3D Optical Reconstruction of the Nervous System of the Whole-Body Marine InvertebratesClick to copy article linkArticle link copied!
- Valentin A. Milichko*Valentin A. Milichko*Email: [email protected]School of Physics and Engineering, ITMO University, St. Petersburg, 197101, RussiaInstitut Jean Lamour, Universit de Lorraine, UMR CNRS 7198, 54011 Nancy, FranceMore by Valentin A. Milichko
- Vyacheslav Dyachuk*Vyacheslav Dyachuk*Email: [email protected]A.V. Zhirmunsky National Scientific Center of Marine Biology, Russian Academy of Sciences, Far Eastern Branch, Vladivostok 690041, RussiaMore by Vyacheslav Dyachuk
Abstract
Optical clearing of invertebrates, the number of species of which is 20 times greater than that of vertebrates, is of fundamental and applied interest for neuroscience in general. Herein, the optical clearing of invertebrates to identify their morphology and neurostructure remains unrealized as of yet. Here, we report on fast (from a few seconds to minutes) and uniform whole-body optical clearing of invertebrates (bivalves, nemertines, annelids, and anomura) of any age and thickness (up to 2 cm) possessing complicated structures and integuments. We developed the protocol unifying dimethyl sulfoxide (DMSO)-based immunostaining of the animals followed by their optical clearing with benzyl alcohol/benzyl benzoate (BABB). Confocal microspectroscopy revealed that the protocol provides an increase of the fluorescence signal by 2 orders of magnitude and decrease of the light scattering by 2 orders of magnitude, thereby accelerating the confocal bioimaging of the whole body. Moreover, by tracking the optical clearing over time with 0.3 s resolution, we revealed that the clearing process is described by the Gompertz growth function, allowing us to determine the physical mechanism of the clearing and its optical parameters. Thereby, we were able to identify in detail and to describe previously unknown neurostructures of different invertebrate animals, paving the way to discovery in neuroscience.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Introduction
Methods
Fixation | Decalcification (optional) | Permeabilization (obligatory) | Blocking solution (obligatory) | Clearing (key components) | Time of clearing | Immunostating compatibility | Clearing effect (+/++/+++) | Detection of neurostructures (poor/good/excellent) |
---|---|---|---|---|---|---|---|---|
4% PFA | 7.5% EDTA | 5% Triton X-100 | 10% NDS; 1% BSA; 1% Triton X-100; 10% DMSO | BABB | 1–12 h | YES | +++ | excellent |
2% PFA | without | 5% Triton X-100 | 10% NDS; 1% BSA; 1% Triton X-100; 10% DMSO | BABB | 1–12 h | YES | +++ | good |
1% gluteraldehyde/2% PFA | 7.5% EDTA | 5% Triton X-100 | 10% NDS; 1% BSA; 1% Triton X-100; 10% DMSO | BABB | 1–12 h | NO | +++ | poor |
4% PFA | 7.5% EDTA | 1% Triton X-100 | 10% NDS; 1% BSA; 1% Triton X-100; 10% DMSO | BABB | 1–12 h | YES | +++ | good |
4% PFA | 7.5% EDTA | 3% Triton X-100 | 10% NDS; 1% BSA; 1% Triton X-100; 10% DMSO | BABB | 1–12 h | YES | +++ | good |
10% PFA | 7.5% EDTA | 5% Triton X-100 | 10% NDS; 1% BSA; 1% Triton X-100; 10% DMSO | BABB | 1–12 h | NO | +++ | poor |
4% PFA | 7.5% EDTA | 5% Triton X-100 | 1% Triton X-100 | 1-PrOH | 1–12 h | YES | +++ | good |
4% PFA | 7.5% EDTA | 5% TritonX-100 | 1% Triton X-100; 10% DMSO | 1-PrOH, or t-BuOH | 1–12 h | YES | +++ | good |
Abbreviations: PFA: paraformaldehyde; EDTA: ethylenediaminetetraacetic acid; NDS: normal donkey serum; BSA: bovine serum albumin; DMSO: dimethyl sulfoxide; PrOH: propanol; BuOH: butanol.
Immunostainings
Optical Clearing Protocol
Bioimaging
Confocal Optical Microspectroscopy
RESULTS and DISCUSSION
Optical Clearing
Challenges of the Marine Animal Clearing
Animal | Fixation | Decalcification (optional) | Permeabilization (obligatory) | Blocking solution (obligatory) | Clearing (key components) | Time of clearing | Immunostaining compatibility | Clearing effect (+/++/+++) | Detection of neurostructures (poor/good/excellent) |
---|---|---|---|---|---|---|---|---|---|
Molluscs (Gastropoda and Bivalves) | 4% PFA (3–5 h at RT for adults and 2–3 h for larvae)b | 7.5% EDTA (obligatory) | 5% Triton X-100 | 10% NDS; 1% BSA; 1% Triton X-100; 10% DMSO | BABB | 6–12 h | YES | +++ | Excellent |
Nemertines | 4% PFA (2–3 h at RT)b | Without calcification | 5–10% Triton X-100 | 10% NDS; 1% BSA; 2% Triton X-100; 10% DMSO | BABB | 12–24 h | YES | +++ | Excellent |
Annelids | 4% PFA (2–3 h at RT)b | Without calcification | 5–10% Triton X-100 | 10% NDS; 1% BSA; 2% Triton X-100; 10% DMSO | BABB | 12–24 h | YES | +++ | Excellent |
Anomura (king crabs laervae) | 4% PFA (3–5 h at RT)b | 7.5% EDTA (obligatory) | 1% Triton X-100 | 10% NDS; 1% BSA; 1% Triton X-100; 10% DMSO | BABB | 12–24 h | YES | +++ | Excellent |
Abbreviations: PFA: paraformaldehyde; EDTA: ethylenediaminetetraacetic acid; NDS: normal donkey serum; BSA: bovine serum albumin; DMSO: dimethyl sulfoxide; RT: room temperature.
The fixation time depends on the size of the biological object.
Dynamics
Bivalves
Nemertines
Annelids
Anomura
Discussion
Conclusions
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/cbmi.3c00087.
Figures on confocal imaging of optically cleared mice and fish, as well as comparison of diffusion and Gompertz curves for the clearing dynamics (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
The authors thank Dr. Elena Temereva for providing annelids; Dr. Timur Magarlamov and Dr. Alexei V. Chernyshev for providing nemertines; Dr. Olga Yurchenko for providing oysters; and Dr. Elena Kotsyuba and Dr. Maslennikov for providing the larvae of king crab. The authors are grateful to the Vostok Biological Station (NSCMB FEB RAS), the Far East Center of Electron Microscopy, Optical Research Group of IDB RAS, and the Biology and Genetic Engineering Center for Collective Use (FCEALTB FEB RAS) for their assistance. This work was supported by the Russian Science Foundation (Grant No. 21-74-30004 (clearance) and 22-14-00245 (immunostainings).
References
This article references 49 other publications.
- 1Ueda, H. R.; Ertürk, A.; Chung, K.; Gradinaru, V.; Chédotal, A.; Tomancak, P.; Keller, P. J. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 2020, 21, 61– 79, DOI: 10.1038/s41583-019-0250-1Google ScholarThere is no corresponding record for this reference.
- 2Kurihara, D.; Mizuta, Y.; Nagahara, S.; Higashiyama, T. ClearSeeAlpha: Advanced Optical Clearing for Whole-Plant Imaging. Plant Cell Physiol. 2021, 62, 1302– 1310, DOI: 10.1093/pcp/pcab033Google ScholarThere is no corresponding record for this reference.
- 3Tuchin, V. V. Tissue Optics and Photonics: Light-Tissue Interaction. J. Biomed. Photon. Eng. 2015, 1, 98– 134, DOI: 10.18287/JBPE-2015-1-2-98Google ScholarThere is no corresponding record for this reference.
- 4Matryba, P.; Kaczmarek, L.; Gołąb, J. Advances in Ex Situ Tissue Optical Clearing. Laser Photon. Rev. 2019, 13, 1800292, DOI: 10.1002/lpor.201800292Google ScholarThere is no corresponding record for this reference.
- 5Kim, H.; Youn, S.; Kim, J.; Park, S.; Lee, M.; Hwang, J. Y.; Chang, J. H. Deep laser microscopy using optical clearing by ultrasound-induced gas bubbles. Nat. Photonics 2022, 16, 762– 768, DOI: 10.1038/s41566-022-01068-xGoogle ScholarThere is no corresponding record for this reference.
- 6Costantini, I.; Cicchi, R.; Silvestri, L.; Vanzi, F.; Pavone, F. S. In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed. Opt. Express 2019, 10, 5251– 5267, DOI: 10.1364/BOE.10.005251Google ScholarThere is no corresponding record for this reference.
- 7Pende, M.; Vadiwala, K.; Schmidbaur, H.; Stockinger, A. W.; Murawala, P.; Saghafi, S.; Dekens, M. P. S.; Becker, K.; Revilla-i-Domingo, R.; Papadopoulos, S. C.; Zurl, M.; Pasierbek, P.; Simakov, O.; Tanaka, E. M.; Raible, F.; Dodt, H. U. A versatile depigmentation, clearing, and labeling method for exploring nervous system diversity. Sci. Adv. 2020, 6, eaba0365 DOI: 10.1126/sciadv.aba0365Google ScholarThere is no corresponding record for this reference.
- 8Geng, J.; Zhang, X.; Prabhu, S.; Shahoei, S. H.; Nelson, E. R.; Swanson, K. S.; Anastasio, M. A.; Smith, A. M. 3D microscopy and deep learning reveal the heterogeneity of crown-like structure microenvironments in intact adipose tissue. Sci. Adv. 2021, 7, eabe2480 DOI: 10.1126/sciadv.abe2480Google ScholarThere is no corresponding record for this reference.
- 9Zhu, X.; Huang, L.; Zheng, Y.; Song, Y.; Xu, Q.; Wang, J.; Si, K.; Duan, S.; Gong, W. Ultrafast optical clearing method for three-dimensional imaging with cellular resolution. Proc. Nat. Acad. Sci. 2019, 116, 11480– 11489, DOI: 10.1073/pnas.1819583116Google ScholarThere is no corresponding record for this reference.
- 10Kolesová, H.; Čapek, M.; Radochová, B.; Janáček, J.; Sedmera, D. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem. Cell Biol. 2016, 146, 141, DOI: 10.1007/s00418-016-1441-8Google ScholarThere is no corresponding record for this reference.
- 11Cai, R.; