ACS Publications. Most Trusted. Most Cited. Most Read
Long-Circulating Near-Infrared Fluorescence Core-Cross-Linked Polymeric Micelles:  Synthesis, Characterization, and Dual Nuclear/Optical Imaging
My Activity

Figure 1Loading Img
    Article

    Long-Circulating Near-Infrared Fluorescence Core-Cross-Linked Polymeric Micelles:  Synthesis, Characterization, and Dual Nuclear/Optical Imaging
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Experimental Diagnostic Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, Carestream Health, Inc., 1049 Ridge Road West, Rochester, New York 14615, and Eastman Kodak Company Research Labs, 1999 Lake Avenue #710, Rochester, New York 14650
    Other Access OptionsSupporting Information (1)

    Biomacromolecules

    Cite this: Biomacromolecules 2007, 8, 11, 3422–3428
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm7005399
    Published October 25, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report the synthesis of PEG-coated, core-cross-linked polymeric micelles (CCPMs) derived from an amine-terminated amphiphilic block copolymer, poly(PEG-methacrylate)-b-poly(triethoxysilyl propylmethacrylate). The block copolymer self-assembled to form micellar nanoparticles, and a Cy-7-like near-infrared fluorescence (NIRF) dye was entrapped in the core bearing reactive ethoxysilane functional groups through a subsequent sol−gel process. The fluorescent signal of CCPMs on the molar basis was 16-fold brighter than that of Cy7. With an average diameter of 24 ± 8.9 nm, CCPMs exhibited a prolonged blood half-life (t1/2,α = 1.25 h; t1/2,β = 46.18 h) and moderate uptake by the mononuclear phagocytic system. Significant accumulation of CCPMs in human breast tumor xenografts allowed noninvasive monitoring of the uptake kinetics with both NIRF optical and gamma imaging techniques. Our data suggest that Cy7-entrapped CCPM nanoparticles are suitable for NIRF imaging of solid tumors and have potential applications in the imaging of tumor-associated molecular markers.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     The University of Texas M. D. Anderson Cancer Center.

    #

     On leave from Department of Nuclear Medicine, Peking University School of Oncology & Beijing Cancer Hospital, Beijing, China 100036.

    §

     Eastman Kodak Company Research Labs.

     Carestream Health, Inc.

    *

     Corresponding author. Department of Experimental Diagnostic ImagingUnit 59, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Phone:  (713) 792-5182. Fax:  (713) 794-5456. E-mail:  [email protected].

    Supporting Information Available

    Click to copy section linkSection link copied!

    (1) Summary of physicochemical properties and pharmacokinetic parameters; (2) TEM photograph and 1H NMR spectrum of PPEGMA-b-PESPMA block copolymer; (3) ITLC analysis of freshly prepared 111In−DTPA−CCPM, 111InCl3, and urine samples. These materials are available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 112 publications.

    1. Albert R. Muslimov, Dmitrii O. Antuganov, Yana V. Tarakanchikova, Mikhail V. Zhukov, Michail A. Nadporojskii, Mikhail V. Zyuzin, Alexander S. Timin. Calcium Carbonate Core–Shell Particles for Incorporation of 225Ac and Their Application in Local α-Radionuclide Therapy. ACS Applied Materials & Interfaces 2021, 13 (22) , 25599-25610. https://doi.org/10.1021/acsami.1c02155
    2. Mikhail V. Zyuzin, Dmitrii Antuganov, Yana V. Tarakanchikova, Timofey E. Karpov, Tatiana V. Mashel, Elena N. Gerasimova, Oleksii O. Peltek, Nominé Alexandre, Stéphanie Bruyere, Yulia A. Kondratenko, Albert R. Muslimov, Alexander S. Timin. Radiolabeling Strategies of Micron- and Submicron-Sized Core–Shell Carriers for In Vivo Studies. ACS Applied Materials & Interfaces 2020, 12 (28) , 31137-31147. https://doi.org/10.1021/acsami.0c06996
    3. Li-fang Gao, Xin Lin, Xin Hai, Xu-wei Chen, Jian-hua Wang. Polymeric Ionic Liquid-Based Fluorescent Amphiphilic Block Copolymer Micelle for Selective and Sensitive Detection of p-Phenylenediamine. ACS Applied Materials & Interfaces 2018, 10 (49) , 43049-43056. https://doi.org/10.1021/acsami.8b15837
    4. Yangjun Chen, Zuhong Li, Haibo Wang, Yin Wang, Haijie Han, Qiao Jin, and Jian Ji . IR-780 Loaded Phospholipid Mimicking Homopolymeric Micelles for Near-IR Imaging and Photothermal Therapy of Pancreatic Cancer. ACS Applied Materials & Interfaces 2016, 8 (11) , 6852-6858. https://doi.org/10.1021/acsami.6b00251
    5. Cyrille Boyer, Nathaniel Alan Corrigan, Kenward Jung, Diep Nguyen, Thuy-Khanh Nguyen, Nik Nik M. Adnan, Susan Oliver, Sivaprakash Shanmugam, and Jonathan Yeow . Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chemical Reviews 2016, 116 (4) , 1803-1949. https://doi.org/10.1021/acs.chemrev.5b00396
    6. Dawei Jiang, Yanhong Sun, Jiang Li, Qian Li, Min Lv, Bing Zhu, Tian Tian, Dengfeng Cheng, Jiaoyun Xia, Lan Zhang, Lihua Wang, Qing Huang, Jiye Shi, and Chunhai Fan . Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging. ACS Applied Materials & Interfaces 2016, 8 (7) , 4378-4384. https://doi.org/10.1021/acsami.5b10792
    7. Jun Zhao, Chunhui Wu, James Abbruzzese, Rosa F. Hwang, and Chun Li . Cyclopamine-Loaded Core-Cross-Linked Polymeric Micelles Enhance Radiation Response in Pancreatic Cancer and Pancreatic Stellate Cells. Molecular Pharmaceutics 2015, 12 (6) , 2093-2100. https://doi.org/10.1021/mp500875f
    8. Fuping Gao, Pengju Cai, Wenjiang Yang, Jingquan Xue, Liang Gao, Ru Liu, Yaling Wang, Yawei Zhao, Xiao He, Lina Zhao, Guodong Huang, Fasheng Wu, Yuliang Zhao, Zhifang Chai, and Xueyun Gao . Ultrasmall [64Cu]Cu Nanoclusters for Targeting Orthotopic Lung Tumors Using Accurate Positron Emission Tomography Imaging. ACS Nano 2015, 9 (5) , 4976-4986. https://doi.org/10.1021/nn507130k
    9. Yang Li, Junjie Li, Biao Chen, Qixian Chen, Guoying Zhang, Shiyong Liu, and Zhishen Ge . Polyplex Micelles with Thermoresponsive Heterogeneous Coronas for Prolonged Blood Retention and Promoted Gene Transfection. Biomacromolecules 2014, 15 (8) , 2914-2923. https://doi.org/10.1021/bm500532x
    10. Hua Wang, Li Tang, Chunlai Tu, Ziyuan Song, Qian Yin, Lichen Yin, Zhonghai Zhang, and Jianjun Cheng . Redox-Responsive, Core-Cross-Linked Micelles Capable of On-Demand, Concurrent Drug Release and Structure Disassembly. Biomacromolecules 2013, 14 (10) , 3706-3712. https://doi.org/10.1021/bm401086d
    11. Kohji Ohno, Tatsuki Akashi, Yoshinobu Tsujii, Masaya Yamamoto, and Yasuhiko Tabata . Blood Clearance and Biodistribution of Polymer Brush-Afforded Silica Particles Prepared by Surface-Initiated Living Radical Polymerization. Biomacromolecules 2012, 13 (3) , 927-936. https://doi.org/10.1021/bm201855m
    12. Jun Zhao, Shaoli Song, Meng Zhong, and Chun Li . Dual-Modal Tumor Imaging via Long-Circulating Biodegradable Core-Cross-Linked Polymeric Micelles. ACS Macro Letters 2012, 1 (1) , 150-153. https://doi.org/10.1021/mz200034f
    13. Paul A. Rupar, Graeme Cambridge, Mitchell A. Winnik, and Ian Manners . Reversible Cross-Linking of Polyisoprene Coronas in Micelles, Block Comicelles, and Hierarchical Micelle Architectures Using Pt(0)–Olefin Coordination. Journal of the American Chemical Society 2011, 133 (42) , 16947-16957. https://doi.org/10.1021/ja206370k
    14. Andreas Schädlich, Toufik Naolou, Elkin Amado, Regina Schöps, Jörg Kressler, and Karsten Mäder . Noninvasive in Vivo Monitoring of the Biofate of 195 kDa Poly(vinyl alcohol) by Multispectral Fluorescence Imaging. Biomacromolecules 2011, 12 (10) , 3674-3683. https://doi.org/10.1021/bm200899h
    15. Wen Yang, Cai-Yuan Pan, Xi-Qiu Liu, and Jun Wang . Multiple Functional Hyperbranched Poly(amido amine) Nanoparticles: Synthesis and Application in Cell Imaging. Biomacromolecules 2011, 12 (5) , 1523-1531. https://doi.org/10.1021/bm1014816
    16. Min Zhou, Rui Zhang, Miao Huang, Wei Lu, Shaoli Song, Marites P. Melancon, Mei Tian, Dong Liang, and Chun Li . A Chelator-Free Multifunctional [64Cu]CuS Nanoparticle Platform for Simultaneous Micro-PET/CT Imaging and Photothermal Ablation Therapy. Journal of the American Chemical Society 2010, 132 (43) , 15351-15358. https://doi.org/10.1021/ja106855m
    17. Xiaoze Jiang, Shiyong Liu and Ravin Narain . Degradable Thermoresponsive Core Cross-Linked Micelles: Fabrication, Surface Functionalization, and Biorecognition. Langmuir 2009, 25 (23) , 13344-13350. https://doi.org/10.1021/la9034276
    18. Bryan Hoang, Helen Lee, Raymond M. Reilly and Christine Allen. Noninvasive Monitoring of the Fate of 111In-Labeled Block Copolymer Micelles by High Resolution and High Sensitivity MicroSPECT/CT Imaging. Molecular Pharmaceutics 2009, 6 (2) , 581-592. https://doi.org/10.1021/mp8002418
    19. Koji Miki, Yoshiaki Kuramochi, Kazuaki Oride, Satoru Inoue, Hiroshi Harada, Masahiro Hiraoka and Kouichi Ohe. Ring-Opening Metathesis Polymerization-Based Synthesis of ICG-Containing Amphiphilic Triblock Copolymers for in Vivo Tumor Imaging. Bioconjugate Chemistry 2009, 20 (3) , 511-517. https://doi.org/10.1021/bc800449s
    20. Yannie Chan, To Wong, Frances Byrne, Maria Kavallaris and Volga Bulmus . Acid-Labile Core Cross-Linked Micelles for pH-Triggered Release of Antitumor Drugs. Biomacromolecules 2008, 9 (7) , 1826-1836. https://doi.org/10.1021/bm800043n
    21. Guorong Sun, Aviv Hagooly, Jinqi Xu, Andreas M. Nyström, Zicheng Li, Raffaella Rossin, Dennis A. Moore, Karen L. Wooley and Michael J. Welch . Facile, Efficient Approach to Accomplish Tunable Chemistries and Variable Biodistributions for Shell Cross-Linked Nanoparticles. Biomacromolecules 2008, 9 (7) , 1997-2006. https://doi.org/10.1021/bm800246x
    22. Mark Lowry, Sayo O. Fakayode, Maxwell L. Geng, Gary A. Baker, Lin Wang, Matthew E. McCarroll, Gabor Patonay and Isiah M. Warner. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Analytical Chemistry 2008, 80 (12) , 4551-4574. https://doi.org/10.1021/ac800749v
    23. John B. Matson and Robert H. Grubbs. Synthesis of Fluorine-18 Functionalized Nanoparticles for use as in vivo Molecular Imaging Agents. Journal of the American Chemical Society 2008, 130 (21) , 6731-6733. https://doi.org/10.1021/ja802010d
    24. Lizbeth Hu, Moodakare Ashwini Bhat, Kellie Marie Jaremko. Role of Regional Anesthesia in Intensive Care: An Updated Narrative Review. Turkish Journal of Intensive Care 2024, 22 (4) , 225-238. https://doi.org/10.4274/tybd.galenos.2024.50490
    25. Shehzahdi S. Moonshi, Karla X. Vazquez-Prada, Hossein Adelnia, Nicholas J. Westra van Holthe, Yuao Wu, Joyce Tang, Andrew C. Bulmer, Hang Thu Ta. Polysuccinimide-based nanoparticle: A nanocarrier with drug release delay and zero burst release properties for effective theranostics of cancer. Applied Materials Today 2024, 37 , 102150. https://doi.org/10.1016/j.apmt.2024.102150
    26. Adam Creamer, Alessandra Lo Fiego, Alice Agliano, Lino Prados‐Martin, Håkon Høgset, Adrian Najer, Daniel A. Richards, Jonathan P. Wojciechowski, James E. J. Foote, Nayoung Kim, Amy Monahan, Jiaqing Tang, André Shamsabadi, Léa N. C. Rochet, Ioanna A. Thanasi, Laura R. de la Ballina, Charlotte L. Rapley, Stephen Turnock, Elizabeth A. Love, Laurence Bugeon, Margaret J. Dallman, Martin Heeney, Gabriela Kramer‐Marek, Vijay Chudasama, Federico Fenaroli, Molly M. Stevens. Modular Synthesis of Semiconducting Graft Copolymers to Achieve “Clickable” Fluorescent Nanoparticles with Long Circulation and Specific Cancer Targeting. Advanced Materials 2023, 10 https://doi.org/10.1002/adma.202300413
    27. Yifan Cai, Jianping Qi, Yi Lu, Haisheng He, Wei Wu. The in vivo fate of polymeric micelles. Advanced Drug Delivery Reviews 2022, 188 , 114463. https://doi.org/10.1016/j.addr.2022.114463
    28. Alexander S. Timin, Alisa S. Postovalova, Timofey E. Karpov, Dmitrii Antuganov, Anastasia S. Bukreeva, Darya R. Akhmetova, Anna S. Rogova, Albert R. Muslimov, Svetlana A. Rodimova, Daria S. Kuznetsova, Mikhail V. Zyuzin. Calcium carbonate carriers for combined chemo- and radionuclide therapy of metastatic lung cancer. Journal of Controlled Release 2022, 344 , 1-11. https://doi.org/10.1016/j.jconrel.2022.02.021
    29. Radostina Kalinova, Ivaylo Dimitrov. Functional Polyion Complex Micelles for Potential Targeted Hydrophobic Drug Delivery. Molecules 2022, 27 (7) , 2178. https://doi.org/10.3390/molecules27072178
    30. Bence Sipos, Gábor Katona, Ildikó Csóka. A Systematic, Knowledge Space-Based Proposal on Quality by Design-Driven Polymeric Micelle Development. Pharmaceutics 2021, 13 (5) , 702. https://doi.org/10.3390/pharmaceutics13050702
    31. Juan Pellico, Peter J. Gawne, Rafael T. M. de Rosales. Radiolabelling of nanomaterials for medical imaging and therapy. Chemical Society Reviews 2021, 50 (5) , 3355-3423. https://doi.org/10.1039/D0CS00384K
    32. Albert R. Muslimov, Dmitrii Antuganov, Yana V. Tarakanchikova, Timofey E. Karpov, Mikhail V. Zhukov, Mikhail V. Zyuzin, Alexander S. Timin. An investigation of calcium carbonate core-shell particles for incorporation of 225Ac and sequester of daughter radionuclides: in vitro and in vivo studies. Journal of Controlled Release 2021, 330 , 726-737. https://doi.org/10.1016/j.jconrel.2021.01.008
    33. Chiyi Xiong, Yunfei Wen, Jun Zhao, Dengke Yin, Lingyun Xu, Anca Chelariu-Raicu, Cody Yao, Xiaohong Leng, Jinsong Liu, Rajan R. Chaudhari, Shuxing Zhang, Anil K. Sood, Chun Li. Targeting Forward and Reverse EphB4/EFNB2 Signaling by a Peptide with Dual Functions. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-57477-x
    34. Yufeng Chen, Yajiao Zhang, Jiwan Zhang, Li Wang. New near‐infrared emissions and energy transfer in Er 3+ ‐doped MgAl layered double hydroxides. Luminescence 2020, 35 (7) , 1125-1133. https://doi.org/10.1002/bio.3825
    35. Jaruwan Joothamongkon, Udom Asawapirom, Raweewan Thiramanas, Kulachart Jangpatarapongsa, Duangporn Polpanich. Near-infrared polyfluorene encapsulated in poly(ε-caprolactone) nanoparticles with remarkable large Stokes shift. RSC Advances 2020, 10 (55) , 33279-33287. https://doi.org/10.1039/D0RA05809B
    36. Yufeng Chen, Jiwan Zhang, Yajiao Zhang, Li Wang. Synthesis of Er3+-doped hydrocalumite and its strong infrared emissions. Journal of the Iranian Chemical Society 2020, 17 (8) , 1933-1944. https://doi.org/10.1007/s13738-020-01898-y
    37. Duhyeong Hwang, Jacob D. Ramsey, Alexander V. Kabanov. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Advanced Drug Delivery Reviews 2020, 156 , 80-118. https://doi.org/10.1016/j.addr.2020.09.009
    38. Oleksii O. Peltek, Albert R. Muslimov, Mikhail V. Zyuzin, Alexander S. Timin. Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. Journal of Nanobiotechnology 2019, 17 (1) https://doi.org/10.1186/s12951-019-0524-9
    39. Qi Shuai, Guangkuo Zhao, Xiaomin Zhang, Bo Yu, Robert J. Lee, Wei-Ke Su. Selection of fluorescent dye for tracking biodistribution of paclitaxel in live imaging. Colloids and Surfaces B: Biointerfaces 2019, 181 , 872-878. https://doi.org/10.1016/j.colsurfb.2019.06.035
    40. Aswathy Ravindran Girija. Medical Applications of Polymer/Functionalized Nanoparticle Systems. 2019, 381-404. https://doi.org/10.1016/B978-0-12-814064-2.00012-3
    41. Lei Zhu, Lily Yang, Zhiyang Zhou. Nanomaterials in Cancer Theranostics. 2017, 173-206. https://doi.org/10.1007/978-981-10-5864-6_8
    42. S.H. Crayton, A.K. Chen, J.F. Liu, E.M. Higbee-Dempsey, C.-H. Huang, A. Tsourkas, Z. Cheng. 3.20 Molecular Imaging ☆. 2017, 424-466. https://doi.org/10.1016/B978-0-12-803581-8.10222-X
    43. Xuan Thang Cao, Yong Hun Kim, Jong Myung Park, Kwon Taek Lim. One-pot syntheses of dual-responsive core cross-linked polymeric micelles and covalently entrapped drug by click chemistry. European Polymer Journal 2016, 78 , 264-273. https://doi.org/10.1016/j.eurpolymj.2016.03.039
    44. C.G. Da Silva, Felix Rueda, C.W. Löwik, Ferry Ossendorp, Luis J. Cruz. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials 2016, 83 , 308-320. https://doi.org/10.1016/j.biomaterials.2016.01.006
    45. Yu. Lili, Mu. Ruihua, Li. Li, Liang. Fei, Yao. Lin, Su. Li. Intracellular Doxorubicin Delivery of a Core Cross-linked, Redox-responsive Polymeric Micelles. International Journal of Pharmaceutics 2016, 498 (1-2) , 195-204. https://doi.org/10.1016/j.ijpharm.2015.12.042
    46. 红香 黄. Research Progress in Cyanine Dyes and Their Functionalized Nanocomposites Used for Bioanalysis and Near-Infrared Molecular Fluorescent Imaging. Advances in Analytical Chemistry 2016, 06 (04) , 109-115. https://doi.org/10.12677/AAC.2016.64017
    47. Jun Zhao, Chun Li. Micelles: Tumor Imaging and Drug Delivery. 2015, 4588-4604. https://doi.org/10.1081/E-EBPP-120050393
    48. Nawal A. Alarfaj, Maha F. El‐Tohamy. Applications of micelle enhancement in luminescence‐based analysis. Luminescence 2015, 30 (1) , 3-11. https://doi.org/10.1002/bio.2694
    49. Marina Talelli, Matthias Barz, Cristianne J.F. Rijcken, Fabian Kiessling, Wim E. Hennink, Twan Lammers. Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation. Nano Today 2015, 10 (1) , 93-117. https://doi.org/10.1016/j.nantod.2015.01.005
    50. Manuela Curcio, Ortensia Ilaria Parisi, Francesco Puoci. Polymers in Oncology. 2015, 297-317. https://doi.org/10.1007/978-3-319-12478-0_10
    51. Sima Rahimian, Jan Willem Kleinovink, Marieke F. Fransen, Laura Mezzanotte, Henrik Gold, Patrick Wisse, Hermen Overkleeft, Maryam Amidi, Wim Jiskoot, Clemens W. Löwik, Ferry Ossendorp, Wim E. Hennink. Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: In vivo tracking and evaluation of antigen-specific CD8 + T cell immune response. Biomaterials 2015, 37 , 469-477. https://doi.org/10.1016/j.biomaterials.2014.10.043
    52. Y. Tu, K. Cheng, B. Shen, Z. Cheng. Near-infrared fluorescence nanoparticle-based probes: application to in vivo imaging of cancer. 2015, 131-151. https://doi.org/10.1533/9781908818782.131
    53. Yuanpei Li, Tzu-yin Lin, Yan Luo, Qiangqiang Liu, Wenwu Xiao, Wenchang Guo, Diana Lac, Hongyong Zhang, Caihong Feng, Sebastian Wachsmann-Hogiu, Jeffrey H. Walton, Simon R. Cherry, Douglas J. Rowland, David Kukis, Chongxian Pan, Kit S. Lam. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms5712
    54. Xuan Chen, Olof Ramström, Mingdi Yan. Glyconanomaterials: Emerging applications in biomedical research. Nano Research 2014, 7 (10) , 1381-1403. https://doi.org/10.1007/s12274-014-0507-y
    55. Inga Kogan-Zviagin, Yosi Shamay, Aviram Nissan, Osnat Sella-Tavor, Moran Golan, Ayelet David. Intra-colonic administration of a polymer-bound NIRF probe for improved colorectal cancer detection during colonoscopy. Journal of Controlled Release 2014, 192 , 182-191. https://doi.org/10.1016/j.jconrel.2014.06.058
    56. Yanye Lu, Kun Yang, Kedi Zhou, Bo Pang, Guohe Wang, Yichen Ding, Qiushi Zhang, Hongbin Han, Jiahe Tian, Changhui Li, Qiushi Ren. An Integrated Quad-Modality Molecular Imaging System for Small Animals. Journal of Nuclear Medicine 2014, 55 (8) , 1375-1379. https://doi.org/10.2967/jnumed.113.134890
    57. Ye Hong, Hua Zhu, Ji Hu, Xinfeng Lin, Feng Wang, Chun Li, Zhi Yang. Synthesis and radiolabeling of 111In-core-cross linked polymeric micelle-octreotide for near-infrared fluoroscopy and single photon emission computed tomography imaging. Bioorganic & Medicinal Chemistry Letters 2014, 24 (12) , 2781-2785. https://doi.org/10.1016/j.bmcl.2014.03.050
    58. R. Srikar, Anandhi Upendran, Raghuraman Kannan. Polymeric nanoparticles for molecular imaging. WIREs Nanomedicine and Nanobiotechnology 2014, 6 (3) , 245-267. https://doi.org/10.1002/wnan.1259
    59. Ke Wang, Xun Yuan, Zhenpeng Guo, Jiying Xu, Yi Chen. Red emissive cross-linked chitosan and their nanoparticles for imaging the nucleoli of living cells. Carbohydrate Polymers 2014, 102 , 699-707. https://doi.org/10.1016/j.carbpol.2013.10.100
    60. Francesco Canfarotta, Sergey A. Piletsky. Engineered Magnetic Nanoparticles for Biomedical Applications. Advanced Healthcare Materials 2014, 3 (2) , 160-175. https://doi.org/10.1002/adhm.201300141
    61. Narenda Kumar, Rajiv Kumar. Nanomedicine for Gastrointestinal Diseases. 2014, 347-390. https://doi.org/10.1016/B978-0-323-26433-4.00007-5
    62. Tsz Chung Lai, Hyunah Cho, Glen S. Kwon. Reversibly core cross-linked polymeric micelles with pH- and reduction-sensitivities: effects of cross-linking degree on particle stability, drug release kinetics, and anti-tumor efficacy. Polym. Chem. 2014, 5 (5) , 1650-1661. https://doi.org/10.1039/C3PY01112G
    63. Haiyin Li, Xiqi Zhang, Xiaoyong Zhang, Bin Yang, Yang Yang, Yen Wei. Ultra-stable biocompatible cross-linked fluorescent polymeric nanoparticles using AIE chain transfer agent. Polymer Chemistry 2014, 5 (12) , 3758. https://doi.org/10.1039/c4py00386a
    64. Uwe Seibold, Björn Wängler, Ralf Schirrmacher, Carmen Wängler. Bimodal Imaging Probes for Combined PET and OI: Recent Developments and Future Directions for Hybrid Agent Development. BioMed Research International 2014, 2014 , 1-13. https://doi.org/10.1155/2014/153741
    65. Akira Makino, Shunsaku Kimura. Solid Tumor-Targeting Theranostic Polymer Nanoparticle in Nuclear Medicinal Fields. The Scientific World Journal 2014, 2014 , 1-12. https://doi.org/10.1155/2014/424513
    66. Francesco Canfarotta, Michael J. Whitcombe, Sergey A. Piletsky. Polymeric nanoparticles for optical sensing. Biotechnology Advances 2013, 31 (8) , 1585-1599. https://doi.org/10.1016/j.biotechadv.2013.08.010
    67. David J. Lunn, Charlotte E. Boott, Kelly E. Bass, Timothy A. Shuttleworth, Niall G. McCreanor, Sofia Papadouli, Ian Manners. Controlled Thiol‐Ene Functionalization of Polyferrocenylsilane‐ block ‐Polyvinylsiloxane Copolymers. Macromolecular Chemistry and Physics 2013, 214 (24) , 2813-2820. https://doi.org/10.1002/macp.201300520
    68. Min Zheng, Zaicheng Sun, Zhigang Xie, Xiabin Jing. Core Cross‐Linked Micelle‐Based Nanoreactors for Efficient Photocatalysis. Chemistry – An Asian Journal 2013, 8 (11) , 2807-2812. https://doi.org/10.1002/asia.201300668
    69. Qian Tao, Ang Li, Xue Liu, Hongjun Gao, Zhenkun Zhang, Rujiang Ma, Yingli An, Linqi Shi. Improved thermal stability of lipase in W/O microemulsion by temperature-sensitive polymers. Colloids and Surfaces B: Biointerfaces 2013, 111 , 587-593. https://doi.org/10.1016/j.colsurfb.2013.06.055
    70. Mareli Allmeroth, Dorothea Moderegger, Daniel Gündel, Hans-Georg Buchholz, Nicole Mohr, Kaloian Koynov, Frank Rösch, Oliver Thews, Rudolf Zentel. PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo : A quantitative study using radiolabeling and positron emission tomography. Journal of Controlled Release 2013, 172 (1) , 77-85. https://doi.org/10.1016/j.jconrel.2013.07.027
    71. Jun Zhao, Chun Li. POLYMERIC MICELLES AS IMAGING AGENTS AND DRUG DELIVERY SYSTEMS. 2013, 268-295. https://doi.org/10.1002/9781118356845.ch12
    72. Samuli Hirsjärvi, Lucie Sancey, Sandrine Dufort, Camille Belloche, Claire Vanpouille-Box, Emmanuel Garcion, Jean-Luc Coll, François Hindré, Jean-Pierre Benoît. Effect of particle size on the biodistribution of lipid nanocapsules: Comparison between nuclear and fluorescence imaging and counting. International Journal of Pharmaceutics 2013, 453 (2) , 594-600. https://doi.org/10.1016/j.ijpharm.2013.05.057
    73. Hua Zhu, Jun Zhao, Xinfeng Lin, Ye Hong, Chun Li, Zhi Yang. Design, Synthesis and Evaluation of Dual-Modality Glyco-Nanoparticles for Tumor Imaging. Molecules 2013, 18 (6) , 6425-6438. https://doi.org/10.3390/molecules18066425
    74. Isabel M. Perez de Vargas-Sansalvador, Francesco Canfarotta, Sergey A. Piletsky. Synthesis of Monodisperse Polymeric Nano- and Microparticles and Their Application in Bioanalysis. 2013, 131-154. https://doi.org/10.1007/11663_2013_4
    75. Irene Canton, Giuseppe Battaglia. Polymersomes-Mediated Delivery of Fluorescent Probes for Targeted and Long-Term Imaging in Live Cell Microscopy. 2013, 343-351. https://doi.org/10.1007/978-1-62703-336-7_31
    76. Gan Liu, Rujiang Ma, Jie Ren, Zhong Li, Haixia Zhang, Zhenkun Zhang, Yingli An, Linqi Shi. A glucose-responsive complex polymeric micelle enabling repeated on–off release and insulin protection. Soft Matter 2013, 9 (5) , 1636-1644. https://doi.org/10.1039/C2SM26690C
    77. Xumeng Wu, Shu Chang, Xuanrong Sun, Zhiqian Guo, Yongsheng Li, Jianbin Tang, Youqing Shen, Jianlin Shi, He Tian, Weihong Zhu. Constructing NIR silica–cyanine hybrid nanocomposite for bioimaging in vivo: a breakthrough in photo-stability and bright fluorescence with large Stokes shift. Chemical Science 2013, 4 (3) , 1221. https://doi.org/10.1039/c2sc22035k
    78. Yang Liu, Metasebya Solomon, Samuel Achilefu. Perspectives and potential applications of nanomedicine in breast and prostate cancer. Medicinal Research Reviews 2013, 33 (1) , 3-32. https://doi.org/10.1002/med.20233
    79. Marina Talelli, Cristianne J.F. Rijcken, Wim E. Hennink, Twan Lammers. Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy. Current Opinion in Solid State and Materials Science 2012, 16 (6) , 302-309. https://doi.org/10.1016/j.cossms.2012.10.003
    80. Marites P. Melancon, R. Jason Stafford, Chun Li. Challenges to effective cancer nanotheranostics. Journal of Controlled Release 2012, 164 (2) , 177-182. https://doi.org/10.1016/j.jconrel.2012.07.045
    81. Yu Shao, Wenzhe Huang, Changying Shi, Sean T Atkinson, Juntao Luo. Reversibly Crosslinked Nanocarriers for on-demand Drug Delivery in Cancer Treatment. Therapeutic Delivery 2012, 3 (12) , 1409-1427. https://doi.org/10.4155/tde.12.106
    82. Akira Makino, Eri Hara, Isao Hara, Ryo Yamahara, Kensuke Kurihara, Eiichi Ozeki, Fumihiko Yamamoto, Shunsaku Kimura. Control of in vivo blood clearance time of polymeric micelle by stereochemistry of amphiphilic polydepsipeptides. Journal of Controlled Release 2012, 161 (3) , 821-825. https://doi.org/10.1016/j.jconrel.2012.05.006
    83. Yu‐Jing Wang, Chang‐Ming Dong. Bioreducible and core‐crosslinked hybrid micelles from trimethoxysilyl‐ended poly(ε‐caprolactone)‐S‐S‐poly(ethylene oxide) block copolymers: Thiol‐ene click synthesis and properties. Journal of Polymer Science Part A: Polymer Chemistry 2012, 50 (8) , 1645-1656. https://doi.org/10.1002/pola.25936
    84. Hyunah Cho, Guilherme L. Indig, Jamey Weichert, Ho-Chul Shin, Glen S. Kwon. In vivo cancer imaging by poly(ethylene glycol)-b-poly(ɛ-caprolactone) micelles containing a near-infrared probe. Nanomedicine: Nanotechnology, Biology and Medicine 2012, 8 (2) , 228-236. https://doi.org/10.1016/j.nano.2011.06.009
    85. Nathan R. B. Boase, Idriss Blakey, Kristofer J. Thurecht. Molecular imaging with polymers. Polymer Chemistry 2012, 3 (6) , 1384. https://doi.org/10.1039/c2py20132a
    86. Rui Zhang, Chiyi Xiong, Miao Huang, Min Zhou, Qian Huang, Xiaoxia Wen, Dong Liang, Chun Li. Peptide-conjugated polymeric micellar nanoparticles for Dual SPECT and optical imaging of EphB4 receptors in prostate cancer xenografts. Biomaterials 2011, 32 (25) , 5872-5879. https://doi.org/10.1016/j.biomaterials.2011.04.070
    87. Rui Zhang, Wei Lu, Xiaoxia Wen, Miao Huang, Min Zhou, Dong Liang, Chun Li. Annexin A5–Conjugated Polymeric Micelles for Dual SPECT and Optical Detection of Apoptosis. Journal of Nuclear Medicine 2011, 52 (6) , 958-964. https://doi.org/10.2967/jnumed.110.083220
    88. Stephanie Reichert, Pia Welker, Marcelo Calderón, Jayant Khandare, Dorothea Mangoldt, Kai Licha, Rajesh K. Kainthan, Donald E. Brooks, Rainer Haag. Size‐Dependant Cellular Uptake of Dendritic Polyglycerol. Small 2011, 7 (6) , 820-829. https://doi.org/10.1002/smll.201002220
    89. Hamed Laroui, David S. Wilson, Guillaume Dalmasso, Khalid Salaita, Niren Murthy, Shanthi V. Sitaraman, Didier Merlin. Nanomedicine in GI. American Journal of Physiology-Gastrointestinal and Liver Physiology 2011, 300 (3) , G371-G383. https://doi.org/10.1152/ajpgi.00466.2010
    90. Anil V. Wagh, Ruchi Malik, Benedict Law. Nanomaterials for Optical Imaging. 2011, 177-197. https://doi.org/10.1002/9783527635160.ch9
    91. Joanna Napp, Julia E. Mathejczyk, Frauke Alves. Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives. Pediatric Radiology 2011, 41 (2) , 161-175. https://doi.org/10.1007/s00247-010-1907-0
    92. Shuangquan Liu, Bin Zhang, Xin Wang, Lin Li, Yan Chen, Xin Liu, Fei Liu, Baoci Shan, Jing Bai. A Dual Modality System for Simultaneous Fluorescence and Positron Emission Tomography Imaging of Small Animals. IEEE Transactions on Nuclear Science 2011, 58 (1) , 51-57. https://doi.org/10.1109/TNS.2010.2068310
    93. Cornelus F. van Nostrum. Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter 2011, 7 (7) , 3246. https://doi.org/10.1039/c0sm00999g
    94. Tessa Buckle, Patrick T K Chin, Fijs W B van Leeuwen. (Non-targeted) radioactive/fluorescent nanoparticles and their potential in combined pre- and intraoperative imaging during sentinel lymph node resection. Nanotechnology 2010, 21 (48) , 482001. https://doi.org/10.1088/0957-4484/21/48/482001
    95. Xiaoxiao He, Jinhao Gao, Sanjiv Sam Gambhir, Zhen Cheng. Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends in Molecular Medicine 2010, 16 (12) , 574-583. https://doi.org/10.1016/j.molmed.2010.08.006
    96. Lei Zhang, Hong Xue, Changlu Gao, Louisa Carr, Jinnan Wang, Baocheng Chu, Shaoyi Jiang. Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. Biomaterials 2010, 31 (25) , 6582-6588. https://doi.org/10.1016/j.biomaterials.2010.05.018
    97. Chen Fang, Miqin Zhang. Nanoparticle-based theragnostics: Integrating diagnostic and therapeutic potentials in nanomedicine. Journal of Controlled Release 2010, 146 (1) , 2-5. https://doi.org/10.1016/j.jconrel.2010.05.013
    98. Qinggang Meng, Mei Yu, Bing Gu, Jin Li, Yu Liu, Changyou Zhan, Cao Xie, Jianping Zhou, Weiyue Lu. Myristic acid-conjugated polyethylenimine for brain-targeting delivery: in vivo and ex vivo imaging evaluation. Journal of Drug Targeting 2010, 18 (6) , 438-446. https://doi.org/10.3109/10611860903494229
    99. Jeremiah J. Gassensmith, Easwaran Arunkumar, Bradley D. Smith. Dye Encapsulation. 2010, 309-325. https://doi.org/10.1002/9780470664872.ch11
    100. Wen‐Chung Wu, Ching‐Yi Chen, Yanqing Tian, Sei‐Hum Jang, Yuning Hong, Yang Liu, Rongrong Hu, Ben Zhong Tang, Yi‐Ting Lee, Chin‐Ti Chen, Wen‐Chang Chen, Alex K.‐Y. Jen. Enhancement of Aggregation‐Induced Emission in Dye‐Encapsulating Polymeric Micelles for Bioimaging. Advanced Functional Materials 2010, 20 (9) , 1413-1423. https://doi.org/10.1002/adfm.200902043
    Load all citations

    Biomacromolecules

    Cite this: Biomacromolecules 2007, 8, 11, 3422–3428
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm7005399
    Published October 25, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    2133

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.