ACS Publications. Most Trusted. Most Cited. Most Read
pH-Triggered Charge-Reversal Polypeptide Nanoparticles for Cisplatin Delivery: Preparation and In Vitro Evaluation
My Activity

Figure 1Loading Img
    Article

    pH-Triggered Charge-Reversal Polypeptide Nanoparticles for Cisplatin Delivery: Preparation and In Vitro Evaluation
    Click to copy article linkArticle link copied!

    View Author Information
    Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People’s Republic of China
    Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, People’s Republic of China
    *E-mail: [email protected] (Z.T.); [email protected] (X.Z.).
    Other Access OptionsSupporting Information (1)

    Biomacromolecules

    Cite this: Biomacromolecules 2013, 14, 6, 2023–2032
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm400358z
    Published May 11, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A series of pH-responsive random copolymer poly(l-glutamic acid-co-l-lysine) [P(Glu-co-Lys)] were synthesized through the ring-opening polymerization (ROP) of γ-benzyl-l-glutamate N-carboxyanhydride (BLG-NCA) and 3-benzyloxycarbonyl-l-lysine N-carboxyanhydride (ZLys-NCA) and the subsequent deprotection. The chemical structure of the P(Glu-co-Lys)s was confirmed by NMR. Critical aggregation concentration and transmission electron microscopy measurements indicated that the P(Glu-co-Lys)s could self-assemble into aggregates in phosphate buffer. The surface charge of P(Glu-co-Lys) aggregates was greatly affected by the solution’s pH and l-glutamic acid/l-lysine ratio because the carboxyl and amino groups present on the P(Glu-co-Lys) aggregates could be protonated or deprotonated to become charged. The pH value of the solution at which the surface charge of the P(Glu-co-Lys) aggregates reversed could be manipulated by the feed ratio of BLG-NCA and ZLys-NCA. In vitro methyl thiazolyl tetrazolium assays demonstrated that negatively charged P(Glu-co-Lys)s were nontoxic and biocompatible. Positive charged P(Glu-co-Lys)s showed some cytotoxicity to Hela cells. Cisplatin (CDDP) was used as a model anticancer drug to evaluate the charge-reversal drug delivery system. By the manipulation of CDDP loading content, the surface charge of the CDDP/P(Glu-co-Lys) nanoparticles could be reversed to positive from negative at tumor extracellular pH (pHe 6.5–7.2). An enhanced drug uptake and inhibition of cancer cell proliferation were observed for the tumoral pHe triggered charge-reversal CDDP/P(Glu-co-Lys) drug delivery system. These indicated that the CDDP/P(Glu-co-Lys) nanoparticles could be used as intelligent drug delivery systems for cancer therapy.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    1H NMR spectra of poly(benzyl l-glutamate) and poly(BLG-co-ZLys), 13C NMR spectrum of P(Glu-co-Lys), GPC curves of P(Glu-co-Lys) copolymers, hydrodynamic radius, and circular dichroism of P(Glu-co-Lys) 3 in aqueous solution at different pH. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 155 publications.

    1. Guifeng Miao, Yuejian He, Zhanhao Shang, Peiyi He, Mingheng Xu, Xiaoxi Zhao, Xiaorui Wang. Combined Effects of Core Rigidity and Surface Charge of Polymeric Nanomicelles on the Cellular Uptake Efficiency. Macromolecules 2023, 56 (19) , 7663-7674. https://doi.org/10.1021/acs.macromol.3c01283
    2. Yuqi Ma, Anhe Wang, Jieling Li, Qi Li, Qingquan Han, Yafeng Jing, Xuefang Zheng, Hongyu Cao, Xuehai Yan, Shuo Bai. Surface Self-Assembly of Dipeptides on Porous CaCO3 Particles Promoting Cell Internalization. ACS Applied Materials & Interfaces 2023, 15 (1) , 2486-2497. https://doi.org/10.1021/acsami.2c21447
    3. Basma Mahi, Mario Gauthier, Nikos Hadjichristidis. Hybrid Arborescent Polypeptide-Based Unimolecular Micelles: Synthesis, Characterization, and Drug Encapsulation. Biomacromolecules 2022, 23 (6) , 2441-2458. https://doi.org/10.1021/acs.biomac.2c00202
    4. Ashish Trital, Weili Xue, Shengfu Chen. Development of a Negative-Biased Zwitterionic Polypeptide-Based Nanodrug Vehicle for pH-Triggered Cellular Uptake and Accelerated Drug Release. Langmuir 2020, 36 (26) , 7181-7189. https://doi.org/10.1021/acs.langmuir.0c00166
