Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Rapid Kinetic Characterization of Glycosyl Hydrolases Based on Oxime Derivatization and Nanostructure-Initiator Mass Spectrometry (NIMS)
My Activity
    Articles

    Rapid Kinetic Characterization of Glycosyl Hydrolases Based on Oxime Derivatization and Nanostructure-Initiator Mass Spectrometry (NIMS)
    Click to copy article linkArticle link copied!

    View Author Information
    Joint BioEnergy Institute, Emeryville, California 94608, United States
    Sandia National Laboratories, Livermore, California 94551, United States
    § Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 53706, United States
    Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
    Joint Genome Institute, Walnut Creek, California 94598, United States
    # University of California, Berkeley, California 94720, United States
    *(K.D.) E-mail: [email protected]
    *(B.G.F.) E-mail: [email protected]
    *(T.R.N.) E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2014, 9, 7, 1470–1479
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cb5000289
    Published May 12, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Glycoside hydrolases (GHs) are critical to cycling of plant biomass in the environment, digestion of complex polysaccharides by the human gut microbiome, and industrial activities such as deployment of cellulosic biofuels. High-throughput sequencing methods show tremendous sequence diversity among GHs, yet relatively few examples from the over 150,000 unique domain arrangements containing GHs have been functionally characterized. Here, we show how cell-free expression, bioconjugate chemistry, and surface-based mass spectrometry can be used to study glycoside hydrolase reactions with plant biomass. Detection of soluble products is achieved by coupling a unique chemical probe to the reducing end of oligosaccharides in a stable oxime linkage, while the use of 13C-labeled monosaccharide standards (xylose and glucose) allows quantitation of the derivatized glycans. We apply this oxime-based nanostructure-initiator mass spectrometry (NIMS) method to characterize the functional diversity of GHs secreted by Clostridium thermocellum, a model cellulolytic organism. New reaction specificities are identified, and differences in rates and yields of individual enzymes are demonstrated in reactions with biomass substrates. Numerical analyses of time series data suggests that synergistic combinations of mono- and multifunctional GHs can decrease the complexity of enzymes needed for the hydrolysis of plant biomass during the production of biofuels.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Description of substrate synthesis, figures, and tables. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 33 publications.

    1. Junjie Hu, Fei Liu, Yunlong Chen, Guoqiang Shangguan, Huangxian Ju. Mass Spectrometric Biosensing: A Powerful Approach for Multiplexed Analysis of Clinical Biomolecules. ACS Sensors 2021, 6 (10) , 3517-3535. https://doi.org/10.1021/acssensors.1c01394
    2. Paul Opgenorth, Zak Costello, Takuya Okada, Garima Goyal, Yan Chen, Jennifer Gin, Veronica Benites, Markus de Raad, Trent R. Northen, Kai Deng, Samuel Deutsch, Edward E. K. Baidoo, Christopher J. Petzold, Nathan J. Hillson, Hector Garcia Martin, Harry R. Beller. Lessons from Two Design–Build–Test–Learn Cycles of Dodecanol Production in Escherichia coli Aided by Machine Learning. ACS Synthetic Biology 2019, 8 (6) , 1337-1351. https://doi.org/10.1021/acssynbio.9b00020
    3. Timothy A. Whitehead, Chandra K. Bandi, Marissa Berger, Jihyun Park, and Shishir P. S. Chundawat . Negatively Supercharging Cellulases Render Them Lignin-Resistant. ACS Sustainable Chemistry & Engineering 2017, 5 (7) , 6247-6252. https://doi.org/10.1021/acssuschemeng.7b01202
    4. Markus de Raad, Tristan de Rond, Oliver Rübel, Jay D. Keasling, Trent R. Northen, and Benjamin P. Bowen . OpenMSI Arrayed Analysis Toolkit: Analyzing Spatially Defined Samples Using Mass Spectrometry Imaging. Analytical Chemistry 2017, 89 (11) , 5818-5823. https://doi.org/10.1021/acs.analchem.6b05004
    5. Phillip M. Danby and Stephen G. Withers . Advances in Enzymatic Glycoside Synthesis. ACS Chemical Biology 2016, 11 (7) , 1784-1794. https://doi.org/10.1021/acschembio.6b00340
    6. Taichi E. Takasuka, Hoon Kim, Kai Deng, Christopher M. Bianchetti, Kaho Yamashita, Emily T. Beebe, Lai F. Bergeman, Kirk A. Vander Meulen, Samuel Deutsch, John Ralph, Paul D. Adams, Trent R. Northen, Brian G. Fox. Quantitative Analysis of The High‐Yield Hydrolysis of Kelp by Laminarinase and Alginate Lyase. ChemBioChem 2023, 24 (20) https://doi.org/10.1002/cbic.202300357
    7. Noel S. Ha, Jenny R. Onley, Kai Deng, Peter Andeer, Benjamin P. Bowen, Kshitiz Gupta, Peter W. Kim, Nathaniel Kuch, Mark Kutschke, Alex Parker, Fangchao Song, Brian Fox, Paul D. Adams, Markus de Raad, Trent R. Northen. A combinatorial droplet microfluidic device integrated with mass spectrometry for enzyme screening. Lab on a Chip 2023, 23 (15) , 3361-3369. https://doi.org/10.1039/D2LC00980C
    8. Markus de Raad, Kaan Koper, Kai Deng, Benjamin P. Bowen, Hiroshi A. Maeda, Trent R. Northen. Mass spectrometry imaging–based assays for aminotransferase activity reveal a broad substrate spectrum for a previously uncharacterized enzyme. Journal of Biological Chemistry 2023, 299 (3) , 102939. https://doi.org/10.1016/j.jbc.2023.102939
    9. Kai Deng, Xi Wang, Nicole Ing, Paul Opgenorth, Markus de Raad, Jinho Kim, Blake A. Simmons, Paul D. Adams, Anup K. Singh, Taek Soon Lee, Trent R. Northen. Rapid quantification of alcohol production in microorganisms based on nanostructure-initiator mass spectrometry (NIMS). Analytical Biochemistry 2023, 662 , 114997. https://doi.org/10.1016/j.ab.2022.114997
    10. Nicole Ing, Kai Deng, Yan Chen, Martina Aulitto, Jennifer W. Gin, Thanh Le Mai Pham, Christopher J. Petzold, Steve W. Singer, Benjamin Bowen, Kenneth L. Sale, Blake A. Simmons, Anup K. Singh, Paul D. Adams, Trent R. Northen. A multiplexed nanostructure-initiator mass spectrometry (NIMS) assay for simultaneously detecting glycosyl hydrolase and lignin modifying enzyme activities. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-91181-8
    11. Tong Si, Pu Xue, Kisurb Choe, Huimin Zhao, Jonathan V. Sweedler. High‐Throughput Mass Spectrometry Complements Protein Engineering. 2021, 57-79. https://doi.org/10.1002/9783527815128.ch3
    12. Evan M. Glasgow, Elias I. Kemna, Craig A. Bingman, Nicole Ing, Kai Deng, Christopher M. Bianchetti, Taichi E. Takasuka, Trent R. Northen, Brian G. Fox. A structural and kinetic survey of GH5_4 endoglucanases reveals determinants of broad substrate specificity and opportunities for biomass hydrolysis. Journal of Biological Chemistry 2020, 295 (51) , 17752-17769. https://doi.org/10.1074/jbc.RA120.015328
    13. Tracey M. Gloster. Exploitation of carbohydrate processing enzymes in biocatalysis. Current Opinion in Chemical Biology 2020, 55 , 180-188. https://doi.org/10.1016/j.cbpa.2020.01.015
    14. Devin F R Doud, Robert M Bowers, Frederik Schulz, Markus De Raad, Kai Deng, Angela Tarver, Evan Glasgow, Kirk Vander Meulen, Brian Fox, Sam Deutsch, Yasuo Yoshikuni, Trent Northen, Brian P Hedlund, Steven W Singer, Natalia Ivanova, Tanja Woyke. Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. The ISME Journal 2020, 14 (3) , 659-675. https://doi.org/10.1038/s41396-019-0557-y
    15. Tristan de Rond, Jian Gao, Amin Zargar, Markus de Raad, Jack Cunha, Trent R. Northen, Jay D. Keasling. A High‐Throughput Mass Spectrometric Enzyme Activity Assay Enabling the Discovery of Cytochrome P450 Biocatalysts. Angewandte Chemie 2019, 131 (30) , 10220-10225. https://doi.org/10.1002/ange.201901782
    16. Tristan de Rond, Jian Gao, Amin Zargar, Markus de Raad, Jack Cunha, Trent R. Northen, Jay D. Keasling. A High‐Throughput Mass Spectrometric Enzyme Activity Assay Enabling the Discovery of Cytochrome P450 Biocatalysts. Angewandte Chemie International Edition 2019, 58 (30) , 10114-10119. https://doi.org/10.1002/anie.201901782
    17. Kai Deng, Jijiao Zeng, Gang Cheng, Jian Gao, Kenneth L. Sale, Blake A. Simmons, Anup K. Singh, Paul D. Adams, Trent R. Northen. Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS). Biotechnology for Biofuels 2018, 11 (1) https://doi.org/10.1186/s13068-018-1261-2
    18. Johnnie A. Walker, Sivakumar Pattathil, Lai F. Bergeman, Emily T. Beebe, Kai Deng, Maryam Mirzai, Trent R. Northen, Michael G. Hahn, Brian G. Fox. Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling. Biotechnology for Biofuels 2017, 10 (1) https://doi.org/10.1186/s13068-017-0703-6
    19. Joshua J. Rosnow, Lindsey N. Anderson, Reji N. Nair, Erin S. Baker, Aaron T. Wright. Profiling microbial lignocellulose degradation and utilization by emergent omics technologies. Critical Reviews in Biotechnology 2017, 37 (5) , 626-640. https://doi.org/10.1080/07388551.2016.1209158
    20. Erika Dosekova, Jaroslav Filip, Tomas Bertok, Peter Both, Peter Kasak, Jan Tkac. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Medicinal Research Reviews 2017, 37 (3) , 514-626. https://doi.org/10.1002/med.21420
    21. Stephen R. Decker, John Sheehan, David C. Dayton, Joseph J. Bozell, William S. Adney, Andy Aden, Bonnie Hames, Steven R. Thomas, Richard L. Bain, Roman Brunecky, Chien-Yuan Lin, Antonella Amore, Hui Wei, Xiaowen Chen, Melvin P. Tucker, Stefan Czernik, Amie Sluiter, Min Zhang, Kim Magrini, Michael E. Himmel. Biomass Conversion. 2017, 285-419. https://doi.org/10.1007/978-3-319-52287-6_6
    22. Joshua Heinemann, Kai Deng, Steve C. C. Shih, Jian Gao, Paul D. Adams, Anup K. Singh, Trent R. Northen. On-chip integration of droplet microfluidics and nanostructure-initiator mass spectrometry for enzyme screening. Lab on a Chip 2017, 17 (2) , 323-331. https://doi.org/10.1039/C6LC01182A
    23. Cristina Lento, Derek J. Wilson. Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry. The Analyst 2017, 142 (10) , 1640-1653. https://doi.org/10.1039/C7AN00338B
    24. Katsuaki Hirano, Masahiro Kurosaki, Satoshi Nihei, Hiroki Hasegawa, Suguru Shinoda, Mitsuru Haruki, Nobutaka Hirano. Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep35709
    25. Jennifer Hiras, Yu-Wei Wu, Kai Deng, Carrie D. Nicora, Joshua T. Aldrich, Dario Frey, Sebastian Kolinko, Errol W. Robinson, Jon M. Jacobs, Paul D. Adams, Trent R. Northen, Blake A. Simmons, Steven W. Singer, . Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis. mBio 2016, 7 (4) https://doi.org/10.1128/mBio.01106-16
    26. . Applications of Time‐resolved Mass Spectrometry in Biochemical Analysis. 2016, 315-336. https://doi.org/10.1002/9781118887332.ch13
    27. Johnnie A. Walker, Taichi E. Takasuka, Kai Deng, Christopher M. Bianchetti, Hannah S. Udell, Ben M. Prom, Hyunkee Kim, Paul D. Adams, Trent R. Northen, Brian G. Fox. Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Biotechnology for Biofuels 2015, 8 (1) https://doi.org/10.1186/s13068-015-0402-0
    28. Kai Deng, Taichi E. Takasuka, Christopher M. Bianchetti, Lai F. Bergeman, Paul D. Adams, Trent R. Northen, Brian G. Fox. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases. Frontiers in Bioengineering and Biotechnology 2015, 3 https://doi.org/10.3389/fbioe.2015.00165
    29. Kai Deng, Joel M. Guenther, Jian Gao, Benjamin P. Bowen, Huu Tran, Vimalier Reyes-Ortiz, Xiaoliang Cheng, Noppadon Sathitsuksanoh, Richard Heins, Taichi E. Takasuka, Lai F. Bergeman, Henrik Geertz-Hansen, Samuel Deutsch, Dominique Loqué, Kenneth L. Sale, Blake A. Simmons, Paul D. Adams, Anup K. Singh, Brian G. Fox, Trent R. Northen. Development of a High Throughput Platform for Screening Glycoside Hydrolases Based on Oxime-NIMS. Frontiers in Bioengineering and Biotechnology 2015, 3 https://doi.org/10.3389/fbioe.2015.00153
    30. Steven C. Slater, Blake A. Simmons, Tamara S. Rogers, Margaret F. Phillips, Kristy Nordahl, Brian H. Davison. The DOE Bioenergy Research Centers: History, Operations, and Scientific Output. BioEnergy Research 2015, 8 (3) , 881-896. https://doi.org/10.1007/s12155-015-9660-8
    31. Katsuaki Hirano, Satoshi Nihei, Hiroki Hasegawa, Mitsuru Haruki, Nobutaka Hirano, . Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome. Applied and Environmental Microbiology 2015, 81 (14) , 4756-4766. https://doi.org/10.1128/AEM.00772-15
    32. Tristan de Rond, Megan Danielewicz, Trent Northen. High throughput screening of enzyme activity with mass spectrometry imaging. Current Opinion in Biotechnology 2015, 31 , 1-9. https://doi.org/10.1016/j.copbio.2014.07.008
    33. Steven J. P. McInnes, Rachel D. Lowe. Biomedical Uses of Porous Silicon. 2015, 117-162. https://doi.org/10.1007/978-3-319-20346-1_5

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2014, 9, 7, 1470–1479
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cb5000289
    Published May 12, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    1658

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.