ACS Publications. Most Trusted. Most Cited. Most Read
Metabolic Footprinting of Mutant Libraries to Map Metabolite Utilization to Genotype
My Activity
    Articles

    Metabolic Footprinting of Mutant Libraries to Map Metabolite Utilization to Genotype
    Click to copy article linkArticle link copied!

    View Author Information
    Life Sciences Division and Physical Biosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, United States
    Other Access OptionsSupporting Information (2)

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2013, 8, 1, 189–199
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cb300477w
    Published October 19, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The discrepancy between the pace of sequencing and functional characterization of genomes is a major challenge in understanding complex microbial metabolic processes and metabolic interactions in the environment. Here, we identified and validated genes related to the utilization of specific metabolites in bacteria by profiling metabolite utilization in libraries of mutant strains. Untargeted mass spectrometry based metabolomics was used to identify metabolites utilized by Escherichia coli and Shewanella oneidensis MR-1. Targeted high-throughput metabolite profiling of spent media of 8042 individual mutant strains was performed to link utilization to specific genes. Using this approach we identified genes of known function as well as novel transport proteins and enzymes required for the utilization of tested metabolites. Specific examples include two subunits of a predicted ABC transporter encoded by the genes SO1043 and SO1044 required for the utilization of citrulline and a predicted histidase encoded by the gene SO3057 required for the utilization of ergothioneine by S. oneidensis. In vitro assays with purified proteins showed substrate specificity of SO3057 toward ergothioneine and histidine betaine in contrast to substrate specificity of a paralogous histidase SO0098 toward histidine. This generally applicable, high-throughput workflow has the potential both to discover novel metabolic capabilities of microorganisms and to identify the corresponding genes.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    This material is free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 27 publications.

    1. Suzanne M. Kosina, Megan A. Danielewicz, Mujahid Mohammed, Jayashree Ray, Yumi Suh, Suzan Yilmaz, Anup K. Singh, Adam P. Arkin, Adam M. Deutschbauer, and Trent R. Northen . Exometabolomics Assisted Design and Validation of Synthetic Obligate Mutualism. ACS Synthetic Biology 2016, 5 (7) , 569-576. https://doi.org/10.1021/acssynbio.5b00236
    2. Julijana Ivanisevic, Zheng-Jiang Zhu, Lars Plate, Ralf Tautenhahn, Stephen Chen, Peter J. O’Brien, Caroline H. Johnson, Michael A. Marletta, Gary J. Patti, and Gary Siuzdak . Toward ‘Omic Scale Metabolite Profiling: A Dual Separation–Mass Spectrometry Approach for Coverage of Lipid and Central Carbon Metabolism. Analytical Chemistry 2013, 85 (14) , 6876-6884. https://doi.org/10.1021/ac401140h
    3. Konrad Herbst, Taiyao Wang, Elena J. Forchielli, Meghan Thommes, Ioannis Ch. Paschalidis, Daniel Segrè. Multi-Attribute Subset Selection enables prediction of representative phenotypes across microbial populations. Communications Biology 2024, 7 (1) https://doi.org/10.1038/s42003-024-06093-w
    4. Sudeshna Bhattacharjya, Avijit Ghosh, Asha Sahu, Richa Agnihotri, Namrata Pal, Poonam Sharma, M.C. Manna, M.P. Sharma, A.B. Singh. Utilizing soil metabolomics to investigate the untapped metabolic potential of soil microbial communities and their role in driving soil ecosystem processes: A review. Applied Soil Ecology 2024, 195 , 105238. https://doi.org/10.1016/j.apsoil.2023.105238
    5. Pieter M. M. van der Velden, Robert S. Jansen. Microbial Metabolomics: An Overview of Applications. 2023, 165-208. https://doi.org/10.1007/978-3-031-39094-4_6
    6. Karin Ortmayr, Roberto de la Cruz Moreno, Mattia Zampieri. Expanding the search for small-molecule antibacterials by multidimensional profiling. Nature Chemical Biology 2022, 18 (6) , 584-595. https://doi.org/10.1038/s41589-022-01040-4
    7. Suzanne M. Kosina, Peter Rademacher, Kelly M. Wetmore, Markus de Raad, Marcin Zemla, Grant M. Zane, Jennifer J. Zulovich, Romy Chakraborty, Benjamin P. Bowen, Judy D. Wall, Manfred Auer, Adam P. Arkin, Adam M. Deutschbauer, Trent R. Northen. Biofilm Interaction Mapping and Analysis (BIMA) of Interspecific Interactions in Pseudomonas Co-culture Biofilms. Frontiers in Microbiology 2021, 12 https://doi.org/10.3389/fmicb.2021.757856
    8. Irina Borodina, Louise C. Kenny, Cathal M. McCarthy, Kalaivani Paramasivan, Etheresia Pretorius, Timothy J. Roberts, Steven A. van der Hoek, Douglas B. Kell. The biology of ergothioneine, an antioxidant nutraceutical. Nutrition Research Reviews 2020, 33 (2) , 190-217. https://doi.org/10.1017/S0954422419000301
    9. Aike Jeucken, Martijn R. Molenaar, Chris H.A. van de Lest, Jeroen W.A. Jansen, J. Bernd Helms, Jos F. Brouwers. A Comprehensive Functional Characterization of Escherichia coli Lipid Genes. Cell Reports 2019, 27 (5) , 1597-1606.e2. https://doi.org/10.1016/j.celrep.2019.04.018
    10. Morgan N. Price, Jayashree Ray, Anthony T. Iavarone, Hans K. Carlson, Elizabeth M. Ryan, Rex R. Malmstrom, Adam P. Arkin, Adam M. Deutschbauer, . Oxidative Pathways of Deoxyribose and Deoxyribonate Catabolism. mSystems 2019, 4 (1) https://doi.org/10.1128/mSystems.00297-18
    11. Morgan N. Price, Jayashree Ray, Anthony T. Iavarone, Hans K. Carlson, Elizabeth M. Ryan, Rex R. Malmstrom, Adam P. Arkin, Adam M. Deutschbauer, . Oxidative Pathways of Deoxyribose and Deoxyribonate Catabolism. mSystems 2019, 4 (1) https://doi.org/10.1128/msystems.00297-18
    12. Tami L. Swenson, Ulas Karaoz, Joel M. Swenson, Benjamin P. Bowen, Trent R. Northen. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-017-02356-9
    13. Suzanne M. Kosina, Annette M. Greiner, Rebecca K. Lau, Stefan Jenkins, Richard Baran, Benjamin P. Bowen, Trent R. Northen. Web of microbes (WoM): a curated microbial exometabolomics database for linking chemistry and microbes. BMC Microbiology 2018, 18 (1) https://doi.org/10.1186/s12866-018-1256-y
    14. Stefan Jenkins, Tami L. Swenson, Rebecca Lau, Andrea M. Rocha, Alex Aaring, Terry C. Hazen, Romy Chakraborty, Trent R. Northen. Construction of Viable Soil Defined Media Using Quantitative Metabolomics Analysis of Soil Metabolites. Frontiers in Microbiology 2017, 8 https://doi.org/10.3389/fmicb.2017.02618
    15. Mattia Zampieri, Karthik Sekar, Nicola Zamboni, Uwe Sauer. Frontiers of high-throughput metabolomics. Current Opinion in Chemical Biology 2017, 36 , 15-23. https://doi.org/10.1016/j.cbpa.2016.12.006
    16. Martin J. Blaser, Zoe G. Cardon, Mildred K. Cho, Jeffrey L. Dangl, Timothy J. Donohue, Jessica L. Green, Rob Knight, Mary E. Maxon, Trent R. Northen, Katherine S. Pollard, Eoin L. Brodie. Toward a Predictive Understanding of Earth’s Microbiomes to Address 21st Century Challenges. mBio 2016, 7 (3) https://doi.org/10.1128/mBio.00714-16
    17. Markus de Raad, Curt R Fischer, Trent R Northen. High-throughput platforms for metabolomics. Current Opinion in Chemical Biology 2016, 30 , 7-13. https://doi.org/10.1016/j.cbpa.2015.10.012
    18. Richard Baran, Eoin L. Brodie, Jazmine Mayberry-Lewis, Eric Hummel, Ulisses Nunes Da Rocha, Romy Chakraborty, Benjamin P. Bowen, Ulas Karaoz, Hinsby Cadillo-Quiroz, Ferran Garcia-Pichel, Trent R. Northen. Exometabolite niche partitioning among sympatric soil bacteria. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms9289
    19. Daniel C Sévin, Andreas Kuehne, Nicola Zamboni, Uwe Sauer. Biological insights through nontargeted metabolomics. Current Opinion in Biotechnology 2015, 34 , 1-8. https://doi.org/10.1016/j.copbio.2014.10.001
    20. Leslie P Silva, Trent R Northen. Exometabolomics and MSI: deconstructing how cells interact to transform their small molecule environment. Current Opinion in Biotechnology 2015, 34 , 209-216. https://doi.org/10.1016/j.copbio.2015.03.015
    21. Adam Deutschbauer, Morgan N. Price, Kelly M. Wetmore, Daniel R. Tarjan, Zhuchen Xu, Wenjun Shao, Dacia Leon, Adam P. Arkin, Jeffrey M. Skerker. Towards an Informative Mutant Phenotype for Every Bacterial Gene. Journal of Bacteriology 2014, 196 (20) , 3643-3655. https://doi.org/10.1128/JB.01836-14
    22. Hong Yang, Elias W. Krumholz, Evan D. Brutinel, Nagendra P. Palani, Michael J. Sadowsky, Andrew M. Odlyzko, Jeffrey A. Gralnick, Igor G. L. Libourel, . Genome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis. PLoS Computational Biology 2014, 10 (9) , e1003848. https://doi.org/10.1371/journal.pcbi.1003848
    23. Daniel Medina-Cleghorn, Daniel K. Nomura. Exploring Metabolic Pathways and Regulation through Functional Chemoproteomic and Metabolomic Platforms. Chemistry & Biology 2014, 21 (9) , 1171-1184. https://doi.org/10.1016/j.chembiol.2014.07.007
    24. Gareth A Prosser, Gerald Larrouy‐Maumus, Luiz Pedro S de Carvalho. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways. EMBO reports 2014, 15 (6) , 657-669. https://doi.org/10.15252/embr.201338283
    25. Jonathan Monk, Juan Nogales, Bernhard O Palsson. Optimizing genome-scale network reconstructions. Nature Biotechnology 2014, 32 (5) , 447-452. https://doi.org/10.1038/nbt.2870
    26. Richard Baran, Natalia Ivanova, Nick Jose, Ferran Garcia-Pichel, Nikos Kyrpides, Muriel Gugger, Trent Northen. Functional Genomics of Novel Secondary Metabolites from Diverse Cyanobacteria Using Untargeted Metabolomics. Marine Drugs 2013, 11 (10) , 3617-3631. https://doi.org/10.3390/md11103617
    27. Victor Chubukov, Markus Uhr, Ludovic Le Chat, Roelco J Kleijn, Matthieu Jules, Hannes Link, Stephane Aymerich, Jörg Stelling, Uwe Sauer. Transcriptional regulation is insufficient to explain substrate‐induced flux changes in Bacillus subtilis. Molecular Systems Biology 2013, 9 (1) https://doi.org/10.1038/msb.2013.66

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2013, 8, 1, 189–199
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cb300477w
    Published October 19, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    1797

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.