ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Figure 1Loading Img

Enzymatically Cross-Linked Hyperbranched Polyglycerol Hydrogels as Scaffolds for Living Cells

View Author Information
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
§ Institut für Mikrobiologie, Technische Universität Dresden, 01062 Dresden, Germany
*E-mail: [email protected]. Fax: +49-30-838 53357.
Cite this: Biomacromolecules 2014, 15, 11, 3881–3890
Publication Date (Web):August 21, 2014
Copyright © 2014 American Chemical Society

    Article Views





    Read OnlinePDF (6 MB)
    Supporting Info (1)»


    Abstract Image

    Although several strategies are now available to enzymatically cross-link linear polymers to hydrogels for biomedical use, little progress has been reported on the use of dendritic polymers for the same purpose. Herein, we demonstrate that horseradish peroxidase (HRP) successfully catalyzes the oxidative cross-linking of a hyperbranched polyglycerol (hPG) functionalized with phenol groups to hydrogels. The tunable cross-linking results in adjustable hydrogel properties. Because the obtained materials are cytocompatible, they have great potential for encapsulating living cells for regenerative therapy. The gel formation can be triggered by glucose and controlled well under various environmental conditions.

    Supporting Information

    Jump To

    Characterizations and synthesis of hPG-HPA, hPG-TG, hPG-HBA, and hPG-HPA-NAP (compound 1, 2, 3, 4 in Table 1); rheological study; cytotoxicity of compounds and enzymes used; H2O2 content determination; cell adhesion on/in hydrogels incorporated with fibronectin; glucose-triggered hPG-HPA gel formation. This material is available free of charge via the Internet at

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 38 publications.

    1. Judith Recio-Ruiz, Riccardo Carloni, Srivathsan Ranganathan, Laura Muñoz-Moreno, María José Carmena, Maria Francesca Ottaviani, Francisco Javier de la Mata, Sandra García-Gallego. Amphiphilic Dendritic Hydrogels with Carbosilane Nanodomains: Preparation and Characterization as Drug Delivery Systems. Chemistry of Materials 2023, 35 (7) , 2797-2807.
    2. Monika Gosecka, Daria Jaworska-Krych, Mateusz Gosecki, Ewelina Wielgus, Monika Marcinkowska, Anna Janaszewska, Barbara Klajnert-Maculewicz. Self-Healable, Injectable Hydrogel with Enhanced Clotrimazole Solubilization as a Potential Therapeutic Platform for Gynecology. Biomacromolecules 2022, 23 (10) , 4203-4219.
    3. Moe Yamazaki, Yosuke Sugimoto, Daiki Murakami, Masaru Tanaka, Tooru Ooya. Effect of Branching Degree of Dendritic Polyglycerols on Plasma Protein Adsorption: Relationship between Hydration States and Surface Morphology. Langmuir 2021, 37 (28) , 8534-8543.
    4. Xiacong Zhang, Ting Liu, Jiatao Yan, Kun Liu, Wen Li, Afang Zhang. Multiple-Responsive Dendronized Hyperbranched Polymers. ACS Omega 2019, 4 (4) , 7667-7674.
    5. Changzhu Wu, Karin Schwibbert, Katharina Achazi, Petra Landsberger, Anna Gorbushina, and Rainer Haag . Active Antibacterial and Antifouling Surface Coating via a Facile One-Step Enzymatic Cross-Linking. Biomacromolecules 2017, 18 (1) , 210-216.
    6. Masahiro Mishina, Kosuke Minamihata, Kousuke Moriyama, and Teruyuki Nagamune . Peptide Tag-Induced Horseradish Peroxidase-Mediated Preparation of a Streptavidin-Immobilized Redox-Sensitive Hydrogel. Biomacromolecules 2016, 17 (6) , 1978-1984.
    7. Vera Bocharova, Danna Sharp, Aaron Jones, Shiwang Cheng, Philip J. Griffin, Alexander L. Agapov, Dmitry Voylov, Yangyang Wang, Alexander Kisliuk, Artem Melman, and Alexei P. Sokolov . Enzyme Induced Formation of Monodisperse Hydrogel Nanoparticles Tunable in Size. Chemistry of Materials 2015, 27 (7) , 2557-2565.
    8. Manas Kumar Pradhan, Surya Suresh Puthenpurackal, Aasheesh Srivastava. Enzymatic Dimerization‐Induced Self‐assembly of Alanine‐Tyramine Conjugates into Versatile, Uniform, Enzyme‐Loaded Organic Nanoparticles. Angewandte Chemie International Edition 2023,
    9. Manas Kumar Pradhan, Surya Suresh Puthenpurackal, Aasheesh Srivastava. Enzymatic Dimerization‐Induced Self‐assembly of Alanine‐Tyramine Conjugates into Versatile, Uniform, Enzyme‐Loaded Organic Nanoparticles. Angewandte Chemie 2023,
    10. Mateusz Gosecki, Malgorzata Urbaniak, Nuno Martinho, Monika Gosecka, Mire Zloh. Evaluation of Encapsulation Potential of Selected Star-Hyperbranched Polyglycidol Architectures: Predictive Molecular Dynamics Simulations and Experimental Validation. Molecules 2023, 28 (21) , 7308.
    11. Clara González-Chomón, Vasil M. Garamus, Judith Hoyland, Silvia S. Halacheva. Trimethoxy Silyl End-Capped Hyperbranched Polyglycidol/Polycaprolactone Particle Gels for Cell Delivery and Tissue Repair: Mechanical Properties, Biocompatibility, and Biodegradability Studies. Journal of Composites Science 2023, 7 (11) , 451.
    12. Eric W. Fowler, Robert L. Witt, Xinqiao Jia. Basement Membrane Mimetic Hydrogel Cooperates with Rho‐Associated Protein Kinase Inhibitor to Promote the Development of Acini‐Like Salivary Gland Spheroids. Advanced NanoBiomed Research 2023, 3 (11)
    13. Mateusz Gosecki, Piotr Ziemczonek, Monika Gosecka, Malgorzata Urbaniak, Ewelina Wielgus, Monika Marcinkowska, Anna Janaszewska, Barbara Klajnert-Maculewicz. Cross-linkable star-hyperbranched unimolecular micelles for the enhancement of the anticancer activity of clotrimazole. Journal of Materials Chemistry B 2023, 11 (24) , 5552-5564.
    14. Kyriakos Karakyriazis, Vanessa Lührs, Sebastian Stößlein, Ingo Grunwald, Andreas Hartwig. Synthesis and characterization of a Schiff base crosslinked hydrogel based on hyperbranched polyglycerol. Materials Advances 2023, 4 (7) , 1648-1655.
    15. Rong Wang, Xiaobin Huang, Bram Zoetebier, Pieter J. Dijkstra, Marcel Karperien. Enzymatic co-crosslinking of star-shaped poly(ethylene glycol) tyramine and hyaluronic acid tyramine conjugates provides elastic biocompatible and biodegradable hydrogels. Bioactive Materials 2023, 20 , 53-63.
    16. Michael Arkas, Michail Vardavoulias, Georgia Kythreoti, Dimitrios A. Giannakoudakis. Dendritic Polymers in Tissue Engineering: Contributions of PAMAM, PPI PEG and PEI to Injury Restoration and Bioactive Scaffold Evolution. Pharmaceutics 2023, 15 (2) , 524.
    17. Tooru Ooya, Jaehwi Lee. Hydrotropic Hydrogels Prepared from Polyglycerol Dendrimers: Enhanced Solubilization and Release of Paclitaxel. Gels 2022, 8 (10) , 614.