    5. Lu Sun, Yang Zhou, Xufeng Zhou, Liwei Ma, Baoyan Wang, Cuiyun Yu, Hua Wei. Synthesis of a Triple-Responsive Double Hydrophilic Block Copolymer Prodrug Using a Reducible RAFT–ATRP Double-Head Agent. ACS Applied Polymer Materials 2020, 2 (6) , 2126-2133. https://doi.org/10.1021/acsapm.0c00083
    6. Korra Praveen, Soumen Das, Vinita Dhaware, Bhawana Pandey, Basudeb Mondal, Sayam Sen Gupta. pH-Responsive “Supra-Amphiphilic” Nanoparticles Based on Homoarginine Polypeptides. ACS Applied Bio Materials 2019, 2 (10) , 4162-4172. https://doi.org/10.1021/acsabm.9b00432
    7. Zhihui Qin, Tingting Chen, Wenzhuo Teng, Qiao Jin, Jian Ji. Mixed-Charged Zwitterionic Polymeric Micelles for Tumor Acidic Environment Responsive Intracellular Drug Delivery. Langmuir 2019, 35 (5) , 1242-1248. https://doi.org/10.1021/acs.langmuir.8b00471
    8. Weifeng Lin, Guanglong Ma, Zhefan Yuan, Haofeng Qian, Liangbo Xu, Elie Sidransky, Shengfu Chen. Development of Zwitterionic Polypeptide Nanoformulation with High Doxorubicin Loading Content for Targeted Drug Delivery. Langmuir 2019, 35 (5) , 1273-1283. https://doi.org/10.1021/acs.langmuir.8b00851
    9. J. Zhao, M. A. Johnson, R. Fisher, N. A. D. Burke, H. D. H. Stöver. Synthetic Polyampholytes as Macromolecular Cryoprotective Agents. Langmuir 2019, 35 (5) , 1807-1817. https://doi.org/10.1021/acs.langmuir.8b01602
    10. Timothy J. Deming, Harm-Anton Klok, Steven P. Armes, Matthew L. Becker, Julie A. Champion, Eugene Y.-X. Chen, Sarah C. Heilshorn, Jan C. M. van Hest, Darrell J. Irvine, Jeremiah A. Johnson, Laura L. Kiessling, Heather D. Maynard, Monica Olvera de la Cruz, Millicent O. Sullivan, Matthew V. Tirrell, Kristi S. Anseth, Sebastien Lecommandoux, Simona Percec, Zhiyuan Zhong, Ann-Christine Albertsson. Polymers at the Interface with Biology. Biomacromolecules 2018, 19 (8) , 3151-3162. https://doi.org/10.1021/acs.biomac.8b01029
    11. Yincheng Chang, Zehuan Huang, Yang Jiao, Jiang-Fei Xu, Xi Zhang. pH-Induced Charge-Reversal Amphiphile with Cancer Cell-Selective Membrane-Disrupting Activity. ACS Applied Materials & Interfaces 2018, 10 (25) , 21191-21197. https://doi.org/10.1021/acsami.8b06660
    12. Weihua Zhuang, Yangyang Xu, Gaocan Li, Jun Hu, Boxuan Ma, Tao Yu, Xin Su, Yunbing Wang. Redox and pH Dual-Responsive Polymeric Micelles with Aggregation-Induced Emission Feature for Cellular Imaging and Chemotherapy. ACS Applied Materials & Interfaces 2018, 10 (22) , 18489-18498. https://doi.org/10.1021/acsami.8b02890
    13. Juanjuan Li, Xuan Meng, Jian Deng, Di Lu, Xin Zhang, Yanrui Chen, Jundong Zhu, Aiping Fan, Dan Ding, Deling Kong, Zheng Wang, Yanjun Zhao. Multifunctional Micelles Dually Responsive to Hypoxia and Singlet Oxygen: Enhanced Photodynamic Therapy via Interactively Triggered Photosensitizer Delivery. ACS Applied Materials & Interfaces 2018, 10 (20) , 17117-17128. https://doi.org/10.1021/acsami.8b06299
    14. Wenyu Cheng, Hong Cheng, Shuangshuang Wan, Xianzheng Zhang, and Meizhen Yin . Dual-Stimulus-Responsive Fluorescent Supramolecular Prodrug for Antitumor Drug Delivery. Chemistry of Materials 2017, 29 (10) , 4218-4226. https://doi.org/10.1021/acs.chemmater.7b00047
    15. Kai Han, Wei-Yun Zhang, Zhao-Yu Ma, Shi-Bo Wang, Lu-Ming Xu, Jia Liu, Xian-Zheng Zhang, and He-You Han . Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects. ACS Applied Materials & Interfaces 2017, 9 (19) , 16043-16053. https://doi.org/10.1021/acsami.7b04447
    16. Doudou Hu, Zongpu Xu, Zeyun Hu, Binhui Hu, Mingying Yang, and Liangjun Zhu . pH-Triggered Charge-Reversal Silk Sericin-Based Nanoparticles for Enhanced Cellular Uptake and Doxorubicin Delivery. ACS Sustainable Chemistry & Engineering 2017, 5 (2) , 1638-1647. https://doi.org/10.1021/acssuschemeng.6b02392
    17. Zhicheng Pan, Danxuan Fang, Nijia Song, Yuanqing Song, Mingming Ding, Jiehua Li, Feng Luo, Hong Tan, and Qiang Fu . Surface Distribution and Biophysicochemical Properties of Polymeric Micelles Bearing Gemini Cationic and Hydrophilic Groups. ACS Applied Materials & Interfaces 2017, 9 (3) , 2138-2149. https://doi.org/10.1021/acsami.6b14339
    18. Zhongyu Jiang Jinjin Chen Jianxun Ding Xiuli Zhuang Xuesi Chen . Controlled Syntheses of Functional Polypeptides. 2017, 149-170. https://doi.org/10.1021/bk-2017-1252.ch008
    19. Fang Li, Wei-liang Chen, Ben-gang You, Yang Liu, Shu-di Yang, Zhi-qiang Yuan, Wen-jing Zhu, Ji-zhao Li, Chen-xi Qu, Ye-juan Zhou, Xiao-feng Zhou, Chun Liu, and Xue-nong Zhang . Enhanced Cellular Internalization and On-Demand Intracellular Release of Doxorubicin by Stepwise pH-/Reduction-Responsive Nanoparticles. ACS Applied Materials & Interfaces 2016, 8 (47) , 32146-32158. https://doi.org/10.1021/acsami.6b09604
    20. S. Panja, G. Dey, R. Bharti, K. Kumari, T. K. Maiti, M. Mandal, and S. Chattopadhyay . Tailor-Made Temperature-Sensitive Micelle for Targeted and On-Demand Release of Anticancer Drugs. ACS Applied Materials & Interfaces 2016, 8 (19) , 12063-12074. https://doi.org/10.1021/acsami.6b03820
    21. Wenjia Shen, Jiabin Luan, Luping Cao, Jian Sun, Lin Yu, and Jiandong Ding . Thermogelling Polymer–Platinum(IV) Conjugates for Long-Term Delivery of Cisplatin. Biomacromolecules 2015, 16 (1) , 105-115. https://doi.org/10.1021/bm501220a
    22. Hongzhang Deng, Jinjian Liu, Xuefei Zhao, Yuming Zhang, Jianfeng Liu, Shuxin Xu, Liandong Deng, Anjie Dong, and Jianhua Zhang . PEG-b-PCL Copolymer Micelles with the Ability of pH-Controlled Negative-to-Positive Charge Reversal for Intracellular Delivery of Doxorubicin. Biomacromolecules 2014, 15 (11) , 4281-4292. https://doi.org/10.1021/bm501290t
    23. Vladimir Dmitrović, Jos J. M. Lenders, Harshal R. Zope, Gijsbertus de With, Alexander Kros, and Nico A. J. M. Sommerdijk . Library of Random Copolypeptides by Solid Phase Synthesis. Biomacromolecules 2014, 15 (10) , 3687-3695. https://doi.org/10.1021/bm500983m
    24. Qiao Jin, Tongjiang Cai, Yin Wang, Haibo Wang, and Jian Ji . Light-Responsive Polyion Complex Micelles with Switchable Surface Charge for Efficient Protein Delivery. ACS Macro Letters 2014, 3 (7) , 679-683. https://doi.org/10.1021/mz500290s
    25. Bapurao Surnar and M. Jayakannan . Stimuli-Responsive Poly(caprolactone) Vesicles for Dual Drug Delivery under the Gastrointestinal Tract. Biomacromolecules 2013, 14 (12) , 4377-4387. https://doi.org/10.1021/bm401323x
    26. Sichen Li, Difei Zhang, Yi Li, Jingjing Zhou, Jinghua Chen, Yan Zhang. All-in-one multifunctional tri-block glycopolymers for targeted delivery of cisplatin and cancer chemotherapy. Colloids and Surfaces B: Biointerfaces 2025, 252 , 114639. https://doi.org/10.1016/j.colsurfb.2025.114639
    27. Ziming Lin, Hanwen Zhu, Xiaobang Liu, Pingyu Liu, Miao Hu, Panting Wan, Minzhen Dong, Li Zhang, Huae Xu, Yijun Wang. Direct introduction of cationic and anionic lipids to create pH-sensitive charge-reversible liposomes with optimized pharmacokinetics and antitumor effects. Journal of Nanoparticle Research 2024, 26 (12) https://doi.org/10.1007/s11051-024-06198-7
    28. Weimiao Dong, Haihong Yang, Min Liu, Leixia Mei, Jun Han. Wound microenvironment‐responsive peptide hydrogel with multifunctionalities for accelerating wound healing. Journal of Peptide Science 2024, 30 (7) https://doi.org/10.1002/psc.3595
    29. Mao-Lan Zhang, Gui-Ping Zhang, Hong-Shuo Ma, Yu-Zhu Pan, Xiao-Ling Liao. Preparation of pH-responsive polyurethane nano micelles and their antibacterial application. Journal of Biomaterials Science, Polymer Edition 2024, 35 (4) , 519-534. https://doi.org/10.1080/09205063.2024.2301807
    30. Zhanbiao Liu, Xuejun Chen, Qian Jin, Min Li, Siqing Zhu, Yi Zhang, Defu Zhi, Yinan Zhao, Liqin Li, Shubiao Zhang. Dual functionalized hyaluronic acid micelles loading paclitaxel for the therapy of breast cancer. Frontiers in Bioengineering and Biotechnology 2023, 11 https://doi.org/10.3389/fbioe.2023.1230585
    31. J. Saranya, B. S. Sreeja, P. Senthil Kumar. Microwave assisted cisplatin-loaded CeO2/GO/c-MWCNT hybrid as drug delivery system in cervical cancer therapy. Applied Nanoscience 2023, 13 (6) , 4219-4233. https://doi.org/10.1007/s13204-023-02856-9
    32. Tienli Ma, Shangchih Yang, Shyhchyang Luo, Weili Chen, Shulang Liao, Weifang Su. Dual‐Function Fibrous Co‐Polypeptide Scaffolds for Neural Tissue Engineering. Macromolecular Bioscience 2023, 23 (2) https://doi.org/10.1002/mabi.202200286
    33. Pradipta Ranjan Rauta, Yuri Mackeyev, Keith Sanders, Joseph B.K. Kim, Valeria V. Gonzalez, Yasmin Zahra, Muhammad A. Shohayeb, Belal Abousaida, Geraldine V. Vijay, Okan Tezcan, Paul Derry, Anton V. Liopo, Eugene R. Zubarev, Rickey Carter, Pankaj Singh, Sunil Krishnan. Pancreatic tumor microenvironmental acidosis and hypoxia transform gold nanorods into cell-penetrant particles for potent radiosensitization. Science Advances 2022, 8 (45) https://doi.org/10.1126/sciadv.abm9729
    34. Quim Peña, Alec Wang, Orysia Zaremba, Yang Shi, Hans W. Scheeren, Josbert M. Metselaar, Fabian Kiessling, Roger M. Pallares, Stefan Wuttke, Twan Lammers. Metallodrugs in cancer nanomedicine. Chemical Society Reviews 2022, 51 (7) , 2544-2582. https://doi.org/10.1039/D1CS00468A
    35. Shunli Chu, Xiaolu Shi, Ye Tian, Fengxiang Gao. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.855019
    36. Valerii B Orel, Liubov A Syvak, Valerii E Orel. Remote control of magnetic nanocomplexes for delivery and destruction of cancer cells. Journal of Biomaterials Applications 2021, 36 (5) , 872-881. https://doi.org/10.1177/08853282211005098
    37. Shaobo Wang, Yunchao Zhao, Zeyu Zhang, Yalong Zhang, Linlin Li. Recent advances in amino acid-metal coordinated nanomaterials for biomedical applications. Chinese Journal of Chemical Engineering 2021, 38 , 30-42. https://doi.org/10.1016/j.cjche.2021.03.013
    38. Zhiyun Feng, Jie Xu, Caihua Ni. Preparation of redox responsive modified xanthan gum nanoparticles and the drug controlled release. International Journal of Polymeric Materials and Polymeric Biomaterials 2021, 70 (14) , 994-1001. https://doi.org/10.1080/00914037.2020.1767618
    39. Xu Wang, Ziyuan Song, Shiqi Wei, Guonan Ji, Xuetao Zheng, Zihuan Fu, Jianjun Cheng. Polypeptide-based drug delivery systems for programmed release. Biomaterials 2021, 275 , 120913. https://doi.org/10.1016/j.biomaterials.2021.120913
    40. Fátima Fernández-Álvarez, Gracia García-García, José L. Arias. A Tri-Stimuli Responsive (Maghemite/PLGA)/Chitosan Nanostructure with Promising Applications in Lung Cancer. Pharmaceutics 2021, 13 (8) , 1232. https://doi.org/10.3390/pharmaceutics13081232
    41. Weihua Chen, Zhen Sun, Lehui Lu. Zielgerichtete Wirkstoffe für die Krebstherapie: Aktuelle Entwicklungen und Perspektiven. Angewandte Chemie 2021, 133 (11) , 5686-5705. https://doi.org/10.1002/ange.201914511
    42. Weihua Chen, Zhen Sun, Lehui Lu. Targeted Engineering of Medicinal Chemistry for Cancer Therapy: Recent Advances and Perspectives. Angewandte Chemie International Edition 2021, 60 (11) , 5626-5643. https://doi.org/10.1002/anie.201914511
    43. Jiajia Xiang, Yinwen Li, Yifan Zhang, Guowei Wang, Hongxia Xu, Zhuxian Zhou, Jianbin Tang, Youqing Shen. Polyphenol-cisplatin complexation forming core-shell nanoparticles with improved tumor accumulation and dual-responsive drug release for enhanced cancer chemotherapy. Journal of Controlled Release 2021, 330 , 992-1003. https://doi.org/10.1016/j.jconrel.2020.11.006
    44. J.A. Sánchez-Fernández, Rodrigo Cué-Sampedro. Biopolymers and their composites for drug delivery. 2021, 363-387. https://doi.org/10.1016/B978-0-12-821553-1.00018-1
    45. Congping Zhou, Zuowen Shi, Fei Xu, Ying Ling, Haoyu Tang. Preparation and properties of thermo- and pH-responsive polypeptide bearing OEG and aldehyde pendants. Colloid and Polymer Science 2020, 298 (10) , 1293-1302. https://doi.org/10.1007/s00396-020-04712-6
    46. Kaojin Wang, Kamran Amin, Zesheng An, Zhengxu Cai, Hong Chen, Hongzheng Chen, Yuping Dong, Xiao Feng, Weiqiang Fu, Jiabao Gu, Yanchun Han, Doudou Hu, Rongrong Hu, Die Huang, Fei Huang, Feihe Huang, Yuzhang Huang, Jian Jin, Xin Jin, Qianqian Li, Tengfei Li, Zhen Li, Zhibo Li, Jiangang Liu, Jing Liu, Shiyong Liu, Huisheng Peng, Anjun Qin, Xin Qing, Youqing Shen, Jianbing Shi, Xuemei Sun, Bin Tong, Bo Wang, Hu Wang, Lixiang Wang, Shu Wang, Zhixiang Wei, Tao Xie, Chunye Xu, Huaping Xu, Zhi-Kang Xu, Bai Yang, Yanlei Yu, Xuan Zeng, Xiaowei Zhan, Guangzhao Zhang, Jie Zhang, Ming Qiu Zhang, Xian-Zheng Zhang, Xiao Zhang, Yi Zhang, Yuanyuan Zhang, Changsheng Zhao, Weifeng Zhao, Yongfeng Zhou, Zhuxian Zhou, Jintao Zhu, Xinyuan Zhu, Ben Zhong Tang. Advanced functional polymer materials. Materials Chemistry Frontiers 2020, 4 (7) , 1803-1915. https://doi.org/10.1039/D0QM00025F
    47. Huan Li, Xu Li, Jian Ji. Mixed‐charge bionanointerfaces: Opposite charges work in harmony to meet the challenges in biomedical applications. WIREs Nanomedicine and Nanobiotechnology 2020, 12 (3) https://doi.org/10.1002/wnan.1600
    48. Qiaojie Luo, Xiaojun Li, Ying Wang, Jianfang He, Qiao Zhang, Pengfei Ge, Xia Cai, Qiang Sun, Weipu Zhu, Zhiquan Shen, Xiaodong Li. A biodegradable CO 2 -based polymeric antitumor nanodrug via a one-pot surfactant- and solvent-free miniemulsion preparation. Biomaterials Science 2020, 8 (8) , 2234-2244. https://doi.org/10.1039/C9BM01931F
    49. Zengjun Fang, Shaobin Pan, Peng Gao, Huagang Sheng, Lingjun Li, Lei Shi, Yongqing Zhang, Xiaoqing Cai. Stimuli-responsive charge-reversal nano drug delivery system: The promising targeted carriers for tumor therapy. International Journal of Pharmaceutics 2020, 575 , 118841. https://doi.org/10.1016/j.ijpharm.2019.118841
    50. Annalisa Abdel Azim, Alessandro Cordara, Beatrice Battaglino, Angela Re. Use of Carbon Dioxide in Polymer Synthesis. 2020, 1-43. https://doi.org/10.1007/978-3-030-28638-5_1
    51. Morteza Aieneravaie, Jim Q. Ho, Leila Arabi, James Lee, Kirsten Herrera, Syeda Mehreen, Najmeh Javdani, Petrina Georgala, Mohammad Reza Sepand, Marjan Rafat, Steven Zanganeh. Use of nanoparticulate systems to salvage the myocardium. 2020, 89-111. https://doi.org/10.1016/B978-0-12-817434-0.00007-6
    52. Ling-Yan Zhou, Yang-Hui Zhu, Xiao-Yu Wang, Chao Shen, Xia-Wei Wei, Ting Xu, Zhi-Yao He. Novel zwitterionic vectors: Multi-functional delivery systems for therapeutic genes and drugs. Computational and Structural Biotechnology Journal 2020, 18 , 1980-1999. https://doi.org/10.1016/j.csbj.2020.07.015
    53. Luqi Zhu, Yan Xiao, Jiaxiao Zhang, Siqi Zheng, Meidong Lang. Melamine-mediated supramolecular assembly of nucleobase-modified poly( l -lysine). Polymer Chemistry 2019, 10 (47) , 6432-6439. https://doi.org/10.1039/C9PY01413F
    54. Ngoc-Hanh Cao-Luu, Quoc-Thai Pham, Zong-Han Yao, Fu-Ming Wang, Chorng-Shyan Chern. Synthesis and characterization of poly(N-isopropylacrylamide-co-N,N′-methylenebisacrylamide-co-acrylamide) core – Silica shell nanoparticles by using reactive surfactant polyoxyethylene alkylphenyl ether ammonium sulfate. European Polymer Journal 2019, 120 , 109263. https://doi.org/10.1016/j.eurpolymj.2019.109263
    55. Alejandra Gonzalez-Urias, Ivan Zapata-Gonzalez, Angel Licea-Claverie, Alexei F. Licea-Navarro, Johanna Bernaldez-Sarabia, Karla Cervantes-Luevano. Cationic versus anionic core-shell nanogels for transport of cisplatin to lung cancer cells. Colloids and Surfaces B: Biointerfaces 2019, 182 , 110365. https://doi.org/10.1016/j.colsurfb.2019.110365
    56. Jing Qu, Si Peng, Rui Wang, Sheng-tao Yang, Qing-han Zhou, Juan Lin. Stepwise pH-sensitive and biodegradable polypeptide hybrid micelles for enhanced cellular internalization and efficient nuclear drug delivery. Colloids and Surfaces B: Biointerfaces 2019, 181 , 315-324. https://doi.org/10.1016/j.colsurfb.2019.05.071
    57. Boxuan Ma, Weihua Zhuang, Haiyang He, Xin Su, Tao Yu, Jun Hu, Li Yang, Gaocan Li, Yunbing Wang. Two-photon AIE probe conjugated theranostic nanoparticles for tumor bioimaging and pH-sensitive drug delivery. Nano Research 2019, 12 (7) , 1703-1712. https://doi.org/10.1007/s12274-019-2426-4
    58. Ernesto Tinajero-Díaz, Antxon Martínez de Ilarduya, Sebastián Muñoz-Guerra. Synthesis and properties of diblock copolymers of ω-pentadecalactone and α-amino acids. European Polymer Journal 2019, 116 , 169-179. https://doi.org/10.1016/j.eurpolymj.2019.04.009
    59. Tiangang Yang, Dechao Niu, Jianzhuang Chen, Jianping He, Shaobo Yang, Xiaobo Jia, Jina Hao, Wenru Zhao, Yongsheng Li. Biodegradable organosilica magnetic micelles for magnetically targeted MRI and GSH-triggered tumor chemotherapy. Biomaterials Science 2019, 7 (7) , 2951-2960. https://doi.org/10.1039/C9BM00342H
    60. Qin-Qin Gao, Chuan-Min Zhang, En-Xia Zhang, Hui-Ying Chen, Yu-Hong Zhen, Shu-Biao Zhang, Shu-Fen Zhang. Zwitterionic pH-responsive hyaluronic acid polymer micelles for delivery of doxorubicin. Colloids and Surfaces B: Biointerfaces 2019, 178 , 412-420. https://doi.org/10.1016/j.colsurfb.2019.03.007
    61. Yixin Zhu, Yakun Ma, Yanli Zhao, Min Yang, Lingbing Li. Preparation and evaluation of highly biocompatible nanogels with pH-sensitive charge-convertible capability based on doxorubicin prodrug. Materials Science and Engineering: C 2019, 98 , 161-176. https://doi.org/10.1016/j.msec.2018.12.095
    62. Xinxin Sang, Qiyi Yang, Quanwu Wen, Liping Zhang, Caihua Ni. Preparation and controlled drug release ability of the poly[N-isopropylacryamide-co-allyl poly(ethylene glycol)]-b-poly(γ-benzyl-l-glutamate) polymeric micelles. Materials Science and Engineering: C 2019, 98 , 910-917. https://doi.org/10.1016/j.msec.2019.01.056
    63. Zhening Yang, Tianwen Bai, Jun Ling, Youqing Shen. Hydroxyl‐tolerated polymerization of N‐phenoxycarbonyl α‐amino acids: A simple way to polypeptides bearing hydroxyl groups. Journal of Polymer Science Part A: Polymer Chemistry 2019, 57 (8) , 907-916. https://doi.org/10.1002/pola.29343
    64. Panagiota G. Fragouli, Dimitra Stavroulaki, Panagiotis Christakopoulos, Varvara Athanasiou, Maria Kasimati, Katerina Mathianaki, Hermis Iatrou. Responsive polymeric micelles for drug delivery applications/cancer therapy. 2019, 439-460. https://doi.org/10.1016/B978-0-08-101995-5.00018-0
    65. Quoc-Thai Pham, Zong-Han Yao, Ya-Ting Chang, Fu-Ming Wang, Chorng-Shyan Chern. LCST phase transition kinetics of aqueous poly(N-isopropylacrylamide) solution. Journal of the Taiwan Institute of Chemical Engineers 2018, 93 , 63-69. https://doi.org/10.1016/j.jtice.2018.07.045
    66. Yuling Su, Lili Zhao, Fancui Meng, Zhuangzhuang Qiao, Yan Yao, Jianbin Luo. Triclosan loaded polyurethane micelles with pH and lipase sensitive properties for antibacterial applications and treatment of biofilms. Materials Science and Engineering: C 2018, 93 , 921-930. https://doi.org/10.1016/j.msec.2018.08.063
    67. Mehnath Sivaraj, Arjama Mukherjee, Rajan Mariappan, Arokia Vijayaanand Mariadoss, Murugaraj Jeyaraj. Polyorganophosphazene stabilized gold nanoparticles for intracellular drug delivery in breast carcinoma cells. Process Biochemistry 2018, 72 , 152-161. https://doi.org/10.1016/j.procbio.2018.06.006
    68. Qiuling Dong, Huaqing Zhang, Yue Han, Aouameur Djamila, Hao Cheng, Zhiyuan Tang, Jianping Zhou, Yang Ding. Tumor environment differentiated “nanodepot” programmed for site-specific drug shuttling and combinative therapy on metastatic cancer. Journal of Controlled Release 2018, 283 , 59-75. https://doi.org/10.1016/j.jconrel.2018.05.027
    69. Di Lu, Yang An, Simin Feng, Xiaodan Li, Aiping Fan, Zheng Wang, Yanjun Zhao. Imidazole-Bearing Polymeric Micelles for Enhanced Cellular Uptake, Rapid Endosomal Escape, and On-demand Cargo Release. AAPS PharmSciTech 2018, 19 (6) , 2610-2619. https://doi.org/10.1208/s12249-018-1092-2
    70. Zhaohui Wang, Xinyi Zhang, Gang Huang, Jinming Gao. pH-responsive Drug Delivery Systems. 2018, 51-82. https://doi.org/10.1039/9781788013536-00051
    71. Yuan Yao, Yongfeng Zhou, Deyue Yan. Polypeptides Synthesized by Ring‐opening Polymerization of N‐Carboxyanhydrides. 2018, 201-223. https://doi.org/10.1002/9781119390350.ch11
    72. Xiaotian Wu, Xiaofeng Chen, Peibo Hu, Minghong Hou, Yahao Dong, Yuping Wei. Antifouling zwitterionic dextran micelles for efficient loading DOX. Carbohydrate Polymers 2018, 191 , 136-141. https://doi.org/10.1016/j.carbpol.2018.03.020
    73. Liping Zhang, Luyan Wu, Yuanlong Cao, Yunan Wu, Jing Chen, Caihua Ni. Studies on preparations and pH/redox responsiveness of zwitterionic nanomicelles of poly[lysine- co - N,N -bis(acryloyl)cystamine- co -dodecylamine]. International Journal of Polymeric Materials and Polymeric Biomaterials 2018, 67 (8) , 528-534. https://doi.org/10.1080/00914037.2017.1354199
    74. Taehoon Sim, Chaemin Lim, Young Hun Cho, Eun Seong Lee, Yu Seok Youn, Kyung Taek Oh. Development of pH‐sensitive nanogels for cancer treatment using crosslinked poly(aspartic acid‐ graft ‐imidazole)‐ block ‐poly(ethylene glycol). Journal of Applied Polymer Science 2018, 135 (20) https://doi.org/10.1002/app.46268
    75. Boxuan Ma, Weihua Zhuang, Yanan Wang, Rifang Luo, Yunbing Wang. pH-sensitive doxorubicin-conjugated prodrug micelles with charge-conversion for cancer therapy. Acta Biomaterialia 2018, 70 , 186-196. https://doi.org/10.1016/j.actbio.2018.02.008
    76. Kyeongnan Kwon, Jin-Chul Kim. Emulsion stabilized with disulfide proteinoid and its stability in reducing condition. Journal of Dispersion Science and Technology 2018, 39 (3) , 333-340. https://doi.org/10.1080/01932691.2017.1316209
    77. Tianyu Li, Wentian Xiang, Feng Li, Huaping Xu. Self-assembly regulated anticancer activity of platinum coordinated selenomethionine. Biomaterials 2018, 157 , 17-25. https://doi.org/10.1016/j.biomaterials.2017.12.001
    78. Weihua Zhuang, Boxuan Ma, Gongyan Liu, Gaocan Li, Yunbing Wang. TPE‐conjugated biomimetic and biodegradable polymeric micelle for AIE active cell imaging and cancer therapy. Journal of Applied Polymer Science 2018, 135 (1) https://doi.org/10.1002/app.45651
    79. Renjith P. Johnson, Namitha K. Preman. Responsive block copolymers for drug delivery applications. Part 1: Endogenous stimuli-responsive drug-release systems. 2018, 171-220. https://doi.org/10.1016/B978-0-08-101997-9.00009-6
    80. Kamal Bauri, Mridula Nandi, Priyadarsi De. Amino acid-derived stimuli-responsive polymers and their applications. Polymer Chemistry 2018, 9 (11) , 1257-1287. https://doi.org/10.1039/C7PY02014G
    81. Lili Zhao, Chang Liu, Zhuangzhuang Qiao, Yan Yao, Jianbin Luo. Reduction responsive and surface charge switchable polyurethane micelles with acid cleavable crosslinks for intracellular drug delivery. RSC Advances 2018, 8 (32) , 17888-17897. https://doi.org/10.1039/C8RA01581C
    82. Donglin Han, Hongzhao Qi, Kai Huang, Xueping Li, Qi Zhan, Jin Zhao, Xin Hou, Xianjin Yang, Chunsheng Kang, Xubo Yuan. The effects of surface charge on the intra-tumor penetration of drug delivery vehicles with tumor progression. Journal of Materials Chemistry B 2018, 6 (20) , 3331-3339. https://doi.org/10.1039/C8TB00038G
    83. Long Huang, Jing Wu, Meiying Liu, Liucheng Mao, Hongye Huang, Qing Wan, Yanfeng Dai, Yuanqing Wen, Xiaoyong Zhang, Yen Wei. Direct surface grafting of mesoporous silica nanoparticles with phospholipid choline-containing copolymers through chain transfer free radical polymerization and their controlled drug delivery. Journal of Colloid and Interface Science 2017, 508 , 396-404. https://doi.org/10.1016/j.jcis.2017.08.071
    84. Jing Wei, Xiaoyu Shuai, Rui Wang, Xueling He, Yiwen Li, Mingming Ding, Jiehua Li, Hong Tan, Qiang Fu. Clickable and imageable multiblock polymer micelles with magnetically guided and PEG-switched targeting and release property for precise tumor theranosis. Biomaterials 2017, 145 , 138-153. https://doi.org/10.1016/j.biomaterials.2017.08.005
    85. Liping Zhang, Yamin Zhou, Gang Shi, Xinxin Sang, Caihua Ni. Preparations of hyperbranched polymer nano micelles and the pH/redox controlled drug release behaviors. Materials Science and Engineering: C 2017, 79 , 116-122. https://doi.org/10.1016/j.msec.2017.05.027
    86. Taehoon Sim, Chaemin Lim, Ngoc Ha Hoang, Kyung Taek Oh. Recent advance of pH-sensitive nanocarriers targeting solid tumors. Journal of Pharmaceutical Investigation 2017, 47 (5) , 383-394. https://doi.org/10.1007/s40005-017-0349-1
    87. Yuanyuan Ding, Liping Zhang, Gang Shi, Xinxin Sang, Caihua Ni. Preparations and doxorubicin controlled release of amino-acid based redox/pH dual-responsive nanomicelles. Materials Science and Engineering: C 2017, 77 , 920-926. https://doi.org/10.1016/j.msec.2017.03.203
    88. Aili Suo, Junmin Qian, Minghui Xu, Weijun Xu, Yaping Zhang, Yu Yao. Folate-decorated PEGylated triblock copolymer as a pH/reduction dual-responsive nanovehicle for targeted intracellular co-delivery of doxorubicin and Bcl-2 siRNA. Materials Science and Engineering: C 2017, 76 , 659-672. https://doi.org/10.1016/j.msec.2017.03.124
    89. Shaohua Wu, Liuchun Zheng, Chuncheng Li, Yaonan Xiao, Shuaidong Huo, Bo Zhang. Grafted copolymer micelles with pH triggered charge reversibility for efficient doxorubicin delivery. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55 (12) , 2036-2046. https://doi.org/10.1002/pola.28586
    90. Hebin Wang, Yang Li, Hongzhen Bai, Jie Shen, Xi Chen, Yuan Ping, Guping Tang. A Cooperative Dimensional Strategy for Enhanced Nucleus‐Targeted Delivery of Anticancer Drugs. Advanced Functional Materials 2017, 27 (24) https://doi.org/10.1002/adfm.201700339
    91. Hua Lian, Ying Du, Xin Chen, Lijie Duan, Guanghui Gao, Chunsheng Xiao, Xiuli Zhuang. Core cross-linked poly(ethylene glycol)-graft-Dextran nanoparticles for reduction and pH dual responsive intracellular drug delivery. Journal of Colloid and Interface Science 2017, 496 , 201-210. https://doi.org/10.1016/j.jcis.2017.02.032
    92. Hongzhang Deng, Xuefei Zhao, Liandong Deng, Jianfeng Liu, Anjie Dong. Reactive oxygen species activated nanoparticles with tumor acidity internalization for precise anticancer therapy. Journal of Controlled Release 2017, 255 , 142-153. https://doi.org/10.1016/j.jconrel.2017.04.002
    93. Huicong Zhou, Huanjiao Sun, Shixian Lv, Dawei Zhang, Xuefei Zhang, Zhaohui Tang, Xuesi Chen. Legumain-cleavable 4-arm poly(ethylene glycol)-doxorubicin conjugate for tumor specific delivery and release. Acta Biomaterialia 2017, 54 , 227-238. https://doi.org/10.1016/j.actbio.2017.03.019
    94. Su-Chun How, Yu-Fon Chen, Pin-Lun Hsieh, Steven S.-S. Wang, Jeng-Shiung Jan. Cell-targeted, dual reduction- and pH-responsive saccharide/lipoic acid-modified poly(L-lysine) and poly(acrylic acid) polyionic complex nanogels for drug delivery. Colloids and Surfaces B: Biointerfaces 2017, 153 , 244-252. https://doi.org/10.1016/j.colsurfb.2017.02.032
    95. Liuchun Zheng, Zhijuan Sun, Chuncheng Li, Zhiyong Wei, Priyesh Jain, Kan Wu. Progress in biodegradable zwitterionic materials. Polymer Degradation and Stability 2017, 139 , 1-19. https://doi.org/10.1016/j.polymdegradstab.2017.03.015
    96. Qihang Sun, Zhuxian Zhou, Nasha Qiu, Youqing Shen. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Advanced Materials 2017, 29 (14) https://doi.org/10.1002/adma.201606628
    97. Qinqin Cheng, Yangzhong Liu. Multifunctional platinum‐based nanoparticles for biomedical applications. WIREs Nanomedicine and Nanobiotechnology 2017, 9 (2) https://doi.org/10.1002/wnan.1410
    98. Oleksandr Zagorodko, Juan José Arroyo‐Crespo, Vicent J. Nebot, María J. Vicent. Polypeptide‐Based Conjugates as Therapeutics: Opportunities and Challenges. Macromolecular Bioscience 2017, 17 (1) https://doi.org/10.1002/mabi.201600316
    99. Yaling Zhang, Changkui Fu, Yongsan Li, Ke Wang, Xing Wang, Yen Wei, Lei Tao. Synthesis of an injectable, self-healable and dual responsive hydrogel for drug delivery and 3D cell cultivation. Polymer Chemistry 2017, 8 (3) , 537-544. https://doi.org/10.1039/C6PY01704E
    100. Turgay Yildirim, Ilknur Yildirim, Roberto Yañez-Macias, Steffi Stumpf, Carolin Fritzsche, Stephanie Hoeppener, Carlos Guerrero-Sanchez, Stephanie Schubert, Ulrich S. Schubert. Dual pH and ultrasound responsive nanoparticles with pH triggered surface charge-conversional properties. Polymer Chemistry 2017, 8 (8) , 1328-1340. https://doi.org/10.1039/C6PY01927G
    Load all citations

    Biomacromolecules

    Cite this: Biomacromolecules 2013, 14, 6, 2023–2032
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm400358z
    Published May 11, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    4060

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.