) magnetic composite nanosphere and theranostic applications. Journal of Biomaterials Science, Polymer Edition 2017, 28 (17) , 1985-2005. https://doi.org/10.1080/09205063.2017.1364459
    38. Junru Wu, Shu Feng, Wenchao Liu, Feng Gao, Yanzuo Chen. Targeting integrin-rich tumors with temoporfin-loaded vitamin-E-succinate-grafted chitosan oligosaccharide/ d -α-tocopheryl polyethylene glycol 1000 succinate nanoparticles to enhance photodynamic therapy efficiency. International Journal of Pharmaceutics 2017, 528 (1-2) , 287-298. https://doi.org/10.1016/j.ijpharm.2017.06.021
    39. S.J. Owonubi, S.C. Agwuncha, E. Mukwevho, B.A. Aderibigbe, E.R. Sadiku, O.F. Biotidara, K. Varaprasad. Application of Hydrogel Biocomposites for Multiple Drug Delivery. 2017, 139-165. https://doi.org/10.1002/9781119441632.ch110
    40. Hagay Kohay, Can Sarisozen, Rupa Sawant, Aditi Jhaveri, Vladimir P. Torchilin, Yael G. Mishael. PEG-PE/clay composite carriers for doxorubicin: Effect of composite structure on release, cell interaction and cytotoxicity. Acta Biomaterialia 2017, 55 , 443-454. https://doi.org/10.1016/j.actbio.2017.04.008
    41. Wenzhuan Ma, Qiang Guo, Ying Li, Xiaohui Wang, Jinling Wang, Pengfei Tu. Co-assembly of doxorubicin and curcumin targeted micelles for synergistic delivery and improving anti-tumor efficacy. European Journal of Pharmaceutics and Biopharmaceutics 2017, 112 , 209-223. https://doi.org/10.1016/j.ejpb.2016.11.033
    42. Wing-Hin Lee, Ching-Yee Loo, Paul M. Young, Daniela Traini, Ramin Rohanizadeh. The Development and Achievement of Polymeric Nanoparticles for Cancer Drug Treatment. 2017, 25-82. https://doi.org/10.1007/978-981-10-3647-7_2
    43. Fiorella Carla Tesan, Mariano Gastón Portillo, Marcela Analía Moretton, Ezequiel Bernabeu, Diego Andrés Chiappetta, Maria Jimena Salgueiro, Marcela Beatriz Zubillaga. Radiolabeling and biological characterization of TPGS-based nanomicelles by means of small animal imaging. Nuclear Medicine and Biology 2017, 44 , 62-68. https://doi.org/10.1016/j.nucmedbio.2016.09.006
    44. Jian Hou, E. Sun, Zhen-Hai Zhang, Jing Wang, Lei Yang, Li Cui, Zhong-Cheng Ke, Xiao-Bin Tan, Xiao-Bin Jia, Huixia Lv. Improved oral absorption and anti-lung cancer activity of paclitaxel-loaded mixed micelles. Drug Delivery 2017, 24 (1) , 261-269. https://doi.org/10.1080/10717544.2016.1245370
    45. Dujuan Zhao, Huiyuan Zhang, Shengfeng Yang, Wenxiu He, Yuxia Luan. Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: An efficient drug delivery system for overcoming multidrug resistance. International Journal of Pharmaceutics 2016, 515 (1-2) , 281-292. https://doi.org/10.1016/j.ijpharm.2016.10.029
    46. Meng Wang, Ying Li, Mingyi HuangFu, Yi Xiao, Tianyuan Zhang, Min Han, Donghang Xu, Fangyuan Li, Daishun Ling, Yi Jin, Jianqing Gao. Pluronic-Attached Polyamidoamine Dendrimer Conjugates Overcome Drug Resistance in Breast Cancer. Nanomedicine 2016, 11 (22) , 2917-2934. https://doi.org/10.2217/nnm-2016-0252
    47. Xiaoman Mao, Jingxing Si, Qian Huang, Xuanrong Sun, Qianzhi Zhang, Youqing Shen, Jianbin Tang, Xiangrui Liu, Meihua Sui. Self‐Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug Resistance In Vitro and In Vivo. Advanced Healthcare Materials 2016, 5 (19) , 2517-2527. https://doi.org/10.1002/adhm.201600345
    48. Jie Song, Houcai Huang, Zhi Xia, Yingjie Wei, Nan Yao, Li Zhang, Hongmei Yan, Xiaobin Jia, Zhenhai Zhang. TPGS/Phospholipids Mixed Micelles for Delivery of Icariside II to Multidrug-Resistant Breast Cancer. Integrative Cancer Therapies 2016, 15 (3) , 390-399. https://doi.org/10.1177/1534735415596571
    49. N. Jalali, G. Trujillo-de Santiago, M. Motevalian, M. Y. Karimi, N. P. S. Chauhan, Y. Habibi, M. Mozafari. Chitosan-functionalized poly(lactide-co-glycolide) nanoparticles: breaking through the brain’s tight security gateway. Bioinspired, Biomimetic and Nanobiomaterials 2016, 5 (2) , 74-84. https://doi.org/10.1680/jbibn.15.00016
    50. Jesús Sanmartín-Matalobos, Cristina Portela-García, Matilde Fondo, Ana M. García-Deibe, Antonio L. Llamas-Saiz. A simple route to dinuclear complexes containing unusual μ- N sulfonamido bridges. Journal of Coordination Chemistry 2016, 69 (8) , 1358-1370. https://doi.org/10.1080/00958972.2016.1161183
    51. Lei Gao, Xiaoqing Wang, Jianli Ma, Daifeng Hao, Pei Wei, Liang Zhou, Guiyang Liu. Evaluation of TPGS-modified thermo-sensitive Pluronic PF127 hydrogel as a potential carrier to reverse the resistance of P-gp-overexpressing SMMC-7721 cell lines. Colloids and Surfaces B: Biointerfaces 2016, 140 , 307-316. https://doi.org/10.1016/j.colsurfb.2015.12.057
    52. Di Jiang, Xiaoling Gao, Ting Kang, Xingye Feng, Jianhui Yao, Mengshi Yang, Yixian Jing, Qianqian Zhu, Jingxian Feng, Jun Chen. Actively targeting d -α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) nanoparticles as vesicles for chemo-photodynamic combination therapy of doxorubicin-resistant breast cancer. Nanoscale 2016, 8 (5) , 3100-3118. https://doi.org/10.1039/C5NR07724A
    53. Raquel Palao-Suay, María Rosa Aguilar, Francisco J. Parra-Ruiz, Samarendra Maji, Richard Hoogenboom, N. A. Rohner, Susan N. Thomas, Julio San Román. α-TOS-based RAFT block copolymers and their NPs for the treatment of cancer. Polymer Chemistry 2016, 7 (4) , 838-850. https://doi.org/10.1039/C5PY01811K
    54. Sen Lin, Tong Li, Peiling Xie, Qing Li, Bailiang Wang, Lei Wang, Lingli Li, Yuqin Wang, Hao Chen, Kaihui Nan. Targeted delivery of doxorubicin to tumour tissues by a novel legumain sensitive polygonal nanogel. Nanoscale 2016, 8 (43) , 18400-18411. https://doi.org/10.1039/C6NR05870A
    55. Mengshi Yang, Di Jiang, Zhilong Chen, Jun Chen. Photodynamic therapy of drug-resistant human colon adenocarcinoma using verteporfin-loaded TPGS nanoparticles with tumor homing and penetrating peptide functionalization. RSC Advances 2016, 6 (103) , 100984-100992. https://doi.org/10.1039/C6RA19152E
    56. Ha Phuong Thu, Nguyen Hoai Nam, Bui Thuc Quang, Ho Anh Son, Nguyen Linh Toan, Duong Tuan Quang. In vitro and in vivo targeting effect of folate decorated paclitaxel loaded PLA–TPGS nanoparticles. Saudi Pharmaceutical Journal 2015, 23 (6) , 683-688. https://doi.org/10.1016/j.jsps.2015.02.002
    57. Jae Hyon Moon, James W Moxley, Pengcheng Zhang, Honggang Cui. Nanoparticle Approaches to Combating Drug Resistance. Future Medicinal Chemistry 2015, 7 (12) , 1503-1510. https://doi.org/10.4155/fmc.15.82
    58. Xiao-Ying Zhang, Yang-De Zhang. Enhanced antiproliferative and apoptosis effect of paclitaxel-loaded polymeric micelles against non-small cell lung cancers. Tumor Biology 2015, 36 (7) , 4949-4959. https://doi.org/10.1007/s13277-015-3142-7
    59. Ai-ting Wang, De-sheng Liang, Yu-jie Liu, Xian-rong Qi. Roles of ligand and TPGS of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors. Biomaterials 2015, 53 , 160-172. https://doi.org/10.1016/j.biomaterials.2015.02.077
    60. Cristina M. Sabliov, Dorel Moldovan, Brian Novak, Toni Borel, Meocha Whaley. Cellular fate of delivery systems and entrapped bioactives. 2015, 35-51. https://doi.org/10.1002/9781118462157.ch3
    61. Jinxie Zhang, Wei Tao, Yuhan Chen, Danfeng Chang, Teng Wang, Xudong Zhang, Lin Mei, Xiaowei Zeng, Laiqiang Huang. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. Journal of Materials Science: Materials in Medicine 2015, 26 (4) https://doi.org/10.1007/s10856-015-5498-z
    62. Saeed Alqahtani, Amal Kaddoumi. Vitamin E Transporters in Cancer Therapy. The AAPS Journal 2015, 17 (2) , 313-322. https://doi.org/10.1208/s12248-014-9705-5
    63. Zhen Li, Lipeng Qiu, Qing Chen, Tangna Hao, Mingxi Qiao, Haixia Zhao, Jie Zhang, Haiyang Hu, Xiuli Zhao, Dawei Chen, Lin Mei. pH-sensitive nanoparticles of poly(l-histidine)–poly(lactide-co-glycolide)–tocopheryl polyethylene glycol succinate for anti-tumor drug delivery. Acta Biomaterialia 2015, 11 , 137-150. https://doi.org/10.1016/j.actbio.2014.09.014
    64. Weihua Jiang, Lei Yang, Lipeng Qiu, Jingwen Xu, Xiuchun Yang, Ju Wang, Hui Zhou, Dongkai Wang. Multifunctional hybrid nanoparticles based on sodium carboxymethylcellulose-graft-histidine and TPGS for enhanced effect of docetaxel. RSC Advances 2015, 5 (66) , 53835-53845. https://doi.org/10.1039/C5RA05586E
    65. Daniela Enescu, Alberto Frache, Francesco Geobaldo. Formation and oxygen diffusion barrier properties of fish gelatin/natural sodium montmorillonite clay self-assembled multilayers onto the biopolyester surface. RSC Advances 2015, 5 (75) , 61465-61480. https://doi.org/10.1039/C5RA11283D
    66. Wen Lv, Lihua Cheng, Baohua Li. Development and Evaluation of a Novel TPGS-Mediated Paclitaxel-Loaded PLGA-mPEG Nanoparticle for the Treatment of Ovarian Cancer. CHEMICAL & PHARMACEUTICAL BULLETIN 2015, 63 (2) , 68-74. https://doi.org/10.1248/cpb.c14-00423
    67. Fabienne Danhier, Trésor Touan Bi Kouhé, Nicolas Duhem, Bernard Ucakar, Aurélie Staub, Nihed Draoui, Olivier Feron, Véronique Préat. Vitamin E-based micelles enhance the anticancer activity of doxorubicin. International Journal of Pharmaceutics 2014, 476 (1-2) , 9-15. https://doi.org/10.1016/j.ijpharm.2014.09.028
    68. Ming Qin, Yong‐Eun Koo Lee, Aniruddha Ray, Raoul Kopelman. Overcoming Cancer Multidrug Resistance by Codelivery of Doxorubicin and Verapamil with Hydrogel Nanoparticles. Macromolecular Bioscience 2014, 14 (8) , 1106-1115. https://doi.org/10.1002/mabi.201400035
    69. T. Borel, C.M. Sabliov. Nanodelivery of Bioactive Components for Food Applications: Types of Delivery Systems, Properties, and Their Effect on ADME Profiles and Toxicity of Nanoparticles. Annual Review of Food Science and Technology 2014, 5 (1) , 197-213. https://doi.org/10.1146/annurev-food-030713-092354
    70. Zhiping Zhang, Songwei Tan, Si-Shen Feng. Vitamin E TPGS as a Molecular Biomaterial for Drug Delivery. 2014, 939-981. https://doi.org/10.1201/b15645-56
    71. Akihiro Takahashi, Yuta Ozaki, Akinori Kuzuya, Yuichi Ohya. Impact of Core-Forming Segment Structure on Drug Loading in Biodegradable Polymeric Micelles Using PEG- b -Poly(lactide- co -depsipeptide) Block Copolymers. BioMed Research International 2014, 2014 , 1-10. https://doi.org/10.1155/2014/579212
    72. Mohammad Ali, Mohammad Afzal, Ujjwal Kaushik, Shailja Mishra Bhattacharya, Farhan Jalees Ahmad, Amit Kumar Dinda. Perceptive solutions to anti-filarial chemotherapy of lymphatic filariasis from the plethora of nanomedical sciences. Journal of Drug Targeting 2014, 22 (1) , 1-13. https://doi.org/10.3109/1061186X.2013.832766
    73. Yoav D. Livney, Yehuda G. Assaraf. Rationally designed nanovehicles to overcome cancer chemoresistance. Advanced Drug Delivery Reviews 2013, 65 (13-14) , 1716-1730. https://doi.org/10.1016/j.addr.2013.08.006
    74. Ibrahima Youm, Bi-Botti C. Youan. Uptake mechanism of Furosemide-loaded pegylated nanoparticles by cochlear cell lines. Hearing Research 2013, 304 , 7-19. https://doi.org/10.1016/j.heares.2013.05.010
    75. Ping Ma, Russell J. Mumper. Anthracycline nano-delivery systems to overcome multiple drug resistance: A comprehensive review. Nano Today 2013, 8 (3) , 313-331. https://doi.org/10.1016/j.nantod.2013.04.006
    76. Mohammad Ali, Mohammad Afzal, Shailja Misra Bhattacharya, Farhan Jalees Ahmad, Amit Kumar Dinda. Nanopharmaceuticals to target antifilarials: a comprehensive review. Expert Opinion on Drug Delivery 2013, 10 (5) , 665-678. https://doi.org/10.1517/17425247.2013.771630
    77. Jia Zhou, Wei-Yu Zhao, Xu Ma, Rui-Jun Ju, Xiu-Ying Li, Nan Li, Meng-Ge Sun, Ji-Feng Shi, Cheng-Xiang Zhang, Wan-Liang Lu. The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 2013, 34 (14) , 3626-3638. https://doi.org/10.1016/j.biomaterials.2013.01.078
    78. Min Han, Jian-Qing Gao. Nanotherapeutics in Multidrug Resistance. 2013, 389-412. https://doi.org/10.1007/978-1-4614-7876-8_15
    79. Zhiping Zhang, Songwei Tan, Si-Shen Feng. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials 2012, 33 (19) , 4889-4906. https://doi.org/10.1016/j.biomaterials.2012.03.046
    80. Ye Tian, Shirui Mao. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs. Expert Opinion on Drug Delivery 2012, 9 (6) , 687-700. https://doi.org/10.1517/17425247.2012.681299
    81. Paola Sánchez-Moreno, Houria Boulaiz, Juan Luis Ortega-Vinuesa, José Manuel Peula-García, Antonia Aránega. Novel Drug Delivery System Based on Docetaxel-Loaded Nanocapsules as a Therapeutic Strategy Against Breast Cancer Cells. International Journal of Molecular Sciences 2012, 13 (4) , 4906-4919. https://doi.org/10.3390/ijms13044906
    82. Syu-Ming Lai, Jong-Kai Hsiao, Hsiu-Ping Yu, Chen-Wen Lu, Chih-Chia Huang, Ming-Jium Shieh, Ping-Shan Lai. Polyethylene glycol-based biocompatible and highly stable superparamagnetic iron oxide nanoclusters for magnetic resonance imaging. Journal of Materials Chemistry 2012, 22 (30) , 15160. https://doi.org/10.1039/c2jm32086j
    83. Ibrahima Youm, Xiaoyan Yang, James B Murowchick, Bi-Botti C Youan. Encapsulation of docetaxel in oily core polyester nanocapsules intended for breast cancer therapy. Nanoscale Research Letters 2011, 6 (1) https://doi.org/10.1186/1556-276X-6-630
    84. Meihua Sui, Wenwen Liu, Youqing Shen. Nuclear drug delivery for cancer chemotherapy. Journal of Controlled Release 2011, 155 (2) , 227-236. https://doi.org/10.1016/j.jconrel.2011.07.041
    85. Michael K. Danquah, Xin A. Zhang, Ram I. Mahato. Extravasation of polymeric nanomedicines across tumor vasculature. Advanced Drug Delivery Reviews 2011, 63 (8) , 623-639. https://doi.org/10.1016/j.addr.2010.11.005
    86. Ming-Jium Shieh, Chia-Yen Hsu, Ling-Yi Huang, Hsuan-Ying Chen, Fei-Hong Huang, Ping-Shan Lai. Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. Journal of Controlled Release 2011, 152 (3) , 418-425. https://doi.org/10.1016/j.jconrel.2011.03.017
    87. Jung Kwon Oh. Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications. Soft Matter 2011, 7 (11) , 5096. https://doi.org/10.1039/c0sm01539c

    Biomacromolecules

    Cite this: Biomacromolecules 2010, 11, 10, 2576–2582
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm1005195
    Published August 19, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    2535

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.