    18. Meena Kumari, Suchita Prasad, Ljiljana Fruk, Badri Parshad. Polyglycerol-based hydrogels and nanogels: from synthesis to applications. Future Medicinal Chemistry 2021, 13 (4) , 419-438.
    19. Mahboobeh Jafari, Samira Sadat Abolmaali, Haniyeh Najafi, Ali Mohammad Tamaddon. Hyperbranched polyglycerol nanostructures for anti-biofouling, multifunctional drug delivery, bioimaging and theranostic applications. International Journal of Pharmaceutics 2020, 576 , 118959.
    20. Abidullah Khan, Miao Xu, Tengjiao Wang, Chuangang You, Xingang Wang, Haitao Ren, Hongwei Zhou, Amin Khan, Chunmao Han, Peng Li. Catechol cross-linked antimicrobial peptide hydrogels prevent multidrug-resistant Acinetobacter baumannii infection in burn wounds. Bioscience Reports 2019, 39 (6)
    21. Abdullah A. Ghawanmeh, Gomaa A. M. Ali, H. Algarni, Shaheen M. Sarkar, Kwok Feng Chong. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Research 2019, 12 (5) , 973-990.
    22. Ik Sung Cho, Tooru Ooya. A Supramolecular Hydrogel Based on Polyglycerol Dendrimer‐Specific Amino Group Recognition. Chemistry – An Asian Journal 2018, 13 (13) , 1688-1691.
    23. Tooru Ooya, Takaya Ogawa, Toshifumi Takeuchi. Temperature-induced recovery of a bioactive enzyme using polyglycerol dendrimers: correlation between bound water and protein interaction. Journal of Biomaterials Science, Polymer Edition 2018, 29 (6) , 701-715.
    24. Xia Wang, Shuangshuang Chen, Dongbei Wu, Qing Wu, Qingcong Wei, Bin He, Qinghua Lu, Qigang Wang. Oxidoreductase‐Initiated Radical Polymerizations to Design Hydrogels and Micro/Nanogels: Mechanism, Molding, and Applications. Advanced Materials 2018, 30 (17)
    25. Haeree Park, Yeongkyu Choi, M. T. Jeena, Eungjin Ahn, Yuri Choi, Myeong‐Gyun Kang, Chae Gyu Lee, Tae‐Hyuk Kwon, Hyun‐Woo Rhee, Ja‐Hyoung Ryu, Byeong‐Su Kim. Reduction‐Triggered Self‐Cross‐Linked Hyperbranched Polyglycerol Nanogels for Intracellular Delivery of Drugs and Proteins. Macromolecular Bioscience 2018, 18 (4)
    26. Al Halifa Soultan, Thomas Verheyen, Mario Smet, Wim M. De Borggraeve, Jennifer Patterson. Synthesis and peptide functionalization of hyperbranched poly(arylene oxindole) towards versatile biomaterials. Polymer Chemistry 2018, 9 (20) , 2775-2784.
    27. Danni Wang, Xiaowei Yang, Qiong Liu, Lin Yu, Jiandong Ding. Enzymatically cross-linked hydrogels based on a linear poly(ethylene glycol) analogue for controlled protein release and 3D cell culture. Journal of Materials Chemistry B 2018, 6 (38) , 6067-6079.
    28. Yosuke SUGIMOTO, Tooru OOYA. Basic Function and Applications of Polyglycerol Dendrimers. Oleoscience 2017, 17 (5) , 211-216.
    29. Mohiuddin Quadir, Rainer Haag. Chapter 4 Polyglycerols in Nanomedicine. 2016, 107-200.
    30. Bae Young Kim, Yunki Lee, Joo Young Son, Kyung Min Park, Ki Dong Park. Dual Enzyme-Triggered In Situ Crosslinkable Gelatin Hydrogels for Artificial Cellular Microenvironments. Macromolecular Bioscience 2016, 16 (11) , 1570-1576.
    31. Scott Zavada, Tsatsral Battsengel, Timothy Scott. Radical-Mediated Enzymatic Polymerizations. International Journal of Molecular Sciences 2016, 17 (2) , 195.
    32. Pradip Dey, Shabnam Hemmati-Sadeghi, Rainer Haag. Hydrolytically degradable, dendritic polyglycerol sulfate based injectable hydrogels using strain promoted azide–alkyne cycloaddition reaction. Polymer Chemistry 2016, 7 (2) , 375-383.
    33. Rui Wang, De-lei Xu, Lei Liang, Ting-ting Xu, Wei Liu, Ping-kai Ouyang, Bo Chi, Hong Xu. Enzymatically crosslinked epsilon-poly- l -lysine hydrogels with inherent antibacterial properties for wound infection prevention. RSC Advances 2016, 6 (11) , 8620-8627.
    34. E. De Giglio, M.A. Bonifacio, S. Cometa, D. Vona, M. Mattioli-Belmonte, M. Dicarlo, E. Ceci, V. Fino, S.R. Cicco, G.M. Farinola. Exploiting a new glycerol-based copolymer as a route to wound healing: Synthesis, characterization and biocompatibility assessment. Colloids and Surfaces B: Biointerfaces 2015, 136 , 600-611.
    35. Indah Nurita Kurniasih, Juliane Keilitz, Rainer Haag. Dendritic nanocarriers based on hyperbranched polymers. Chemical Society Reviews 2015, 44 (12) , 4145-4164.
    36. Xuejiao Zhang, Shashwat Malhotra, Maria Molina, Rainer Haag. Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chemical Society Reviews 2015, 44 (7) , 1948-1973.
    37. Changzhu Wu, Christoph Böttcher, Rainer Haag. Enzymatically crosslinked dendritic polyglycerol nanogels for encapsulation of catalytically active proteins. Soft Matter 2015, 11 (5) , 972-980.
    38. Chao He, Chong Cheng, Hai-Feng Ji, Zhen-Qiang Shi, Lang Ma, Mi Zhou, Chang-Sheng Zhao. Robust, highly elastic and bioactive heparin-mimetic hydrogels. Polymer Chemistry 2015, 6 (45) , 7893-7901.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect