Change in Heat Capacity for Enzyme Catalysis Determines Temperature Dependence of Enzyme Catalyzed Rates
- Joanne K. Hobbs ,
- Wanting Jiao ,
- Ashley D. Easter ,
- Emily J. Parker ,
- Louis A. Schipper , and
- Vickery L. Arcus
Abstract

The increase in enzymatic rates with temperature up to an optimum temperature (Topt) is widely attributed to classical Arrhenius behavior, with the decrease in enzymatic rates above Topt ascribed to protein denaturation and/or aggregation. This account persists despite many investigators noting that denaturation is insufficient to explain the decline in enzymatic rates above Topt. Here we show that it is the change in heat capacity associated with enzyme catalysis (ΔC‡p) and its effect on the temperature dependence of ΔG‡ that determines the temperature dependence of enzyme activity. Through mutagenesis, we demonstrate that the Topt of an enzyme is correlated with ΔC‡p and that changes to ΔC‡p are sufficient to change Topt without affecting the catalytic rate. Furthermore, using X-ray crystallography and molecular dynamics simulations we reveal the molecular details underpinning these changes in ΔC‡p. The influence of ΔC‡p on enzymatic rates has implications for the temperature dependence of biological rates from enzymes to ecosystems.
Cited By
This article is cited by 70 publications.
- Johan Åqvist, Jaka Sočan, Miha Purg. Hidden Conformational States and Strange Temperature Optima in Enzyme Catalysis. Biochemistry 2020, 59 (40) , 3844-3855. https://doi.org/10.1021/acs.biochem.0c00705
- Erica J. Prentice, Joanna Hicks, Hendrik Ballerstedt, Lars M. Blank, Liyı̌n L. Liáng, Louis A. Schipper, Vickery L. Arcus. The Inflection Point Hypothesis: The Relationship between the Temperature Dependence of Enzyme-Catalyzed Reaction Rates and Microbial Growth Rates. Biochemistry 2020, 59 (38) , 3562-3569. https://doi.org/10.1021/acs.biochem.0c00530
- Harmen B. B. Steele, Margaret M. Elmer-Dixon, James T. Rogan, J. B. Alexander Ross, Bruce E. Bowler. The Human Cytochrome c Domain-Swapped Dimer Facilitates Tight Regulation of Intrinsic Apoptosis. Biochemistry 2020, 59 (22) , 2055-2068. https://doi.org/10.1021/acs.biochem.0c00326
- Ana-Nicoleta Bondar, M. Joanne Lemieux. Reactions at Biomembrane Interfaces. Chemical Reviews 2019, 119 (9) , 6162-6183. https://doi.org/10.1021/acs.chemrev.8b00596
- Hannah B. L. Jones, Rory M. Crean, Anna Mullen, Emanuele G. Kendrick, Steven D. Bull, Stephen A. Wells, David R. Carbery, Fraser MacMillan, Marc W. van der Kamp, Christopher R. Pudney. Exposing the Interplay Between Enzyme Turnover, Protein Dynamics, and the Membrane Environment in Monoamine Oxidase B. Biochemistry 2019, 58 (18) , 2362-2372. https://doi.org/10.1021/acs.biochem.9b00213
- Teresa F. G. Machado, Tracey M. Gloster, Rafael G. da Silva. Linear Eyring Plots Conceal a Change in the Rate-Limiting Step in an Enzyme Reaction. Biochemistry 2018, 57 (49) , 6757-6761. https://doi.org/10.1021/acs.biochem.8b01099
- Vern L. Schramm. Enzymatic Transition States and Drug Design. Chemical Reviews 2018, 118 (22) , 11194-11258. https://doi.org/10.1021/acs.chemrev.8b00369
- Dan Davidi, Liam M. Longo, Jagoda Jabłońska, Ron Milo, Dan S. Tawfik. A Bird’s-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations. Chemical Reviews 2018, 118 (18) , 8786-8797. https://doi.org/10.1021/acs.chemrev.8b00039
