ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Encapsulating Bacteria in Agarose Microparticles Using Microfluidics for High-Throughput Cell Analysis and Isolation

View Author Information
† ‡ Department of Biochemistry and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
§ Institute of Industrial Science, University of Tokyo, Tokyo, Japan
*Phone: (608) 890-1342. Fax: (608) 265-0764. E-mail: [email protected]
Cite this: ACS Chem. Biol. 2011, 6, 3, 260–266
Publication Date (Web):December 13, 2010
https://doi.org/10.1021/cb100336p
Copyright © 2010 American Chemical Society

    Article Views

    5674

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (2)»

    Abstract

    Abstract Image

    The high-throughput analysis and isolation of bacterial cells encapsulated in agarose microparticles using fluorescence-activated cell sorting (FACS) is described. Flow-focusing microfluidic systems were used to create monodisperse microparticles that were ∼30 μm in diameter. The dimensions of these particles made them compatible with flow cytometry and FACS, and the sensitivity of these techniques reduced the incubation time for cell replication before analyses were carried out. The small volume of the microparticles (∼1−50 pL) minimized the quantity of reagents needed for bacterial studies. This platform made it possible to screen and isolate bacteria and apply a combination of techniques to rapidly determine the target of biologically active small molecules. As a pilot study, Escherichia coli cells were encapsulated in agarose microparticles, incubated in the presence of varying concentrations of rifampicin, and analyzed using FACS. The minimum inhibitory concentration of rifampicin was determined, and spontaneous mutants that had developed resistance to the antibiotic were isolated via FACS and characterized by DNA sequencing. The β-subunit of RNA polymerase, RpoB, was confirmed as the target of rifampicin, and Q513L was the mutation most frequently observed. Using this approach, the time and quantity of antibiotics required for the isolation of mutants was reduced by 8- and 150-fold, respectively, compared to conventional microbiological techniques using nutrient agar plates. We envision that this technique will have an important impact on research in chemical biology, natural products chemistry, and the discovery and characterization of biologically active secondary metabolites.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 154 publications.

    1. Maximilian Gantz, Stefanie Neun, Elliot J. Medcalf, Liisa D. van Vliet, Florian Hollfelder. Ultrahigh-Throughput Enzyme Engineering and Discovery in In Vitro Compartments. Chemical Reviews 2023, 123 (9) , 5571-5611. https://doi.org/10.1021/acs.chemrev.2c00910
    2. Jing Dai, Can Huang, Han Zhang, Ryan Samuel, Yuwen Li, Arul Jayaraman, Paul de Figueiredo, Arum Han. Microfluidic Dielectrophoretic Method Enables On-Demand Spatial Arrangement of Bacteria-Encapsulated Agarose Gel Microparticles. Analytical Chemistry 2022, 94 (38) , 13197-13204. https://doi.org/10.1021/acs.analchem.2c02724
    3. Yanzhe Zhu, Jing Li, Xingyu Lin, Xiao Huang, Michael R. Hoffmann. Single-Cell Phenotypic Analysis and Digital Molecular Detection Linkable by a Hydrogel Bead-Based Platform. ACS Applied Bio Materials 2021, 4 (3) , 2664-2674. https://doi.org/10.1021/acsabm.0c01615
    4. Haijun Qu, Mengchao Yu, Wenbin Du, Lei Xu, Weiyuan Lyu, Feng Shen. Slip Molding for Precision Fabrication of Microparts. Langmuir 2020, 36 (2) , 585-590. https://doi.org/10.1021/acs.langmuir.9b03156
    5. Taejoon Kong, Nicholas Backes, Upender Kalwa, Christopher Legner, Gregory J. Phillips, Santosh Pandey. Adhesive Tape Microfluidics with an Autofocusing Module That Incorporates CRISPR Interference: Applications to Long-Term Bacterial Antibiotic Studies. ACS Sensors 2019, 4 (10) , 2638-2645. https://doi.org/10.1021/acssensors.9b01031
    6. Petra Jusková, Yannick R. F. Schmid, Ariane Stucki, Steven Schmitt, Martin Held, Petra S. Dittrich. “Basicles”: Microbial Growth and Production Monitoring in Giant Lipid Vesicles. ACS Applied Materials & Interfaces 2019, 11 (38) , 34698-34706. https://doi.org/10.1021/acsami.9b12169
    7. Ott Scheler, Tomasz S. Kaminski, Artur Ruszczak, and Piotr Garstecki . Dodecylresorufin (C12R) Outperforms Resorufin in Microdroplet Bacterial Assays. ACS Applied Materials & Interfaces 2016, 8 (18) , 11318-11325. https://doi.org/10.1021/acsami.6b02360
    8. Xuejiao Xu, Eric A. Appel, Xin Liu, Richard M. Parker, Oren A. Scherman, and Chris Abell . Formation of Cucurbit[8]uril-Based Supramolecular Hydrogel Beads Using Droplet-Based Microfluidics. Biomacromolecules 2015, 16 (9) , 2743-2749. https://doi.org/10.1021/acs.biomac.5b01048
    9. Ju Hyeon Kim, Tae Yoon Jeon, Tae Min Choi, Tae Soup Shim, Shin-Hyun Kim, and Seung-Man Yang . Droplet Microfluidics for Producing Functional Microparticles. Langmuir 2014, 30 (6) , 1473-1488. https://doi.org/10.1021/la403220p
    10. Jennifer Flemke, Matthias Maywald, and Volker Sieber . Encapsulation of Living E. coli Cells in Hollow Polymer Microspheres of Highly Defined Size. Biomacromolecules 2013, 14 (1) , 207-214. https://doi.org/10.1021/bm3016362
    11. Cheng-Che Chung, I-Fang Cheng, Hung-Mo Chen, Heng-Chuan Kan, Wen-Horng Yang, and Hsien-Chang Chang . Screening of Antibiotic Susceptibility to β-Lactam-Induced Elongation of Gram-Negative Bacteria Based on Dielectrophoresis. Analytical Chemistry 2012, 84 (7) , 3347-3354. https://doi.org/10.1021/ac300093w
    12. Qi Liu, Hengdi Yuan, Daolong Yang, Lanfeng Zhang, Nsilani Kouediatouka Ange, Guangneng Dong. Aggregation of micron-particles in microfluidic texture of artificial joint to improve tribological properties. Tribology International 2024, 193 , 109365. https://doi.org/10.1016/j.triboint.2024.109365
    13. Andrea Belluati, Iain Harley, Ingo Lieberwirth, Nico Bruns. An Outer Membrane‐Inspired Polymer Coating Protects and Endows Escherichia coli with Novel Functionalities. Small 2023, 19 (46) https://doi.org/10.1002/smll.202303384
    14. Marie Mettler, Adrien Dewandre, Nikolay Tumanov, Johan Wouters, Jean Septavaux. Single crystal formation in core–shell capsules. Chemical Communications 2023, 59 (85) , 12739-12742. https://doi.org/10.1039/D3CC03727D
    15. Ana Mora‐Boza, Saron G. Ghebrezadik, Johannes E. Leisen, Andrés J. García. Rapid and Facile Light‐Based Approach to Fabricate Protease‐Degradable Poly(ethylene glycol)−norbornene Microgels for Cell Encapsulation. Advanced Healthcare Materials 2023, 12 (26) https://doi.org/10.1002/adhm.202300942
    16. Fariba Malekpour Galogahi, Melody Christie, Ajeet Singh Yadav, Hongjie An, Helen Stratton, Nam-Trung Nguyen. Microfluidic encapsulation of DNAs in liquid beads for digital PCR application. The Analyst 2023, 148 (17) , 4064-4071. https://doi.org/10.1039/D3AN00868A
    17. M Sreepadmanabh, Meenakshi Ganesh, Ramray Bhat, Tapomoy Bhattacharjee. Jammed microgel growth medium prepared by flash-solidification of agarose for 3D cell culture and 3D bioprinting. Biomedical Materials 2023, 18 (4) , 045011. https://doi.org/10.1088/1748-605X/acd315
    18. Jyotsana Priyadarshani, Prasoon Awasthi, Soumen Das, Suman Chakraborty. Thermally-modulated shape transition at the interface of soft gel filament and hydrophobic substrate. Journal of Colloid and Interface Science 2023, 640 , 246-260. https://doi.org/10.1016/j.jcis.2023.02.089
    19. Navid J. Ayon. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023, 13 (5) , 625. https://doi.org/10.3390/metabo13050625
    20. Sadaf Pashapour, Senne Seneca, Martin Schröter, Friedrich Frischknecht, Ilia Platzman, Joachim Spatz. Design and Development of Extracellular Matrix Protein‐Based Microcapsules as Tools for Bacteria Investigation. Advanced Healthcare Materials 2023, 12 (11) https://doi.org/10.1002/adhm.202202789
    21. Gabriela Kapinusova, Marco A. Lopez Marin, Ondrej Uhlik. Reaching unreachables: Obstacles and successes of microbial cultivation and their reasons. Frontiers in Microbiology 2023, 14 https://doi.org/10.3389/fmicb.2023.1089630
    22. Trang Anh Nguyen-Le, Xinne Zhao, Michael Bachmann, Philip Ruelens, J. Arjan G. M. de Visser, Larysa Baraban. High-Throughput Gel Microbeads as Incubators for Bacterial Competition Study. Micromachines 2023, 14 (3) , 645. https://doi.org/10.3390/mi14030645
    23. Zhenqi Jiang, Haoran Shi, Xiaoying Tang, Jieling Qin. Recent advances in droplet microfluidics for single-cell analysis. TrAC Trends in Analytical Chemistry 2023, 159 , 116932. https://doi.org/10.1016/j.trac.2023.116932
    24. Ana Mora-Boza, Sergio Acosta, María Puertas-Bartolomé. Biopolymers for the development of living materials for biomedical applications. 2023, 263-294. https://doi.org/10.1016/B978-0-323-90939-6.00005-4
    25. Komal A. Chandarana, Kejal Gohil, Mitesh Kumar Dwivedi, Natarajan Amaresan. Culture-independent and culture-dependent approaches in symbiont analysis. 2023, 723-742. https://doi.org/10.1016/B978-0-323-99334-0.00046-3
    26. Yoon Jeong, Wentao Kong, Ting Lu, Joseph Irudayaraj. Soft hydrogel-shell confinement systems as bacteria-based bioactuators and biosensors. Biosensors and Bioelectronics 2023, 219 , 114809. https://doi.org/10.1016/j.bios.2022.114809
    27. Marcelinus Christwardana, Satrio Kuntolaksono. Immobilization of Saccharomyces cerevisiae in agar polymer matrix to improves the performance of a yeast microbial fuel cell. 2023, 100001. https://doi.org/10.1063/5.0136035
    28. Abraham Ochoa, Gabriela Gastélum, Jorge Rocha, Luis F. Olguin. High-throughput bacterial co-encapsulation in microfluidic gel beads for discovery of antibiotic-producing strains. The Analyst 2023, 30 https://doi.org/10.1039/D3AN01101A
    29. Kenza Samlali, Chiara Leal Alves, Mara Jezernik, Steve C. C. Shih. Droplet digital microfluidic system for screening filamentous fungi based on enzymatic activity. Microsystems & Nanoengineering 2022, 8 (1) https://doi.org/10.1038/s41378-022-00456-1
    30. Jiyu Li, Dinglong Hu, Chee Kent Lim, Jifeng Ren, Xin Yao, Chao Ma, Marcos, Weiqiang Chen, Patrick K. H. Lee, Raymond H. W. Lam. Selective single-bacteria extraction based on capture and release of microemulsion droplets. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-19844-8
    31. Mikel Duran, Angel Serrano, Artem Nikulin, Jean-Luc Dauvergne, Ladislav Derzsi, Elena Palomo del Barrio. Microcapsule production by droplet microfluidics: A review from the material science approach. Materials & Design 2022, 223 , 111230. https://doi.org/10.1016/j.matdes.2022.111230
    32. Yue Yu, Hui Wen, Sihong Li, Haojie Cao, Xuefei Li, Zhixin Ma, Xiaoyi She, Lei Zhou, Shuqiang Huang. Emerging microfluidic technologies for microbiome research. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.906979
    33. Matthew E. Allen, James W. Hindley, Divesh K. Baxani, Oscar Ces, Yuval Elani. Hydrogels as functional components in artificial cell systems. Nature Reviews Chemistry 2022, 6 (8) , 562-578. https://doi.org/10.1038/s41570-022-00404-7
    34. Jialan Cao, Charmi Chande, J. Michael Köhler. Microtoxicology by microfluidic instrumentation: a review. Lab on a Chip 2022, 22 (14) , 2600-2623. https://doi.org/10.1039/D2LC00268J
    35. Darius G. Rackus, Petra Jusková, Fumiaki Yokoyama, Petra S. Dittrich. Parallel study of transient dosing of antibiotics in a microfluidic device. Biomicrofluidics 2022, 16 (4) https://doi.org/10.1063/5.0091704
    36. Ruizhi Ning, Jinhai Fan, Liang Kong, Xue Jiang, Yun Qian, Tao Du, Guangjian Zhang, Weiwei Wu. Recent developments of droplets-based microfluidics for bacterial analysis. Chinese Chemical Letters 2022, 33 (5) , 2243-2252. https://doi.org/10.1016/j.cclet.2021.08.096
    37. Emily Pope, Bradley Haltli, Russell G. Kerr, Ali Ahmadi. Effects of Matrix Composition and Temperature on Viability and Metabolic Activity of Microencapsulated Marine Bacteria. Microorganisms 2022, 10 (5) , 996. https://doi.org/10.3390/microorganisms10050996
    38. Joseph de Rutte, Robert Dimatteo, Sheldon Zhu, Maani M Archang, Dino Di Carlo. Sorting single-cell microcarriers using commercial flow cytometers. SLAS Technology 2022, 27 (2) , 150-159. https://doi.org/10.1016/j.slast.2021.10.004
    39. Daniel Taylor, Nia Verdon, Peter Lomax, Rosalind J Allen, Simon Titmuss. Tracking the stochastic growth of bacterial populations in microfluidic droplets. Physical Biology 2022, 19 (2) , 026003. https://doi.org/10.1088/1478-3975/ac4c9b
    40. Mark van Zee, Joseph de Rutte, Rose Rumyan, Cayden Williamson, Trevor Burnes, Randor Radakovits, Andrew Sonico Eugenio, Sara Badih, Sohyung Lee, Dong-Hyun Lee, Maani Archang, Dino Di Carlo. High-throughput selection of cells based on accumulated growth and division using PicoShell particles. Proceedings of the National Academy of Sciences 2022, 119 (4) https://doi.org/10.1073/pnas.2109430119
    41. Andreas Link, John S. McGrath, Mustafa Zaimagaoglu, Thomas Franke. Active single cell encapsulation using SAW overcoming the limitations of Poisson distribution. Lab on a Chip 2021, 22 (1) , 193-200. https://doi.org/10.1039/D1LC00880C
    42. Zenon Toprakcioglu, Tuomas P. J. Knowles. Sequential storage and release of microdroplets. Microsystems & Nanoengineering 2021, 7 (1) https://doi.org/10.1038/s41378-021-00303-9
    43. Aleixandre Rodrigo-Navarro, Shrikrishnan Sankaran, Matthew J. Dalby, Aránzazu del Campo, Manuel Salmeron-Sanchez. Engineered living biomaterials. Nature Reviews Materials 2021, 6 (12) , 1175-1190. https://doi.org/10.1038/s41578-021-00350-8
    44. Anna Fornell, Hannah Pohlit, Qian Shi, Maria Tenje. Acoustic focusing of beads and cells in hydrogel droplets. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-86985-7
    45. Antonia Molloy, James Harrison, John S. McGrath, Zachary Owen, Clive Smith, Xin Liu, Xin Li, Jonathan A. G. Cox. Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms 2021, 9 (11) , 2330. https://doi.org/10.3390/microorganisms9112330
    46. Yangteng Ou, Shixiang Cao, Jing Zhang, Weiliang Dong, Zhugen Yang, Ziyi Yu. Droplet microfluidics on analysis of pathogenic microbes for wastewater-based epidemiology. TrAC Trends in Analytical Chemistry 2021, 143 , 116333. https://doi.org/10.1016/j.trac.2021.116333
    47. Edoardo Mandolini, Maraike Probst, Ursula Peintner. Methods for Studying Bacterial–Fungal Interactions in the Microenvironments of Soil. Applied Sciences 2021, 11 (19) , 9182. https://doi.org/10.3390/app11199182
    48. Ariane Stucki, Petra Jusková, Nicola Nuti, Steven Schmitt, Petra S. Dittrich. Synchronized Reagent Delivery in Double Emulsions for Triggering Chemical Reactions and Gene Expression. Small Methods 2021, 5 (8) https://doi.org/10.1002/smtd.202100331
    49. Ming Li, Hangrui Liu, Siyuan Zhuang, Keisuke Goda. Droplet flow cytometry for single-cell analysis. RSC Advances 2021, 11 (34) , 20944-20960. https://doi.org/10.1039/D1RA02636D
    50. Huda Usman, Shanna-Leigh Davidson, Nithil H. Manimaran, Jenna T. Nguyen, Aïssatou Bah, Rishabh Seth, Eric Beckman, Tagbo H.R. Niepa. Design of a well-defined poly(dimethylsiloxane)-based microbial nanoculture system. Materials Today Communications 2021, 27 , 102185. https://doi.org/10.1016/j.mtcomm.2021.102185
    51. Tzu-Chieh Tang, Eléonore Tham, Xinyue Liu, Kevin Yehl, Alexis J. Rovner, Hyunwoo Yuk, Cesar de la Fuente-Nunez, Farren J. Isaacs, Xuanhe Zhao, Timothy K. Lu. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nature Chemical Biology 2021, 17 (6) , 724-731. https://doi.org/10.1038/s41589-021-00779-6
    52. Minjun Chen, Guido Bolognesi, Goran T. Vladisavljević. Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules 2021, 26 (12) , 3752. https://doi.org/10.3390/molecules26123752
    53. Sibo Zhao, Huilin Wen, Yangteng Ou, Minhui Li, Lancheng Wang, Huimin Zhou, Bin Di, Ziyi Yu, Chi Hu. A new design for living cell-based biosensors: Microgels with a selectively permeable shell that can harbor bacterial species. Sensors and Actuators B: Chemical 2021, 334 , 129648. https://doi.org/10.1016/j.snb.2021.129648
    54. Asmaa Khater, Osama Abdelrehim, Mehdi Mohammadi, Abdulmajeed Mohamad, Amir Sanati-Nezhad. Thermal droplet microfluidics: From biology to cooling technology. TrAC Trends in Analytical Chemistry 2021, 138 , 116234. https://doi.org/10.1016/j.trac.2021.116234
    55. William H. Lewis, Guillaume Tahon, Patricia Geesink, Diana Z. Sousa, Thijs J. G. Ettema. Innovations to culturing the uncultured microbial majority. Nature Reviews Microbiology 2021, 19 (4) , 225-240. https://doi.org/10.1038/s41579-020-00458-8
    56. Tartela Alkayyali, Emily Pope, Sydney K. Wheatley, Christopher Cartmell, Bradley Haltli, Russell G. Kerr, Ali Ahmadi. Development of a microbe domestication pod (MD Pod) for in situ cultivation of micro‐encapsulated marine bacteria. Biotechnology and Bioengineering 2021, 118 (3) , 1166-1176. https://doi.org/10.1002/bit.27633
    57. Gabriel Quintana, Esteban Gerbino, Patricia Alves, Pedro Nuno Simões, María Luisa Rúa, Clara Fuciños, Andrea Gomez-Zavaglia. Microencapsulation of Lactobacillus plantarum in W/O emulsions of okara oil and block-copolymers of poly(acrylic acid) and pluronic using microfluidic devices. Food Research International 2021, 140 , 110053. https://doi.org/10.1016/j.foodres.2020.110053
    58. Ott Scheler, Karol Makuch, Pawel R. Debski, Michal Horka, Artur Ruszczak, Natalia Pacocha, Krzysztof Sozański, Olli-Pekka Smolander, Witold Postek, Piotr Garstecki. Droplet-based digital antibiotic susceptibility screen reveals single-cell clonal heteroresistance in an isogenic bacterial population. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-60381-z
    59. Hsih-Yin Tan, Yi-Chin Toh. What can microfluidics do for human microbiome research?. Biomicrofluidics 2020, 14 (5) https://doi.org/10.1063/5.0012185
    60. Asmaa Khater, Osama Abdelrehim, Mehdi Mohammadi, Milad Azarmanesh, Mohsen Janmaleki, Razieh Salahandish, Abdulmajeed Mohamad, Amir Sanati-Nezhad. Picoliter agar droplet breakup in microfluidics meets microbiology application: numerical and experimental approaches. Lab on a Chip 2020, 20 (12) , 2175-2187. https://doi.org/10.1039/D0LC00300J
    61. Jialan Cao, Felix Richter, Michael Kastl, Jonny Erdmann, Christian Burgold, David Dittrich, Steffen Schneider, J. Köhler, G. Groß. Droplet-Based Screening for the Investigation of Microbial Nonlinear Dose–Response Characteristics System, Background and Examples. Micromachines 2020, 11 (6) , 577. https://doi.org/10.3390/mi11060577
    62. Bo Wu, Chunhua Qi, Lixiang Wang, Wenhui Yang, Dongsheng Zhou, Meng Wang, Yunxiang Dong, Hongyu Weng, Changming Li, Xiaohong Hou, Xianrong Long, Hairong Wang, Tongjie Chai. Detection of microbial aerosols in hospital wards and molecular identification and dissemination of drug resistance of Escherichia coli. Environment International 2020, 137 , 105479. https://doi.org/10.1016/j.envint.2020.105479
    63. Yun Kee Jo, Daeyeon Lee. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. Small 2020, 16 (9) https://doi.org/10.1002/smll.201903736
    64. Mohamed G. A. Mohamed, Pranav Ambhorkar, Roya Samanipour, Annie Yang, Ali Ghafoor, Keekyoung Kim. Microfluidics-based fabrication of cell-laden microgels. Biomicrofluidics 2020, 14 (2) https://doi.org/10.1063/1.5134060
    65. Chunxuan Ma, Zheng Lin Tan, Ying Lin, Shuangyan Han, Xinhui Xing, Chong Zhang. Gel microdroplet–based high-throughput screening for directed evolution of xylanase-producing Pichia pastoris. Journal of Bioscience and Bioengineering 2019, 128 (6) , 662-668. https://doi.org/10.1016/j.jbiosc.2019.05.008
    66. Q.S. Qu, F. Yang, C.Y. Zhao, X.Y. Shi. Analysis of the bacteria community in wild Cordyceps cicadae and its influence on the production of HEA and nucleosides in Cordyceps cicadae. Journal of Applied Microbiology 2019, 127 (6) , 1759-1767. https://doi.org/10.1111/jam.14432
    67. Lindong Weng, James E. Spoonamore. Droplet Microfluidics-Enabled High-Throughput Screening for Protein Engineering. Micromachines 2019, 10 (11) , 734. https://doi.org/10.3390/mi10110734
    68. Leqian Liu, Chiraj K. Dalal, Benjamin M. Heineike, Adam R. Abate. High throughput gene expression profiling of yeast colonies with microgel-culture Drop-seq. Lab on a Chip 2019, 19 (10) , 1838-1849. https://doi.org/10.1039/C9LC00084D
    69. Xiaokan Guo, Kalinga Pavan T Silva, James Q Boedicker. Single-cell variability of growth interactions within a two-species bacterial community. Physical Biology 2019, 16 (3) , 036001. https://doi.org/10.1088/1478-3975/ab005f
    70. Juliette Ohan, Benjamin Pelle, Pulak Nath, J-H Huang, Blake Hovde, Momchilo Vuyisich, Armand EK Dichosa, Shawn R Starkenburg. High-throughput phenotyping of cell-to-cell interactions in gel microdroplet pico-cultures. BioTechniques 2019, 66 (5) , 218-224. https://doi.org/10.2144/btn-2018-0124
    71. T. Alkayyali, T. Cameron, B. Haltli, R.G. Kerr, A. Ahmadi. Microfluidic and cross-linking methods for encapsulation of living cells and bacteria - A review. Analytica Chimica Acta 2019, 1053 , 1-21. https://doi.org/10.1016/j.aca.2018.12.056
    72. Wenting Zhou, Jian Le, Yang Chen, Ying Cai, Zhanying Hong, Yifeng Chai. Recent advances in microfluidic devices for bacteria and fungus research. TrAC Trends in Analytical Chemistry 2019, 112 , 175-195. https://doi.org/10.1016/j.trac.2018.12.024
    73. Trinh Lam, Martin D. Brennan, Donald A. Morrison, David T. Eddington. Femtoliter droplet confinement of Streptococcus pneumoniae : bacterial genetic transformation by cell–cell interaction in droplets. Lab on a Chip 2019, 19 (4) , 682-692. https://doi.org/10.1039/C8LC01367E
    74. Shrikrishnan Sankaran, Aránzazu del Campo. Optoregulated Protein Release from an Engineered Living Material. Advanced Biosystems 2019, 3 (2) https://doi.org/10.1002/adbi.201800312
    75. Nehir Kandemir, Waldemar Vollmer, Nicholas S. Jakubovics, Jinju Chen. Mechanical interactions between bacteria and hydrogels. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-29269-x
    76. Masamune Morita, Kaoru Katoh, Naohiro Noda. Direct Observation of Bacterial Growth in Giant Unilamellar Vesicles: A Novel Tool for Bacterial Cultures. ChemistryOpen 2018, 7 (11) , 845-849. https://doi.org/10.1002/open.201800126
    77. Ming Li, Mark van Zee, Carson T. Riche, Bobby Tofig, Sean D. Gallaher, Sabeeha S. Merchant, Robert Damoiseaux, Keisuke Goda, Dino Di Carlo. A Gelatin Microdroplet Platform for High‐Throughput Sorting of Hyperproducing Single‐Cell‐Derived Microalgal Clones. Small 2018, 14 (44) https://doi.org/10.1002/smll.201803315
    78. Lívia Souza, Abir Al-Tabbaa. Microfluidic fabrication of microcapsules tailored for self-healing in cementitious materials. Construction and Building Materials 2018, 184 , 713-722. https://doi.org/10.1016/j.conbuildmat.2018.07.005
    79. Kazuki Nosho, Koji Yasuhara, Yuto Ikehata, Tomohiro Mii, Taichiro Ishige, Shunsuke Yajima, Makoto Hidaka, Tetsuhiro Ogawa, Haruhiko Masaki. Isolation of colonization-defective Escherichia coli mutants reveals critical requirement for fatty acids in bacterial colony formation. Microbiology 2018, 164 (9) , 1122-1132. https://doi.org/10.1099/mic.0.000673
    80. Chunlai Zhang, Xiao Liu, Jiaju Tan, Zhenzhen Jia, Fuhai Liu, Deyin Zheng, Xin Zhao, Xizeng Feng, Guangyi Sun. Localized fluorescence detection of carbenicillin resistance based on gelatinous substrate with micro-pyramid array structure. Journal of Micromechanics and Microengineering 2018, 28 (8) , 085004. https://doi.org/10.1088/1361-6439/aab80b
    81. Chengbo Li, Chenguang Liu. Characterization of agarose microparticles prepared by water-in-water emulsification. Particulate Science and Technology 2018, 36 (5) , 592-599. https://doi.org/10.1080/02726351.2017.1279698
    82. Lin Zhou, Jin-Ming Lin. Microfluidic Platforms for Microbial. 2018, 397-423. https://doi.org/10.1007/978-981-10-5394-8_13
    83. Xiaomei Cao, Zhengshan Luo, Weizhu Zeng, Sha Xu, Liqing Zhao, Jingwen Zhou. Enhanced avermectin production by Streptomyces avermitilis ATCC 31267 using high-throughput screening aided by fluorescence-activated cell sorting. Applied Microbiology and Biotechnology 2018, 102 (2) , 703-712. https://doi.org/10.1007/s00253-017-8658-x
    84. Xiaonan Cui, Lihui Ren, Yufei Shan, Xixian Wang, Zhenlong Yang, Chunyu Li, Jian Xu, Bo Ma. Smartphone-based rapid quantification of viable bacteria by single-cell microdroplet turbidity imaging. The Analyst 2018, 143 (14) , 3309-3316. https://doi.org/10.1039/C8AN00456K
    85. Jungil Choi, Hyun Yong Jeong, Gi Yoon Lee, Sangkwon Han, Shinhun Han, Bonghwan Jin, Taegeun Lim, Shin Kim, Dong Young Kim, Hee Chan Kim, Eui-Chong Kim, Sang Hoon Song, Taek Soo Kim, Sunghoon Kwon. Direct, rapid antimicrobial susceptibility test from positive blood cultures based on microscopic imaging analysis. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-01278-2
    86. Yiyan Li, Xing Yang, Weian Zhao. Emerging Microtechnologies and Automated Systems for Rapid Bacterial Identification and Antibiotic Susceptibility Testing. SLAS Technology 2017, 22 (6) , 585-608. https://doi.org/10.1177/2472630317727519
    87. Aniruddha M. Kaushik, Kuangwen Hsieh, Liben Chen, Dong Jin Shin, Joseph C. Liao, Tza-Huei Wang. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform. Biosensors and Bioelectronics 2017, 97 , 260-266. https://doi.org/10.1016/j.bios.2017.06.006
    88. Fatemeh Jalali, Felix Ellett, Daniel Irimia. Rapid antibiotic sensitivity testing in microwell arrays. TECHNOLOGY 2017, 05 (02) , 107-114. https://doi.org/10.1142/S2339547817500030
    89. Renny E. Fernandez, Ali Rohani, Vahid Farmehini, Nathan S. Swami. Review: Microbial analysis in dielectrophoretic microfluidic systems. Analytica Chimica Acta 2017, 966 , 11-33. https://doi.org/10.1016/j.aca.2017.02.024
    90. Michael Davenport, Kathleen E. Mach, Linda M. Dairiki Shortliffe, Niaz Banaei, Tza-Huei Wang, Joseph C. Liao. New and developing diagnostic technologies for urinary tract infections. Nature Reviews Urology 2017, 14 (5) , 296-310. https://doi.org/10.1038/nrurol.2017.20
    91. Piotr Biniarz, Marcin Łukaszewicz, Tomasz Janek. Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Critical Reviews in Biotechnology 2017, 37 (3) , 393-410. https://doi.org/10.3109/07388551.2016.1163324
    92. Raja Vadivelu, Harshad Kamble, Muhammad Shiddiky, Nam-Trung Nguyen. Microfluidic Technology for the Generation of Cell Spheroids and Their Applications. Micromachines 2017, 8 (4) , 94. https://doi.org/10.3390/mi8040094
    93. Jian Xu, Bo Ma, Xiaoquan Su, Shi Huang, Xin Xu, Xuedong Zhou, Wei E. Huang, Rob Knight. Emerging Trends for Microbiome Analysis: From Single-Cell Functional Imaging to Microbiome Big Data. Engineering 2017, 3 (1) , 66-70. https://doi.org/10.1016/J.ENG.2017.01.020
    94. S. Morelli, R.G. Holdich, M.M. Dragosavac. Microparticles for cell encapsulation and colonic delivery produced by membrane emulsification. Journal of Membrane Science 2017, 524 , 377-388. https://doi.org/10.1016/j.memsci.2016.11.058
    95. Tom Kamperman, Sieger Henke, Albert van den Berg, Su Ryon Shin, Ali Tamayol, Ali Khademhosseini, Marcel Karperien, Jeroen Leijten. Single Cell Microgel Based Modular Bioinks for Uncoupled Cellular Micro‐ and Macroenvironments. Advanced Healthcare Materials 2017, 6 (3) https://doi.org/10.1002/adhm.201600913
    96. Hans‐Peter Hohmann, Jan M. van Dijl, Laxmi Krishnappa, Zoltán Prágai. Host Organisms: Bacillus subtilis. 2017, 221-297. https://doi.org/10.1002/9783527807796.ch7
    97. O. Scheler, N. Pacocha, P. R. Debski, A. Ruszczak, T. S. Kaminski, P. Garstecki. Optimized droplet digital CFU assay (ddCFU) provides precise quantification of bacteria over a dynamic range of 6 logs and beyond. Lab on a Chip 2017, 17 (11) , 1980-1987. https://doi.org/10.1039/C7LC00206H
    98. Manuel Montalbán-López, Auke J. van Heel, Oscar P. Kuipers, . Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. FEMS Microbiology Reviews 2017, 41 (1) , 5-18. https://doi.org/10.1093/femsre/fuw034
    99. Adam Armada-Moreira, Essi Taipaleenmäki, Fabian Itel, Yan Zhang, Brigitte Städler. Droplet-microfluidics towards the assembly of advanced building blocks in cell mimicry. Nanoscale 2016, 8 (47) , 19510-19522. https://doi.org/10.1039/C6NR07807A
    100. Aline F. Oliveira, Amanda C. S. N. Pessoa, Reinaldo G. Bastos, Lucimara G. de la Torre. Microfluidic tools toward industrial biotechnology. Biotechnology Progress 2016, 32 (6) , 1372-1389. https://doi.org/10.1002/btpr.2350
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect