ACS Publications. Most Trusted. Most Cited. Most Read
Chemistry and Biology of the Copper Chelator Methanobactin
My Activity
    Reviews

    Chemistry and Biology of the Copper Chelator Methanobactin
    Click to copy article linkArticle link copied!

    View Author Information
    Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
    Other Access Options

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2012, 7, 2, 260–268
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cb2003913
    Published November 29, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Methanotrophic bacteria, organisms that oxidize methane, produce a small copper chelating molecule called methanobactin (Mb). Mb binds Cu(I) with high affinity and is hypothesized to mediate copper acquisition from the environment. Recent advances in Mb characterization include revision of the chemical structure of Mb from Methylosinus trichosporium OB3b and further investigation of its biophysical properties. In addition, Mb production by several other methanotroph strains has been investigated, and preliminary characterization suggests diversity in chemical composition. Initial clues into Mb biosynthesis have been obtained by identification of a putative precursor gene in the M. trichosporium OB3b genome. Finally, direct uptake of intact Mb into the cytoplasm of M. trichosporium OB3b cells has been demonstrated, and studies of the transport mechanism have been initiated. Taken together, these advances represent significant progress and set the stage for exciting new research directions.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 71 publications.

    1. Alexey Kulikovsky, Eldar Yagmurov, Anastasiia Grigoreva, Aleksandr Popov, Konstantin Severinov, Satish K. Nair, Guy Lippens, Marina Serebryakova, Sergei Borukhov, Svetlana Dubiley. Bacillus subtilis Utilizes Decarboxylated S-Adenosylmethionine for the Biosynthesis of Tandem Aminopropylated Microcin C, a Potent Inhibitor of Bacterial Aspartyl-tRNA Synthetase. Journal of the American Chemical Society 2025, 147 (14) , 11998-12011. https://doi.org/10.1021/jacs.4c18468
    2. Mohammed M. A. Ahmed, Paul D. Boudreau. LCMS-Metabolomic Profiling and Genome Mining of Delftia lacustris DSM 21246 Revealed Lipophilic Delftibactin Metallophores. Journal of Natural Products 2024, 87 (5) , 1384-1393. https://doi.org/10.1021/acs.jnatprod.4c00049
    3. Nilkamal Mahanta, D. Miklos Szantai-Kis, E. James Petersson, Douglas A. Mitchell. Biosynthesis and Chemical Applications of Thioamides. ACS Chemical Biology 2019, 14 (2) , 142-163. https://doi.org/10.1021/acschembio.8b01022
    4. Lijuan Wang, Mengyi Zhu, Qingbo Zhang, Xu Zhang, Panlei Yang, Zihui Liu, Yun Deng, Yiguang Zhu, Xueshi Huang, Li Han, Shengqing Li, and Jing He . Diisonitrile Natural Product SF2768 Functions As a Chalkophore That Mediates Copper Acquisition in Streptomyces thioluteus. ACS Chemical Biology 2017, 12 (12) , 3067-3075. https://doi.org/10.1021/acschembio.7b00897
    5. Grace E. Kenney, Anthony W. Goering, Matthew O. Ross, Caroline J. DeHart, Paul M. Thomas, Brian M. Hoffman, Neil L. Kelleher, and Amy C. Rosenzweig . Characterization of Methanobactin from Methylosinus sp. LW4. Journal of the American Chemical Society 2016, 138 (35) , 11124-11127. https://doi.org/10.1021/jacs.6b06821
    6. Thomas J. Lawton and Amy C. Rosenzweig . Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion. Journal of the American Chemical Society 2016, 138 (30) , 9327-9340. https://doi.org/10.1021/jacs.6b04568
    7. Sarah Sirajuddin and Amy C. Rosenzweig . Enzymatic Oxidation of Methane. Biochemistry 2015, 54 (14) , 2283-2294. https://doi.org/10.1021/acs.biochem.5b00198
    8. Kaveri S. Chaturvedi, Chia S. Hung, Daryl E. Giblin, Saki Urushidani, Anthony M. Austin, Mary C. Dinauer, and Jeffrey P. Henderson . Cupric Yersiniabactin Is a Virulence-Associated Superoxide Dismutase Mimic. ACS Chemical Biology 2014, 9 (2) , 551-561. https://doi.org/10.1021/cb400658k
    9. Charlène Esmieu, Sarah Hostachy, Christelle Hureau. Cu(I) chelators: Useful tools to reveal and control Cu(I) homeostasis and toxicity. Coordination Chemistry Reviews 2025, 539 , 216684. https://doi.org/10.1016/j.ccr.2025.216684
    10. Xianyu Luo, Maoyuan Linghu, Xinru Zhou, Yi Ru, Qian Huang, Didi Liu, Shurong Ji, Yinchu Ma, Yingli Luo, Yi Huang. Merestinib inhibits cuproptosis by targeting NRF2 to alleviate acute liver injury. Free Radical Biology and Medicine 2025, 229 , 68-81. https://doi.org/10.1016/j.freeradbiomed.2025.01.029
    11. Martina M. Golden, Amelia C. Heppe, Cassandra L. Zaremba, William M. Wuest. Metal chelation as an antibacterial strategy for Pseudomonas aeruginosa and Acinetobacter baumannii. RSC Chemical Biology 2024, 5 (11) , 1083-1096. https://doi.org/10.1039/D4CB00175C
    12. Olivia M. Manley, Tucker J. Shriver, Tian Xu, Isaac A. Melendrez, Philip Palacios, Scott A. Robson, Yisong Guo, Neil L. Kelleher, Joshua J. Ziarek, Amy C. Rosenzweig. A multi-iron enzyme installs copper-binding oxazolone/thioamide pairs on a nontypeable Haemophilus influenzae virulence factor. Proceedings of the National Academy of Sciences 2024, 121 (28) https://doi.org/10.1073/pnas.2408092121
    13. Jeff Y. Chen, Wilfred A. van der Donk. Multinuclear non-heme iron dependent oxidative enzymes (MNIOs) involved in unusual peptide modifications. Current Opinion in Chemical Biology 2024, 80 , 102467. https://doi.org/10.1016/j.cbpa.2024.102467
    14. Jiaming Xie, Yannan Yang, Yibo Gao, Jie He. Cuproptosis: mechanisms and links with cancers. Molecular Cancer 2023, 22 (1) https://doi.org/10.1186/s12943-023-01732-y
    15. Yanhui Zheng, Xiaoqing Xu, Xiaoli Fu, Xuerong Zhou, Chao Dou, Yue Yu, Weizhu Yan, Jingyuan Yang, Minqin Xiao, Wilfred A. van der Donk, Xiaofeng Zhu, Wei Cheng. Structures of the holoenzyme TglHI required for 3-thiaglutamate biosynthesis. Structure 2023, 31 (10) , 1220-1232.e5. https://doi.org/10.1016/j.str.2023.08.004
    16. Sujan Sk, Avishek Majumder, Priyanka Sow, Asmita Samadder, Manindranath Bera. Exploring a new family of designer copper(II) complexes of anthracene-appended polyfunctional organic assembly displaying potential anticancer activity via cytochrome c mediated mitochondrial apoptotic pathway. Journal of Inorganic Biochemistry 2023, 243 , 112182. https://doi.org/10.1016/j.jinorgbio.2023.112182
    17. Henryk Kozlowski, Karolina Piasta, Aleksandra Hecel, Magdalena Rowinska-Zyrek, Elzbieta Gumienna-Kontecka. Metallophores: How do human pathogens withdraw metal ions from the colonized host. 2023, 553-574. https://doi.org/10.1016/B978-0-12-823144-9.00086-8
    18. Pankaj Ombase, Rajesh Kumar Patidar, Lachhman Singh, Jaya Baranwal, Nidhi Srivastava, Nihar Ranjan. Human telomeric G-quadruplex DNA enabled preferential recognition of copper (II) and Iron (III) ions sensed by a red emissive probe. Tetrahedron Letters 2022, 111 , 154181. https://doi.org/10.1016/j.tetlet.2022.154181
    19. Martyna Wilk, Ewa Pecka-Kiełb, Jerzy Pastuszak, Muhammad Umair Asghar, Laura Mól. Effects of Copper Sulfate and Encapsulated Copper Addition on In Vitro Rumen Fermentation and Methane Production. Agriculture 2022, 12 (11) , 1943. https://doi.org/10.3390/agriculture12111943
    20. Jia-Ying Xin, Yue Li, Feng-Yuan Liu, Li-Rui Sun, Yan Wang, Chun-Gu Xia. Visible and Ultraviolet Dual-Readout Detection of Cu(II) in Preserved Vegetables Based on Self-Assembly and Peroxidase Simulation Properties of Mb-AuNPs. Science of Advanced Materials 2022, 14 (8) , 1410-1418. https://doi.org/10.1166/sam.2022.4339
    21. Ksenia Nechitaylo, Elena Sizova. Productive Indicators of Broiler Chickens Against the Background of the Combined Use of a Multi-enzyme Complex and Copper in the Form of Ultrafine Particles in the Diet. 2022, 449-458. https://doi.org/10.1007/978-3-030-91405-9_49
    22. Kehinde D. Fasae, Amos O. Abolaji, Tolulope R. Faloye, Atinuke Y. Odunsi, Bolaji O. Oyetayo, Joseph I. Enya, Joshua A. Rotimi, Rufus O. Akinyemi, Alexander J. Whitworth, Michael Aschner. Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: Limitations, and current and future perspectives. Journal of Trace Elements in Medicine and Biology 2021, 67 , 126779. https://doi.org/10.1016/j.jtemb.2021.126779
    23. Jonathan AR Worrall. Copper Storage Protein From Streptomyces Lividans. 2021, 1-16. https://doi.org/10.1002/9781119951438.eibc2777
    24. Adwitiya Pal, Sushil Ranjan Bhatta, Arunabha Thakur. Recent advances in the development of ferrocene based electroactive small molecules for cation recognition: A comprehensive review of the years 2010–2020. Coordination Chemistry Reviews 2021, 431 , 213685. https://doi.org/10.1016/j.ccr.2020.213685
    25. Marika Hofmann, Thomas Heine, Luise Malik, Sarah Hofmann, Kristin Joffroy, Christoph Helmut Rudi Senges, Julia Elisabeth Bandow, Dirk Tischler. Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions. Microorganisms 2021, 9 (1) , 111. https://doi.org/10.3390/microorganisms9010111
    26. Marika Hofmann, Gerardo Retamal-Morales, Dirk Tischler. Metal binding ability of microbial natural metal chelators and potential applications. Natural Product Reports 2020, 37 (9) , 1262-1283. https://doi.org/10.1039/C9NP00058E
    27. Enas N. Yousef, Laurence A. Angel. Comparison of the pH‐dependent formation of His and Cys heptapeptide complexes of nickel(II), copper(II), and zinc(II) as determined by ion mobility‐mass spectrometry. Journal of Mass Spectrometry 2020, 55 (3) https://doi.org/10.1002/jms.4489
    28. Jia-Ying Xin, Li-Rui Sun, Hui-Ying Lin, Shuai Zhang, Chun-Gu Xia. Hybridization of Particulate Methane Monooxygenase by Methanobactin-Modified AuNPs. Molecules 2019, 24 (22) , 4027. https://doi.org/10.3390/molecules24224027
    29. Lena J. Daumann. Essenziell und weitverbreitet: Lanthanoid‐Metalloproteine. Angewandte Chemie 2019, 131 (37) , 12926-12933. https://doi.org/10.1002/ange.201904090
    30. Lena J. Daumann. Essential and Ubiquitous: The Emergence of Lanthanide Metallobiochemistry. Angewandte Chemie International Edition 2019, 58 (37) , 12795-12802. https://doi.org/10.1002/anie.201904090
    31. Chi P. Ting, Michael A. Funk, Steve L. Halaby, Zhengan Zhang, Tamir Gonen, Wilfred A. van der Donk. Use of a scaffold peptide in the biosynthesis of amino acid–derived natural products. Science 2019, 365 (6450) , 280-284. https://doi.org/10.1126/science.aau6232
    32. Seon-yeong Park, Chang-gyun Kim. Application and development of methanotrophs in environmental engineering. Journal of Material Cycles and Waste Management 2019, 21 (3) , 415-422. https://doi.org/10.1007/s10163-018-00826-w
    33. Jingyu Liu, Zhi Lin, Yuqing Li, Qingfei Zheng, Dandan Chen, Wen Liu. Insights into the thioamidation of thiopeptins to enhance the understanding of the biosynthetic logic of thioamide-containing thiopeptides. Organic & Biomolecular Chemistry 2019, 17 (15) , 3727-3731. https://doi.org/10.1039/C9OB00402E
    34. David Hernández‐Sánchez, Daniel Cervantes‐Gómez, J Efrén Ramírez‐Bribiesca, Mario Cobos‐Peralta, René Pinto‐Ruiz, Laura Astigarraga, José I Gere. The influence of copper levels on in vitro ruminal fermentation, bacterial growth and methane production. Journal of the Science of Food and Agriculture 2019, 99 (3) , 1073-1077. https://doi.org/10.1002/jsfa.9274
    35. Jeremy D. Semrau, Alan A. DiSpirito. Methanobactin: A Novel Copper-Binding Compound Produced by Methanotrophs. 2019, 205-229. https://doi.org/10.1007/978-3-030-23261-0_7
    36. Robert Crichton. Metal Assimilation Pathways. 2019, 171-206. https://doi.org/10.1016/B978-0-12-811741-5.00007-2
    37. Xin Jia‐Ying, Li Chun‐Yu, Zhang Shuai, Wang Yan, Zhang Wei, Xia Chun‐Gu. Cu‐induced assembly of methanobactin‐modified gold nanoparticles and its peroxidase mimic activity. IET Nanobiotechnology 2018, 12 (7) , 915-921. https://doi.org/10.1049/iet-nbt.2018.0069
    38. Agnieszka Litomska, Keishi Ishida, Kyle L. Dunbar, Marco Boettger, Sébastien Coyne, Christian Hertweck. Enzymatic Thioamide Formation in a Bacterial Antimetabolite Pathway. Angewandte Chemie 2018, 130 (36) , 11748-11752. https://doi.org/10.1002/ange.201804158
    39. Agnieszka Litomska, Keishi Ishida, Kyle L. Dunbar, Marco Boettger, Sébastien Coyne, Christian Hertweck. Enzymatic Thioamide Formation in a Bacterial Antimetabolite Pathway. Angewandte Chemie International Edition 2018, 57 (36) , 11574-11578. https://doi.org/10.1002/anie.201804158
    40. Grace E. Kenney, Amy C. Rosenzweig. Chalkophores. Annual Review of Biochemistry 2018, 87 (1) , 645-676. https://doi.org/10.1146/annurev-biochem-062917-012300
    41. Nilkamal Mahanta, Andi Liu, Shihui Dong, Satish K. Nair, Douglas A. Mitchell. Enzymatic reconstitution of ribosomal peptide backbone thioamidation. Proceedings of the National Academy of Sciences 2018, 115 (12) , 3030-3035. https://doi.org/10.1073/pnas.1722324115
    42. Resham Sharma, Renu Bhardwaj, Vandana Gautam, Sukhmeen Kaur Kohli, Parminder Kaur, Ravinder Singh Bali, Poonam Saini, Ashwani Kumar Thukral, Saroj Arora, Adarsh Pal Vig. Microbial Siderophores in Metal Detoxification and Therapeutics: Recent Prospective and Applications. 2018, 337-350. https://doi.org/10.1007/978-981-10-5514-0_15
    43. Dipti D Nayak, Nilkamal Mahanta, Douglas A Mitchell, William W Metcalf. Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea. eLife 2017, 6 https://doi.org/10.7554/eLife.29218
    44. Sergei V. Fedorovich, Tatyana V. Waseem, Ludmila V. Puchkova. Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria. Reviews in the Neurosciences 2017, 28 (4) , 363-373. https://doi.org/10.1515/revneuro-2016-0077
    45. Laura M. K. Dassama, Grace E. Kenney, Amy C. Rosenzweig. Methanobactins: from genome to function. Metallomics 2017, 9 (1) , 7-20. https://doi.org/10.1039/C6MT00208K
    46. Nicolas Vita, Gianpiero Landolfi, Arnaud Baslé, Semeli Platsaki, Jaeick Lee, Kevin J. Waldron, Christopher Dennison. Bacterial cytosolic proteins with a high capacity for Cu(I) that protect against copper toxicity. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep39065
    47. Laura M. K. Dassama, Grace E. Kenney, Soo Y. Ro, Eliza L. Zielazinski, Amy C. Rosenzweig. Methanobactin transport machinery. Proceedings of the National Academy of Sciences 2016, 113 (46) , 13027-13032. https://doi.org/10.1073/pnas.1603578113
    48. Isabelle J. Schalk, Olivier Cunrath. An overview of the biological metal uptake pathways in P seudomonas aeruginosa. Environmental Microbiology 2016, 18 (10) , 3227-3246. https://doi.org/10.1111/1462-2920.13525
    49. Stephen D. Springer, Alison Butler. Microbial ligand coordination: Consideration of biological significance. Coordination Chemistry Reviews 2016, 306 , 628-635. https://doi.org/10.1016/j.ccr.2015.03.013
    50. Yulia A. Zatulovskaia, Ekaterina Y. Ilyechova, Ludmila V. Puchkova, . The Features of Copper Metabolism in the Rat Liver during Development. PLOS ONE 2015, 10 (10) , e0140797. https://doi.org/10.1371/journal.pone.0140797
    51. Stephan M. Kraemer, Owen W. Duckworth, James M. Harrington, Walter D. C. Schenkeveld. Metallophores and Trace Metal Biogeochemistry. Aquatic Geochemistry 2015, 21 (2-4) , 159-195. https://doi.org/10.1007/s10498-014-9246-7
    52. Stephen D. Springer, Alison Butler. Magnetic susceptibility of Mn(III) complexes of hydroxamate siderophores. Journal of Inorganic Biochemistry 2015, 148 , 22-26. https://doi.org/10.1016/j.jinorgbio.2015.04.015
    53. Eun-Ik Koh, Jeffrey P. Henderson. Microbial Copper-binding Siderophores at the Host-Pathogen Interface. Journal of Biological Chemistry 2015, 290 (31) , 18967-18974. https://doi.org/10.1074/jbc.R115.644328
    54. V. N. Khmelenina, O. N. Rozova, S. Yu. But, I. I. Mustakhimov, A. S. Reshetnikov, A. P. Beschastnyi, Yu. A. Trotsenko. Biosynthesis of secondary metabolites in methanotrophs: Biochemical and genetic aspects (Review). Applied Biochemistry and Microbiology 2015, 51 (2) , 150-158. https://doi.org/10.1134/S0003683815020088
    55. DongWon Choi, Aisha A. Alshahrani, Yashodharani Vytla, Manogna Deeconda, Victor J. Serna, Robert F. Saenz, Laurence A. Angel. Redox activity and multiple copper(I) coordination of 2His–2Cys oligopeptide. Journal of Mass Spectrometry 2015, 50 (2) , 316-325. https://doi.org/10.1002/jms.3530
    56. Lucas B. Pontel, Susana K. Checa, Fernando C. Soncini. Bacterial Copper Resistance and Virulence. 2015, 1-19. https://doi.org/10.1007/978-3-319-18570-5_1
    57. Timothy C. Johnstone, Elizabeth M. Nolan. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Transactions 2015, 44 (14) , 6320-6339. https://doi.org/10.1039/C4DT03559C
    58. Eun-Ik Koh, Chia S. Hung, Kaveri S. Parker, Jan R. Crowley, Daryl E. Giblin, Jeffrey P. Henderson. Metal selectivity by the virulence-associated yersiniabactin metallophore system. Metallomics 2015, 7 (6) , 1011-1022. https://doi.org/10.1039/C4MT00341A
    59. J. A. Denny, W. S. Foley, A. D. Todd, M. Y. Darensbourg. The ligand unwrapping/rewrapping pathway that exchanges metals in S-acetylated, hexacoordinate N 2 S 2 O 2 complexes. Chemical Science 2015, 6 (12) , 7079-7088. https://doi.org/10.1039/C5SC02269J
    60. Katherine E. Vest, Paul A. Cobine. Copper in Mitochondria. 2014, 500-523. https://doi.org/10.1039/9781849739979-00500
    61. Hille Fieten, Louis C. Penning, Peter A.J. Leegwater, Jan Rothuizen. New canine models of copper toxicosis: diagnosis, treatment, and genetics. Annals of the New York Academy of Sciences 2014, 1314 (1) , 42-48. https://doi.org/10.1111/nyas.12442
    62. Kenneth A. Johnson, Thomas Ve, Øivind Larsen, Rolf B. Pedersen, Johan R. Lillehaug, Harald B. Jensen, Ronny Helland, Odd A. Karlsen, . CorA Is a Copper Repressible Surface-Associated Copper(I)-Binding Protein Produced in Methylomicrobium album BG8. PLoS ONE 2014, 9 (2) , e87750. https://doi.org/10.1371/journal.pone.0087750
    63. Rachel Narehood Austin, Grace E. Kenney, Amy C. Rosenzweig. Perspective: what is known, and not known, about the connections between alkane oxidation and metal uptake in alkanotrophs in the marine environment. Metallomics 2014, 6 (6) , 1121-1125. https://doi.org/10.1039/C4MT00041B
    64. Grace E Kenney, Amy C Rosenzweig. Genome mining for methanobactins. BMC Biology 2013, 11 (1) https://doi.org/10.1186/1741-7007-11-17
    65. Ramakrishna Sesham, DongWon Choi, Anupama Balaji, Sahithi Cheruku, Chiranjeevi Ravichetti, Aisha A. Alshahrani, Maheshbabu Nasani, Laurence A. Angel. The pH Dependent Cu(II) and Zn(II) Binding Behavior of an Analog Methanobactin Peptide. European Journal of Mass Spectrometry 2013, 19 (6) , 463-473. https://doi.org/10.1255/ejms.1249
    66. Adrian Ho, Claudia Lüke, Andreas Reim, Peter Frenzel. Selective stimulation in a natural community of methane oxidizing bacteria: Effects of copper on pmoA transcription and activity. Soil Biology and Biochemistry 2013, 65 , 211-216. https://doi.org/10.1016/j.soilbio.2013.05.027
    67. Paul G. Arnison, Mervyn J. Bibb, Gabriele Bierbaum, Albert A. Bowers, Tim S. Bugni, Grzegorz Bulaj, Julio A. Camarero, Dominic J. Campopiano, Gregory L. Challis, Jon Clardy, Paul D. Cotter, David J. Craik, Michael Dawson, Elke Dittmann, Stefano Donadio, Pieter C. Dorrestein, Karl-Dieter Entian, Michael A. Fischbach, John S. Garavelli, Ulf Göransson, Christian W. Gruber, Daniel H. Haft, Thomas K. Hemscheidt, Christian Hertweck, Colin Hill, Alexander R. Horswill, Marcel Jaspars, Wendy L. Kelly, Judith P. Klinman, Oscar P. Kuipers, A. James Link, Wen Liu, Mohamed A. Marahiel, Douglas A. Mitchell, Gert N. Moll, Bradley S. Moore, Rolf Müller, Satish K. Nair, Ingolf F. Nes, Gillian E. Norris, Baldomero M. Olivera, Hiroyasu Onaka, Mark L. Patchett, Joern Piel, Martin J. T. Reaney, Sylvie Rebuffat, R. Paul Ross, Hans-Georg Sahl, Eric W. Schmidt, Michael E. Selsted, Konstantin Severinov, Ben Shen, Kaarina Sivonen, Leif Smith, Torsten Stein, Roderich D. Süssmuth, John R. Tagg, Gong-Li Tang, Andrew W. Truman, John C. Vederas, Christopher T. Walsh, Jonathan D. Walton, Silke C. Wenzel, Joanne M. Willey, Wilfred A. van der Donk. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 2013, 30 (1) , 108-160. https://doi.org/10.1039/C2NP20085F
    68. Daniel H. Haft, Jeremy D. Selengut, Roland A. Richter, Derek Harkins, Malay K. Basu, Erin Beck. TIGRFAMs and Genome Properties in 2013. Nucleic Acids Research 2012, 41 (D1) , D387-D395. https://doi.org/10.1093/nar/gks1234
    69. Kaveri S Chaturvedi, Chia S Hung, Jan R Crowley, Ann E Stapleton, Jeffrey P Henderson. The siderophore yersiniabactin binds copper to protect pathogens during infection. Nature Chemical Biology 2012, 8 (8) , 731-736. https://doi.org/10.1038/nchembio.1020
    70. M. Indriati Hood, Eric P. Skaar. Nutritional immunity: transition metals at the pathogen–host interface. Nature Reviews Microbiology 2012, 10 (8) , 525-537. https://doi.org/10.1038/nrmicro2836
    71. Sellamuthu Anbu, Sankarasekaran Shanmugaraju, Rajendran Ravishankaran, Anjali A. Karande, Partha Sarathi Mukherjee. Naphthylhydrazone based selective and sensitive chemosensors for Cu2+ and their application in bioimaging. Dalton Transactions 2012, 41 (43) , 13330. https://doi.org/10.1039/c2dt31335a

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2012, 7, 2, 260–268
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cb2003913
    Published November 29, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    3223

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.