- Hannah B. L. Jones, Rory M. Crean, Christopher Matthews, Anna B. Troya, Michael J. Danson, Steven D. Bull, Vickery L. Arcus, Marc W. van der Kamp, Christopher R. Pudney. Uncovering the Relationship between the Change in Heat Capacity for Enzyme Catalysis and Vibrational Frequency through Isotope Effect Studies. ACS Catalysis 2018, 8 (6) , 5340-5349. https://doi.org/10.1021/acscatal.8b01025
- Manuel Delgado, Stefan Görlich, James E. Longbotham, Nigel S. Scrutton, Sam Hay, Vicent Moliner, and Iñaki Tuñón . Convergence of Theory and Experiment on the Role of Preorganization, Quantum Tunneling, and Enzyme Motions into Flavoenzyme-Catalyzed Hydride Transfer. ACS Catalysis 2017, 7 (5) , 3190-3198. https://doi.org/10.1021/acscatal.7b00201
- Ross S. Firestone, Scott A. Cameron, Jerome M. Karp, Vickery L. Arcus, and Vern L. Schramm . Heat Capacity Changes for Transition-State Analogue Binding and Catalysis with Human 5′-Methylthioadenosine Phosphorylase. ACS Chemical Biology 2017, 12 (2) , 464-473. https://doi.org/10.1021/acschembio.6b00885
- James E. Longbotham, Samantha J. O. Hardman, Stefan Görlich, Nigel S. Scrutton, and Sam Hay . Untangling Heavy Protein and Cofactor Isotope Effects on Enzyme-Catalyzed Hydride Transfer. Journal of the American Chemical Society 2016, 138 (41) , 13693-13699. https://doi.org/10.1021/jacs.6b07852
- Ulrike Breitinger, Heinrich Sticht, and Hans-Georg Breitinger . Modulation of Recombinant Human α1 Glycine Receptors by Mono- and Disaccharides: A Kinetic Study. ACS Chemical Neuroscience 2016, 7 (8) , 1077-1087. https://doi.org/10.1021/acschemneuro.6b00044
- Vickery L. Arcus, Erica J. Prentice, Joanne K. Hobbs, Adrian J. Mulholland, Marc W. Van der Kamp, Christopher R. Pudney, Emily J. Parker, and Louis A. Schipper . On the Temperature Dependence of Enzyme-Catalyzed Rates. Biochemistry 2016, 55 (12) , 1681-1688. https://doi.org/10.1021/acs.biochem.5b01094
- Jaka Sočan, Miha Purg, Johan Åqvist. Computer simulations explain the anomalous temperature optimum in a cold-adapted enzyme. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16341-2
- Bridget K. Murphy, Joseph R. Stinziano. A derivation error that affects carbon balance models exists in the current implementation of the modified Arrhenius function. New Phytologist 2020, 123 https://doi.org/10.1111/nph.16883
- Zhongkui Luo, Zuoxin Tang, Xiaowei Guo, Jiang Jiang, Osbert Jianxin Sun. Non-monotonic and distinct temperature responses of respiration of soil microbial functional groups. Soil Biology and Biochemistry 2020, 148 , 107902. https://doi.org/10.1016/j.soilbio.2020.107902
- Jasmine M. Robinson, Shaun L. L. Barker, Vickery L. Arcus, Samuel R. McNally, Louis A. Schipper. Contrasting temperature responses of soil respiration derived from soil organic matter and added plant litter. Biogeochemistry 2020, 150 (1) , 45-59. https://doi.org/10.1007/s10533-020-00686-3
- Takatsugu Miyazaki, Enoch Y. Park. Structure–function analysis of silkworm sucrose hydrolase uncovers the mechanism of substrate specificity in GH13 subfamily 17 exo -α-glucosidases. Journal of Biological Chemistry 2020, 295 (26) , 8784-8797. https://doi.org/10.1074/jbc.RA120.013595
- Charlotte J. Alster, Joseph C. Fischer, Steven D. Allison, Kathleen K. Treseder. Embracing a new paradigm for temperature sensitivity of soil microbes. Global Change Biology 2020, 26 (6) , 3221-3229. https://doi.org/10.1111/gcb.15053
- Fan Zhang, Shuai You, Ting Huang, Jin-Zheng Wang, Lin-Lin Zhu, Bo Wang, Wang-Sheng Ye, Richard Ansah Herman, Heng Luo, Jun Wang. Dual promoter strategy enhances co-expression of α-L-rhamnosidase and enhanced fluorescent protein for whole-cell catalysis and bioresource valorization. Science of The Total Environment 2020, 722 , 137865. https://doi.org/10.1016/j.scitotenv.2020.137865
- Vickery L. Arcus, Adrian J. Mulholland. Temperature, Dynamics, and Enzyme-Catalyzed Reaction Rates. Annual Review of Biophysics 2020, 49 (1) , 163-180. https://doi.org/10.1146/annurev-biophys-121219-081520
- Jörg Kruse, Tarryn Turnbull, Heinz Rennenberg, Mark A. Adams. Plasticity of Leaf Respiratory and Photosynthetic Traits in Eucalyptus grandis and E. regnans Grown Under Variable Light and Nitrogen Availability. Frontiers in Forests and Global Change 2020, 3 https://doi.org/10.3389/ffgc.2020.00005
- Linus O. Johannissen, Andreea I. Iorgu, Nigel S. Scrutton, Sam Hay. What are the signatures of tunnelling in enzyme-catalysed reactions?. Faraday Discussions 2020, 221 , 367-378. https://doi.org/10.1039/C9FD00044E
- Zixing Dong, Cunduo Tang, Yunfeng Lu, Lunguang Yao, Yunchao Kan. Microbial Oligo‐α‐1,6‐Glucosidase: Current Developments and Future Perspectives. Starch - Stärke 2020, 72 (1-2) , 1900172. https://doi.org/10.1002/star.201900172
- Philipp Noll, Lars Lilge, Rudolf Hausmann, Marius Henkel. Modeling and Exploiting Microbial Temperature Response. Processes 2020, 8 (1) , 121. https://doi.org/10.3390/pr8010121
- Rodney T. Venterea, Jeffrey A. Coulter, Timothy J. Clough. Nitrite accumulation and nitrogen gas production increase with decreasing temperature in urea-amended soils: Experiments and modeling. Soil Biology and Biochemistry 2020, , 107727. https://doi.org/10.1016/j.soilbio.2020.107727
- Joshua T Atkinson, Alicia M Jones, Vikas Nanda, Jonathan J Silberg. Protein tolerance to random circular permutation correlates with thermostability and local energetics of residue-residue contacts. Protein Engineering, Design and Selection 2019, 32 (11) , 489-501. https://doi.org/10.1093/protein/gzaa012
- Louis A. Schipper, Olivia J. Petrie, Tanya A. O’Neill, Paul L. Mudge, Liyin L. Liáng, Jasmine M. Robinson, Vickery L. Arcus. Shifts in temperature response of soil respiration between adjacent irrigated and non-irrigated grazed pastures. Agriculture, Ecosystems & Environment 2019, 285 , 106620. https://doi.org/10.1016/j.agee.2019.106620
- Hussnain Mukhtar, Yu-Pin Lin, Chiao-Ming Lin, Yann-Rong Lin. Relative Abundance of Ammonia Oxidizing Archaea and Bacteria Influences Soil Nitrification Responses to Temperature. Microorganisms 2019, 7 (11) , 526. https://doi.org/10.3390/microorganisms7110526
- Hussnain Mukhtar, Yu-Pin Lin, Chiao-Ming Lin, Joy R. Petway. Assessing thermodynamic parameter sensitivity for simulating temperature responses of soil nitrification. Environmental Science: Processes & Impacts 2019, 21 (9) , 1596-1608. https://doi.org/10.1039/C9EM00310J
- Yan Zeng, Jianyong Xu, Xiaoping Fu, Ming Tan, Fang Liu, Hongchen Zheng, Hui Song. Effects of different carbohydrate-binding modules on the enzymatic properties of pullulanase. International Journal of Biological Macromolecules 2019, 137 , 973-981. https://doi.org/10.1016/j.ijbiomac.2019.07.054
- Anne E. Taylor, David D. Myrold, Peter J. Bottomley. Temperature affects the kinetics of nitrite oxidation and nitrification coupling in four agricultural soils. Soil Biology and Biochemistry 2019, 136 , 107523. https://doi.org/10.1016/j.soilbio.2019.107523
- Chang‐Tong Zhu, An Gong, Fan Zhang, Yan Xu, Sheng Sheng, Fu‐An Wu, Jun Wang. Enzyme immobilized on the surface geometry pattern of groove‐typed microchannel reactor enhances continuous flow catalysis. Journal of Chemical Technology & Biotechnology 2019, 94 (8) , 2569-2579. https://doi.org/10.1002/jctb.6053
- Xiao-Lan Huang. Iron Oxide Nanoparticles: An Inorganic Phosphatase. 2019,,https://doi.org/10.5772/intechopen.82650
- Albin Nordström, Roger B. Herbert. Identification of the temporal control on nitrate removal rate variability in a denitrifying woodchip bioreactor. Ecological Engineering 2019, 127 , 88-95. https://doi.org/10.1016/j.ecoleng.2018.11.015
- Tien-Hao Chen, Marcos Sotomayor, Venkat Gopalan. Biochemical Studies Provide Insights into the Necessity for Multiple Arabidopsis thaliana Protein-Only RNase P Isoenzymes. Journal of Molecular Biology 2019, 431 (3) , 615-624. https://doi.org/10.1016/j.jmb.2018.11.004
- Lee D. Hansen, Nieves Barros, Mark K. Transtrum, Jose A. Rodríguez-Añón, Jorge Proupín, Verónica Piñeiro, Ander Arias-González, Nahia Gartzia. Effect of extreme temperatures on soil: A calorimetric approach. Thermochimica Acta 2018, 670 , 128-135. https://doi.org/10.1016/j.tca.2018.10.010
- Marc W. van der Kamp, Erica J. Prentice, Kirsty L. Kraakman, Michael Connolly, Adrian J. Mulholland, Vickery L. Arcus. Dynamical origins of heat capacity changes in enzyme-catalysed reactions. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03597-y
- Mark E. Ritchie. Reaction and diffusion thermodynamics explain optimal temperatures of biochemical reactions. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-28833-9
- Mahima Sharma, Ashwitha Lakshmi, Gagan D. Gupta, Vinay Kumar. Mosquito-larvicidal binary toxin receptor protein (Cqm1): crystallization and X-ray crystallographic analysis. Acta Crystallographica Section F Structural Biology Communications 2018, 74 (9) , 571-577. https://doi.org/10.1107/S2053230X18010671
- Charlotte J. Alster, Zachary D. Weller, Joseph C. von Fischer. A meta-analysis of temperature sensitivity as a microbial trait. Global Change Biology 2018, 24 (9) , 4211-4224. https://doi.org/10.1111/gcb.14342
- Steven D. Allison, Adriana L. Romero-Olivares, Ying Lu, John W. Taylor, Kathleen K. Treseder. Temperature sensitivities of extracellular enzyme Vmax and Km across thermal environments. Global Change Biology 2018, 24 (7) , 2884-2897. https://doi.org/10.1111/gcb.14045
- Yuan Liu, Nianpeng He, Xuefa Wen, Li Xu, Xiaomin Sun, Guirui Yu, Liyin Liang, Louis A. Schipper. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry 2018, 121 , 35-42. https://doi.org/10.1016/j.soilbio.2018.02.019
- Jörg Kruse, Heinz Rennenberg, Mark A. Adams. Three physiological parameters capture variation in leaf respiration of Eucalyptus grandis , as elicited by short-term changes in ambient temperature, and differing nitrogen supply. Plant, Cell & Environment 2018, 41 (6) , 1369-1382. https://doi.org/10.1111/pce.13162
- Pengpeng Duan, Zhen Wu, Qianqian Zhang, Changhua Fan, Zhengqin Xiong. Thermodynamic responses of ammonia-oxidizing archaea and bacteria explain N2O production from greenhouse vegetable soils. Soil Biology and Biochemistry 2018, 120 , 37-47. https://doi.org/10.1016/j.soilbio.2018.01.027
- Liyin L. Liang, Vickery L. Arcus, Mary A. Heskel, Odhran S. O'Sullivan, Lasantha K. Weerasinghe, Danielle Creek, John J. G. Egerton, Mark G. Tjoelker, Owen K. Atkin, Louis A. Schipper. Macromolecular rate theory (MMRT) provides a thermodynamics rationale to underpin the convergent temperature response in plant leaf respiration. Global Change Biology 2018, 24 (4) , 1538-1547. https://doi.org/10.1111/gcb.13936
- Xiao-Lan Huang. Hydrolysis of Phosphate Esters Catalyzed by Inorganic Iron Oxide Nanoparticles Acting as Biocatalysts. Astrobiology 2018, 18 (3) , 294-310. https://doi.org/10.1089/ast.2016.1628
- George P. Lisi, Allen A. Currier, J. Patrick Loria. Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation. Frontiers in Molecular Biosciences 2018, 5 https://doi.org/10.3389/fmolb.2018.00004
- Dimitrios - Georgios Kontopoulos, Bernardo García-Carreras, Sofía Sal, Thomas P. Smith, Samraat Pawar. Use and misuse of temperature normalisation in meta-analyses of thermal responses of biological traits. PeerJ 2018, 6 , e4363. https://doi.org/10.7717/peerj.4363
- Etienne Low-Décarie, Tobias G. Boatman, Noah Bennett, Will Passfield, Antonio Gavalás-Olea, Philipp Siegel, Richard J. Geider. Predictions of response to temperature are contingent on model choice and data quality. Ecology and Evolution 2017, 7 (23) , 10467-10481. https://doi.org/10.1002/ece3.3576
- Ghjuvan Micaelu Grimaud, Francis Mairet, Antoine Sciandra, Olivier Bernard. Modeling the temperature effect on the specific growth rate of phytoplankton: a review. Reviews in Environmental Science and Bio/Technology 2017, 16 (4) , 625-645. https://doi.org/10.1007/s11157-017-9443-0
- Mariane Rotta, Luis F. S. M. Timmers, Carlos Sequeiros-Borja, Cristiano V. Bizarro, Osmar N. de Souza, Diogenes S. Santos, Luiz A. Basso. Observed crowding effects on Mycobacterium tuberculosis 2-trans-enoyl-ACP (CoA) reductase enzyme activity are not due to excluded volume only. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-07266-w
- Hannah B. L. Jones, Stephen A Wells, Erica J Prentice, Anthony Kwok, Liyin L Liang, Vickery L Arcus, Christopher R Pudney. A complete thermodynamic analysis of enzyme turnover links the free energy landscape to enzyme catalysis. The FEBS Journal 2017, 284 (17) , 2829-2842. https://doi.org/10.1111/febs.14152
- Laura Silva, Giovanni Vladilo, Patricia M. Schulte, Giuseppe Murante, Antonello Provenzale. From climate models to planetary habitability: temperature constraints for complex life. International Journal of Astrobiology 2017, 16 (3) , 244-265. https://doi.org/10.1017/S1473550416000215
- Johan Åqvist, Geir Villy Isaksen, Bjørn Olav Brandsdal. Computation of enzyme cold adaptation. Nature Reviews Chemistry 2017, 1 (7) https://doi.org/10.1038/s41570-017-0051
- Thomas M. Luhring, John P. DeLong. Scaling from Metabolism to Population Growth Rate to Understand How Acclimation Temperature Alters Thermal Performance. Integrative and Comparative Biology 2017, 57 (1) , 103-111. https://doi.org/10.1093/icb/icx041
- J. P. DeLong, J. P. Gibert, T. M. Luhring, G. Bachman, B. Reed, A. Neyer, K. L. Montooth. The combined effects of reactant kinetics and enzyme stability explain the temperature dependence of metabolic rates. Ecology and Evolution 2017, 7 (11) , 3940-3950. https://doi.org/10.1002/ece3.2955
- Anne E Taylor, Andrew T Giguere, Conor M Zoebelein, David D Myrold, Peter J Bottomley. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. The ISME Journal 2017, 11 (4) , 896-908. https://doi.org/10.1038/ismej.2016.179
- J. M. Robinson, T. A. O’Neill, J. Ryburn, L. L. Liang, V. L. Arcus, L. A. Schipper. Rapid laboratory measurement of the temperature dependence of soil respiration and application to changes in three diverse soils through the year. Biogeochemistry 2017, 133 (1) , 101-112. https://doi.org/10.1007/s10533-017-0314-0
- Vy Nguyen, Christopher Wilson, Marc Hoemberger, John B. Stiller, Roman V. Agafonov, Steffen Kutter, Justin English, Douglas L. Theobald, Dorothee Kern. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science 2017, 355 (6322) , 289-294. https://doi.org/10.1126/science.aah3717
- Carlos A. Sierra, Saadatullah Malghani, Henry W. Loescher. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences 2017, 14 (3) , 703-710. https://doi.org/10.5194/bg-14-703-2017
- Charlotte J. Alster, Peter Baas, Matthew D. Wallenstein, Nels G. Johnson, Joseph C. von Fischer. Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory. Frontiers in Microbiology 2016, 7 https://doi.org/10.3389/fmicb.2016.01821
- S. Sandeep, K. M. Manjaiah, M. R. Mayadevi, A. K. Singh. Monitoring temperature sensitivity of soil organic carbon decomposition under maize–wheat cropping systems in semi-arid India. Environmental Monitoring and Assessment 2016, 188 (8) https://doi.org/10.1007/s10661-016-5455-4
- Masayuki Okuyama, Wataru Saburi, Haruhide Mori, Atsuo Kimura. α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Cellular and Molecular Life Sciences 2016, 73 (14) , 2727-2751. https://doi.org/10.1007/s00018-016-2247-5
- Charlotte J. Alster, Akihiro Koyama, Nels G. Johnson, Matthew D. Wallenstein, Joseph C. von Fischer. Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration. Journal of Geophysical Research: Biogeosciences 2016, 121 (6) , 1420-1433. https://doi.org/10.1002/2016JG003343
- Samraat Pawar, Anthony I. Dell, Van M. Savage, Jennifer L. Knies. Real versus Artificial Variation in the Thermal Sensitivity of Biological Traits. The American Naturalist 2016, 187 (2) , E41-E52. https://doi.org/10.1086/684590
- Helen R. Broom, Jessica A. O. Rumfeldt, Kenrick A. Vassall, Elizabeth M. Meiering. Destabilization of the dimer interface is a common consequence of diverse ALS-associated mutations in metal free SOD1. Protein Science 2015, 24 (12) , 2081-2089. https://doi.org/10.1002/pro.2803
- Vickery L. Arcus, Christopher R. Pudney. Change in heat capacity accurately predicts vibrational coupling in enzyme catalyzed reactions. FEBS Letters 2015, 589 (17) , 2200-2206. https://doi.org/10.1016/j.febslet.2015.06.042
- Louis A. Schipper, Joanne K. Hobbs, Susanna Rutledge, Vickery L. Arcus. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Global Change Biology 2014, 20 (11) , 3578-3586. https://doi.org/10.1111/gcb.12596



