ACS Publications. Most Trusted. Most Cited. Most Read
A Competitive Nucleotide Binding Inhibitor: In Vitro Characterization of Rab7 GTPase Inhibition
My Activity

    Articles

    A Competitive Nucleotide Binding Inhibitor: In Vitro Characterization of Rab7 GTPase Inhibition
    Click to copy article linkArticle link copied!

    View Author Information
    † ∥ Department of Pathology, Center for Molecular Discovery, §Biocomputing Division, Department of Biochemistry and Molecular Biology, and Cancer Center, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
    University of Kansas Specialized Chemistry Center, Lawrence, Kansas 66047, United States
    # Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
    Other Access Options

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2012, 7, 6, 1095–1108
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cb3001099
    Published April 9, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Mapping the functionality of GTPases through small molecule inhibitors represents an underexplored area in large part due to the lack of suitable compounds. Here we report on the small chemical molecule 2-(benzoylcarbamothioylamino)-5,5-dimethyl-4,7-dihydrothieno[2,3-c]pyran-3-carboxylic acid (PubChem CID 1067700) as an inhibitor of nucleotide binding by Ras-related GTPases. The mechanism of action of this pan-GTPase inhibitor was characterized in the context of the Rab7 GTPase as there are no known inhibitors of Rab GTPases. Bead-based flow cytometry established that CID 1067700 has significant inhibitory potency on Rab7 nucleotide binding with nanomolar inhibitor (Ki) values and an inhibitory response of ≥97% for BODIPY-GTP and BODIPY-GDP binding. Other tested GTPases exhibited significantly lower responses. The compound behaves as a competitive inhibitor of Rab7 nucleotide binding based on both equilibrium binding and dissociation assays. Molecular docking analyses are compatible with CID 1067700 fitting into the nucleotide binding pocket of the GTP-conformer of Rab7. On the GDP-conformer, the molecule has greater solvent exposure and significantly less protein interaction relative to GDP, offering a molecular rationale for the experimental results. Structural features pertinent to CID 1067700 inhibitory activity have been identified through initial structure–activity analyses and identified a molecular scaffold that may serve in the generation of more selective probes for Rab7 and other GTPases. Taken together, our study has identified the first competitive GTPase inhibitor and demonstrated the potential utility of the compound for dissecting the enzymology of the Rab7 GTPase, as well as serving as a model for other small molecular weight GTPase inhibitors.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 71 publications.

    1. A. Katherine Hatstat, Michael D. Pupi, Michaela C. Reinhart, Dewey G. McCafferty. Small Molecule Improvement of Trafficking Defects in Models of Neurodegeneration. ACS Chemical Neuroscience 2021, 12 (21) , 3972-3984. https://doi.org/10.1021/acschemneuro.1c00524
    2. Philipp M. Cromm, Jochen Spiegel, Philipp Küchler, Laura Dietrich, Julia Kriegesmann, Mathias Wendt, Roger S. Goody, Herbert Waldmann, and Tom N. Grossmann . Protease-Resistant and Cell-Permeable Double-Stapled Peptides Targeting the Rab8a GTPase. ACS Chemical Biology 2016, 11 (8) , 2375-2382. https://doi.org/10.1021/acschembio.6b00386
    3. Yangyang Wang, Siyu Li, Xiao Liang, Jianing Fan, Shijie Li, Fanlin Zhou, Xiaoju Li, Mengmeng Lai, Dianmao Feng, Yu Li. AP2A1 activates Rab7 to promote axonal autophagosome transport and slow the progression of Alzheimer’s disease. Alzheimer's Research & Therapy 2025, 17 (1) https://doi.org/10.1186/s13195-025-01771-1
    4. Benjamin Faulkner, Yuchen He, Daniel Sitrin, Cliff I. Stains. Methods for Controlling Small GTPase Activity. ChemBioChem 2025, 39 https://doi.org/10.1002/cbic.202500156
    5. Sule Erol Gunal, Selen Duygu Çeçen, Engin Kaplan. Synthesis, antimicrobial evaluation, HPLC-based compound accumulation and docking studies of 2-methoxybenzoyl thioureas. Future Medicinal Chemistry 2025, 17 (10) , 1119-1129. https://doi.org/10.1080/17568919.2025.2504332
    6. Matilde V. Neto, Michael J. Hall, João Charneca, Cristina Escrevente, Miguel C. Seabra, Duarte C. Barral. Photoprotective Melanin Is Maintained within Keratinocytes in Storage Lysosomes. Journal of Investigative Dermatology 2025, 145 (5) , 1155-1165.e3. https://doi.org/10.1016/j.jid.2024.08.023
    7. Susan Jose, Himanshi Sharma, Janki Insan, Khushboo Sharma, Varun Arora, Sameera Puranapanda, Sonam Dhamija, Nabil Eid, Manoj B. Menon. Kinase Inhibitor-Induced Cell-Type Specific Vacuole Formation in the Absence of Canonical ATG5-Dependent Autophagy Initiation Pathway. Molecular and Cellular Biology 2025, 45 (3) , 99-115. https://doi.org/10.1080/10985549.2025.2454421
    8. Jeremy B. Foote, Tyler E. Mattox, Adam B. Keeton, Xi Chen, Forrest T. Smith, Kristy Berry, Thomas W. Holmes, Junwei Wang, Chung-hui Huang, Antonio Ward, Amit K. Mitra, Veronica Ramirez-Alcantara, Cherlene Hardy, Karianne G. Fleten, Kjersti Flatmark, Karina J. Yoon, Sujith Sarvesh, Ganji P. Nagaraju, Dhana Sekhar Reddy Bandi, Yulia Y. Maxuitenko, Jacob Valiyaveettil, Julienne L. Carstens, Donald J. Buchsbaum, Jennifer Yang, Gang Zhou, Elmar Nurmemmedov, Ivan Babic, Vadim Gaponeko, Hazem Abdelkarim, Michael R. Boyd, Greg Gorman, Upender Manne, Sejong Bae, Bassel F. El-Rayes, Gary A. Piazza. A Pan-RAS Inhibitor with a Unique Mechanism of Action Blocks Tumor Growth and Induces Antitumor Immunity in Gastrointestinal Cancer. Cancer Research 2025, 85 (5) , 956-972. https://doi.org/10.1158/0008-5472.CAN-24-0323
    9. Kshitiz Walia, Abhishek Sharma, Sankalita Paul, Priya Chouhan, Gaurav Kumar, Rajesh Ringe, Mahak Sharma, Amit Tuli. SARS-CoV-2 virulence factor ORF3a blocks lysosome function by modulating TBC1D5-dependent Rab7 GTPase cycle. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46417-2
    10. Rahul Tyagi, Bruce A Rosa, Amanda Swain, Maxim N Artyomov, Douglas P Jasmer, Makedonka Mitreva. Intestinal cell diversity and treatment responses in a parasitic nematode at single cell resolution. BMC Genomics 2024, 25 (1) https://doi.org/10.1186/s12864-024-10203-7
    11. Shaina L. Rosenblum, Danielle K. Bailey, Daniel J. Kosman. Calcium and IL-6 regulate the anterograde trafficking and plasma membrane residence of the iron exporter ferroportin to modulate iron efflux. Journal of Biological Chemistry 2024, 300 (6) , 107348. https://doi.org/10.1016/j.jbc.2024.107348
    12. Andreia Ferreira, Pedro Castanheira, Cristina Escrevente, Duarte C. Barral, Teresa Barona. Membrane trafficking alterations in breast cancer progression. Frontiers in Cell and Developmental Biology 2024, 12 https://doi.org/10.3389/fcell.2024.1350097
    13. Micah B. Schott, Cody N. Rozeveld, Saumya Bhatt, Bridget Crossman, Eugene W. Krueger, Shaun G. Weller, Karuna Rasineni, Carol A. Casey, Mark A. McNiven. Ethanol disrupts hepatocellular lipophagy by altering Rab5-centric LD-lysosome trafficking. Hepatology Communications 2024, 8 (6) https://doi.org/10.1097/HC9.0000000000000446
    14. Şule EROL GÜNAL. SYNTHESIS OF 2-FLUOROBENZOYL THIOUREA DERIVATIVES. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 2023, 22 (44) , 417-424. https://doi.org/10.55071/ticaretfbd.1364818
    15. Guowei Yin, Jing Huang, Johnny Petela, Hongmei Jiang, Yuetong Zhang, Siqi Gong, Jiaxin Wu, Bei Liu, Jianyou Shi, Yijun Gao. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduction and Targeted Therapy 2023, 8 (1) https://doi.org/10.1038/s41392-023-01441-4
    16. Marika Runsala, Elina Kuokkanen, Eveliina Uski, Vid Šuštar, Meryem Özge Balci, Johanna Rajala, Vilma Paavola, Pieta K. Mattila. The Small GTPase Rab7 Regulates Antigen Processing in B Cells in a Possible Interplay with Autophagy Machinery. Cells 2023, 12 (21) , 2566. https://doi.org/10.3390/cells12212566
    17. Yanchen Guo, Yang Chen, Qiumei Wang, Zhiyuan Wang, Lang Gong, Yankuo Sun, Zebu Song, Hao Chang, Guihong Zhang, Heng Wang. Emodin and rhapontigenin inhibit the replication of African swine fever virus by interfering with virus entry. Veterinary Microbiology 2023, 284 , 109794. https://doi.org/10.1016/j.vetmic.2023.109794
    18. Yingting Hou, Hongbin He, Ming Ma, Rongbin Zhou. Apilimod activates the NLRP3 inflammasome through lysosome-mediated mitochondrial damage. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1128700
    19. Seonghwi Choi, Hyuntae Kim, Won-Ji Ryu, Kang-Yell Choi, Taegun Kim, Doona Song, Gyoonhee Han. Structural optimization of novel Ras modulator for treatment of Colorectal cancer by promoting β-catenin and Ras degradation. Bioorganic Chemistry 2023, 130 , 106234. https://doi.org/10.1016/j.bioorg.2022.106234
    20. Rolf Marschalek. SARS-CoV-2: The Virus, Its Biology and COVID-19 Disease-Counteracting Possibilities. Frontiers in Bioscience-Landmark 2023, 28 (10) https://doi.org/10.31083/j.fbl2810273
    21. Yingli Gu, Flora Guerra, Mingzheng Hu, Alexander Pope, Kijung Sung, Wanlin Yang, Simone Jetha, Thomas A. Shoff, Tessanya Gunatilake, Owen Dahlkamp, Linda Zhixia Shi, Fiore Manganelli, Maria Nolano, Yue Zhou, Jianqing Ding, Cecilia Bucci, Chengbiao Wu. Mitochondria dysfunction in Charcot Marie Tooth 2B Peripheral Sensory Neuropathy. Communications Biology 2022, 5 (1) https://doi.org/10.1038/s42003-022-03632-1
    22. Debonil Maity, Kaustav Bera, Yizeng Li, Zhuoxu Ge, Qin Ni, Konstantinos Konstantopoulos, Sean X. Sun. Extracellular Hydraulic Resistance Enhances Cell Migration. Advanced Science 2022, 9 (29) https://doi.org/10.1002/advs.202200927
    23. Michele Lai, Alessandro De Carli, Carolina Filipponi, Elena Iacono, Veronica La Rocca, Giulia Lottini, Carmen Rita Piazza, Paola Quaranta, Maria Sidoti, Mauro Pistello, Giulia Freer. Lipid balance remodelling by human positive-strand RNA viruses and the contribution of lysosomes. Antiviral Research 2022, 206 , 105398. https://doi.org/10.1016/j.antiviral.2022.105398
    24. Zih-Bin Hong, Jian-Ming Huang, Chih-Ming Tsai, Wei-Chen Lin. Potential role of Acanthamoeba Rab7. Experimental Parasitology 2022, 239 , 108312. https://doi.org/10.1016/j.exppara.2022.108312
    25. Kate L. Jordan, David J. Koss, Tiago F. Outeiro, Flaviano Giorgini. Therapeutic Targeting of Rab GTPases: Relevance for Alzheimer’s Disease. Biomedicines 2022, 10 (5) , 1141. https://doi.org/10.3390/biomedicines10051141
    26. A. Katherine Hatstat, Baiyi Quan, Morgan A. Bailey, Michael C. Fitzgerald, Michaela C. Reinhart, Dewey G. McCafferty. Chemoproteomic-enabled characterization of small GTPase Rab1a as a target of an N -arylbenzimidazole ligand's rescue of Parkinson's-associated cell toxicity. RSC Chemical Biology 2022, 3 (1) , 96-111. https://doi.org/10.1039/D1CB00103E
    27. Alexander B. Coley, Antonio Ward, Adam B. Keeton, Xi Chen, Yulia Maxuitenko, Aishwarya Prakash, Feng Li, Jeremy B. Foote, Donald J. Buchsbaum, Gary A. Piazza. Pan-RAS inhibitors: Hitting multiple RAS isozymes with one stone. 2022, 131-168. https://doi.org/10.1016/bs.acr.2021.07.009
    28. . Applications of Constrained Helices. 2021, 107-158. https://doi.org/10.1002/9783527343430.ch4
    29. Riddhi Atul Jani, Laura Salavessa, Cédric Delevoye. Par ici la sortie ! Le SARS-CoV-2 utilise les lysosomes pour sortir de la cellule infectée. médecine/sciences 2021, 37 (8-9) , 716-719. https://doi.org/10.1051/medsci/2021100
    30. Cristina Escrevente, Ana S. Falcão, Michael J. Hall, Mafalda Lopes-da-Silva, Pedro Antas, Miguel M. Mesquita, Inês S. Ferreira, M. Helena Cardoso, Daniela Oliveira, Ana C. Fradinho, Thomas Ciossek, Paul Nicklin, Clare E. Futter, Sandra Tenreiro, Miguel C. Seabra. Formation of Lipofuscin-Like Autofluorescent Granules in the Retinal Pigment Epithelium Requires Lysosome Dysfunction. Investigative Opthalmology & Visual Science 2021, 62 (9) , 39. https://doi.org/10.1167/iovs.62.9.39
    31. Rudolph L. Juliano. Chemical Manipulation of the Endosome Trafficking Machinery: Implications for Oligonucleotide Delivery. Biomedicines 2021, 9 (5) , 512. https://doi.org/10.3390/biomedicines9050512
    32. Masaaki Ishii, Gyda Beeson, Craig Beeson, Bärbel Rohrer. Mitochondrial C3a Receptor Activation in Oxidatively Stressed Epithelial Cells Reduces Mitochondrial Respiration and Metabolism. Frontiers in Immunology 2021, 12 https://doi.org/10.3389/fimmu.2021.628062
    33. Sourish Ghosh, Teegan A. Dellibovi-Ragheb, Adeline Kerviel, Eowyn Pak, Qi Qiu, Matthew Fisher, Peter M. Takvorian, Christopher Bleck, Victor W. Hsu, Anthony R. Fehr, Stanley Perlman, Sooraj R. Achar, Marco R. Straus, Gary R. Whittaker, Cornelis A.M. de Haan, John Kehrl, Grégoire Altan-Bonnet, Nihal Altan-Bonnet. β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. Cell 2020, 183 (6) , 1520-1535.e14. https://doi.org/10.1016/j.cell.2020.10.039
    34. Asim Azhar Siddiqui, Debanjan Saha, Mohd Shameel Iqbal, Shubhra Jyoti Saha, Souvik Sarkar, Chinmoy Banerjee, Shiladitya Nag, Somnath Mazumder, Rudranil De, Saikat Pramanik, Subhashis Debsharma, Uday Bandyopadhyay. Rab7 of Plasmodium falciparum is involved in its retromer complex assembly near the digestive vacuole. Biochimica et Biophysica Acta (BBA) - General Subjects 2020, 1864 (10) , 129656. https://doi.org/10.1016/j.bbagen.2020.129656
    35. Cheila Brito, Duarte C. Barral, Marta Pojo. Subversion of Ras Small GTPases in Cutaneous Melanoma Aggressiveness. Frontiers in Cell and Developmental Biology 2020, 8 https://doi.org/10.3389/fcell.2020.575223
    36. Natalia R. Roque, Silvia L. Lage, Roberta Navarro, Narayana Fazolini, Clarissa M. Maya-Monteiro, Jens Rietdorf, Rossana C.N. Melo, Heloisa D'Avila, Patricia T. Bozza. Rab7 controls lipid droplet-phagosome association during mycobacterial infection. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2020, 1865 (8) , 158703. https://doi.org/10.1016/j.bbalip.2020.158703
    37. Douglas P. Jasmer, Bruce A. Rosa, Rahul Tyagi, Christina A. Bulman, Brenda Beerntsen, Joseph F. Urban, Judy Sakanari, Makedonka Mitreva, . De novo identification of toxicants that cause irreparable damage to parasitic nematode intestinal cells. PLOS Neglected Tropical Diseases 2020, 14 (5) , e0007942. https://doi.org/10.1371/journal.pntd.0007942
    38. Hui Yan, Maria Fernandez, Jingwei Wang, Shuai Wu, Rui Wang, Zheng Lou, Justin B Moroney, Carlos E Rivera, Julia R Taylor, Huoqun Gan, Hong Zan, Dmytro Kovalskyy, Dongfang Liu, Paolo Casali, Zhenming Xu. B Cell Endosomal RAB7 Promotes TRAF6 K63 Polyubiquitination and NF-κB Activation for Antibody Class-Switching. The Journal of Immunology 2020, 204 (5) , 1146-1157. https://doi.org/10.4049/jimmunol.1901170
    39. Asimina Pantazi, Andrea Quintanilla, Priya Hari, Nuria Tarrats, Eleftheria Parasyraki, Flora L. Dix, Jaiyogesh Patel, Tamir Chandra, Juan Carlos Acosta, Andrew J. Finch. Inhibition of the 60S ribosome biogenesis GTPase LSG1 causes endoplasmic reticular disruption and cellular senescence. Aging Cell 2019, 18 (4) https://doi.org/10.1111/acel.12981
    40. Daun Jeon, Seung-Woo Kim, Hong Seok Kim. Platycodin D, a bioactive component of Platycodon grandiflorum , induces cancer cell death associated with extreme vacuolation. Animal Cells and Systems 2019, 23 (2) , 118-127. https://doi.org/10.1080/19768354.2019.1588163
    41. Brian D. Carey, Allison Bakovic, Victoria Callahan, Aarthi Narayanan, Kylene Kehn-Hall. New World alphavirus protein interactomes from a therapeutic perspective. Antiviral Research 2019, 163 , 125-139. https://doi.org/10.1016/j.antiviral.2019.01.015
    42. Kyung Hwa Cho, Hoi Young Lee. Rab25 and RCP in cancer progression. Archives of Pharmacal Research 2019, 42 (2) , 101-112. https://doi.org/10.1007/s12272-019-01129-w
    43. Fabian Elgner, Eberhard Hildt, Daniela Bender. Relevance of Rab Proteins for the Life Cycle of Hepatitis C Virus. Frontiers in Cell and Developmental Biology 2018, 6 https://doi.org/10.3389/fcell.2018.00166
    44. Samet Poyraz, Necmiye Canacankatan, Samet Belveren, Derya Yetkin, Kezban Kibar, Mahmut Ülger, José M. Sansano, Nefise Dilek Özcelik, Ş. Necat Yılmaz, H. Ali Döndaş. Study of the anti(myco)bacterial and antitumor activities of prolinate and N-amidocarbothiolprolinate derivatives based on fused tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione, bearing an indole ring. Monatshefte für Chemie - Chemical Monthly 2018, 149 (12) , 2253-2263. https://doi.org/10.1007/s00706-018-2286-8
    45. Ammu Prasanna Kumar, Suryani Lukman, . Allosteric binding sites in Rab11 for potential drug candidates. PLOS ONE 2018, 13 (6) , e0198632. https://doi.org/10.1371/journal.pone.0198632
    46. Shuyan Wang, Xiaohai Shi, Shuang Wei, Ding Ma, Olutobi Oyinlade, Sheng-Qing Lv, Mingyao Ying, Yu Alex Zhang, Steven Michael Claypool, Paul Watkins, Shuli Xia. Krüppel-like factor 4 (KLF4) induces mitochondrial fusion and increases spare respiratory capacity of human glioblastoma cells. Journal of Biological Chemistry 2018, 293 (17) , 6544-6555. https://doi.org/10.1074/jbc.RA117.001323
    47. Peter Simons, Virginie Bondu, Angela Wandinger-Ness, Tione Buranda. Small-Volume Flow Cytometry-Based Multiplex Analysis of the Activity of Small GTPases. 2018, 177-195. https://doi.org/10.1007/978-1-4939-8612-5_13
    48. Ryan J. Schulze, Karuna Rasineni, Shaun G. Weller, Micah B. Schott, Barbara Schroeder, Carol A. Casey, Mark A. McNiven. Ethanol exposure inhibits hepatocyte lipophagy by inactivating the small guanosine triphosphatase Rab7. Hepatology Communications 2017, 1 (2) , 140-152. https://doi.org/10.1002/hep4.1021
    49. J.C. Hunter, N.S. Gray, K.D. Westover. GTP-Competitive Inhibitors of RAS Family Members. 2017, 155-174. https://doi.org/10.1016/B978-0-12-803505-4.00009-6
    50. Tonika Lam, Dennis V Kulp, Rui Wang, Zheng Lou, Julia Taylor, Carlos E Rivera, Hui Yan, Qi Zhang, Zhonghua Wang, Hong Zan, Dmitri N Ivanov, Guangming Zhong, Paolo Casali, Zhenming Xu. Small Molecule Inhibition of Rab7 Impairs B Cell Class Switching and Plasma Cell Survival To Dampen the Autoantibody Response in Murine Lupus. The Journal of Immunology 2016, 197 (10) , 3792-3805. https://doi.org/10.4049/jimmunol.1601427
    51. Philipp M. Cromm, Sebastian Schaubach, Jochen Spiegel, Alois Fürstner, Tom N. Grossmann, Herbert Waldmann. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms11300
    52. Belén Fernández, Elena Fdez, Patricia Gómez-Suaga, Fernando Gil, Isabel Molina-Villalba, Isidro Ferrer, Sandip Patel, Grant C. Churchill, Sabine Hilfiker. Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy 2016, 12 (9) , 1487-1506. https://doi.org/10.1080/15548627.2016.1190072
    53. Elizabeth M. Selwan, Brendan T. Finicle, Seong M. Kim, Aimee L. Edinger. Attacking the supply wagons to starve cancer cells to death. FEBS Letters 2016, 590 (7) , 885-907. https://doi.org/10.1002/1873-3468.12121
    54. Tudor I. Oprea, Larry A. Sklar, Jacob O. Agola, Yuna Guo, Melina Silberberg, Joshua Roxby, Anna Vestling, Elsa Romero, Zurab Surviladze, Cristina Murray-Krezan, Anna Waller, Oleg Ursu, Laurie G. Hudson, Angela Wandinger-Ness, . Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLOS ONE 2015, 10 (11) , e0142182. https://doi.org/10.1371/journal.pone.0142182
    55. Philipp M. Cromm, Jochen Spiegel, Tom N. Grossmann, Herbert Waldmann. Direkte Modulation von Aktivität und Funktion kleiner GTPasen. Angewandte Chemie 2015, 127 (46) , 13718-13741. https://doi.org/10.1002/ange.201504357
    56. Philipp M. Cromm, Jochen Spiegel, Tom N. Grossmann, Herbert Waldmann. Direct Modulation of Small GTPase Activity and Function. Angewandte Chemie International Edition 2015, 54 (46) , 13516-13537. https://doi.org/10.1002/anie.201504357
    57. Zheng Lou, Paolo Casali, Zhenming Xu. Regulation of B Cell Differentiation by Intracellular Membrane-Associated Proteins and microRNAs: Role in the Antibody Response. Frontiers in Immunology 2015, 6 https://doi.org/10.3389/fimmu.2015.00537
    58. Yuna Guo, S. Ray Kenney, Carolyn Y. Muller, Sarah Adams, Teresa Rutledge, Elsa Romero, Cristina Murray-Krezan, Rytis Prekeris, Larry A. Sklar, Laurie G. Hudson, Angela Wandinger-Ness. R-Ketorolac Targets Cdc42 and Rac1 and Alters Ovarian Cancer Cell Behaviors Critical for Invasion and Metastasis. Molecular Cancer Therapeutics 2015, 14 (10) , 2215-2227. https://doi.org/10.1158/1535-7163.MCT-15-0419
    59. Hyun-Jeong Eom, Carlos P. Roca, Ji-Yeon Roh, Nivedita Chatterjee, Jae-Seong Jeong, Ilseob Shim, Hyun-Mi Kim, Phil-Je Kim, Kyunghee Choi, Francesc Giralt, Jinhee Choi. A systems toxicology approach on the mechanism of uptake and toxicity of MWCNT in Caenorhabditis elegans. Chemico-Biological Interactions 2015, 239 , 153-163. https://doi.org/10.1016/j.cbi.2015.06.031
    60. Lin Hong, Yuna Guo, Soumik BasuRay, Jacob O. Agola, Elsa Romero, Denise S. Simpson, Chad E. Schroeder, Peter Simons, Anna Waller, Matthew Garcia, Mark Carter, Oleg Ursu, Kristine Gouveia, Jennifer E. Golden, Jeffrey Aubé, Angela Wandinger-Ness, Larry A. Sklar, . A Pan-GTPase Inhibitor as a Molecular Probe. PLOS ONE 2015, 10 (8) , e0134317. https://doi.org/10.1371/journal.pone.0134317
    61. Barbara Schroeder, Ryan J. Schulze, Shaun G. Weller, Arthur C. Sletten, Carol A. Casey, Mark A. McNiven. The small GTPase Rab7 as a central regulator of hepatocellular lipophagy. Hepatology 2015, 61 (6) , 1896-1907. https://doi.org/10.1002/hep.27667
    62. Jacob O. Agola, Daniel Sivalingam, Daniel F. Cimino, Peter C. Simons, Tione Buranda, Larry A. Sklar, Angela Wandinger-Ness. Quantitative Bead-Based Flow Cytometry for Assaying Rab7 GTPase Interaction with the Rab-Interacting Lysosomal Protein (RILP) Effector Protein. 2015, 331-354. https://doi.org/10.1007/978-1-4939-2569-8_28
    63. Yaping Lin-Moshier, Michael V. Keebler, Robert Hooper, Michael J. Boulware, Xiaolong Liu, Dev Churamani, Mary E. Abood, Timothy F. Walseth, Eugen Brailoiu, Sandip Patel, Jonathan S. Marchant. The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation. Proceedings of the National Academy of Sciences 2014, 111 (36) , 13087-13092. https://doi.org/10.1073/pnas.1407004111
    64. Jerry C. H. Tam, Susanna R. Bidgood, William A. McEwan, Leo C. James. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 2014, 345 (6201) https://doi.org/10.1126/science.1256070
    65. Ryan D. Mills, Terrence D. Mulhern, Fei Liu, Janetta G. Culvenor, Heung-Chin Cheng. Prediction of the Repeat Domain Structures and Impact of Parkinsonism-Associated Variations on Structure and Function of all Functional Domains of Leucine-Rich Repeat Kinase 2 (LRRK2). Human Mutation 2014, 35 (4) , 395-412. https://doi.org/10.1002/humu.22515
    66. Leanne N. Hockey, Bethan S. Kilpatrick, Emily R. Eden, Yaping Lin-Moshier, G. Cristina Brailoiu, Eugen Brailoiu, Clare E. Futter, Anthony H. Schapira, Jonathan S. Marchant, Sandip Patel. Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by two-pore channel 2 inhibition. Journal of Cell Science 2014, 7 https://doi.org/10.1242/jcs.164152
    67. Tione Buranda, Soumik BasuRay, Scarlett Swanson, Jacob Agola, Virginie Bondu, Angela Wandinger-Ness. Rapid parallel flow cytometry assays of active GTPases using effector beads. Analytical Biochemistry 2013, 442 (2) , 149-157. https://doi.org/10.1016/j.ab.2013.07.039
    68. İrfan Koca, Aykut Özgür, Kübra Açikalin Coşkun, Yusuf Tutar. Synthesis and anticancer activity of acyl thioureas bearing pyrazole moiety. Bioorganic & Medicinal Chemistry 2013, 21 (13) , 3859-3865. https://doi.org/10.1016/j.bmc.2013.04.021
    69. Juha M.T. Hyttinen, Minna Niittykoski, Antero Salminen, Kai Kaarniranta. Maturation of autophagosomes and endosomes: A key role for Rab7. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2013, 1833 (3) , 503-510. https://doi.org/10.1016/j.bbamcr.2012.11.018
    70. Y. Olguín, P. Villalobos, L. G. Carrascosa, M. Young, E. Valdez, L. Lechuga, R. Galindo. Detection of flagellin by interaction with human recombinant TLR5 immobilized in liposomes. Analytical and Bioanalytical Chemistry 2013, 405 (4) , 1267-1281. https://doi.org/10.1007/s00216-012-6523-4
    71. Cecilia Bucci, Maria De Luca. Molecular basis of Charcot–Marie–Tooth type 2B disease. Biochemical Society Transactions 2012, 40 (6) , 1368-1372. https://doi.org/10.1042/BST20120197

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2012, 7, 6, 1095–1108
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cb3001099
    Published April 9, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    3276

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.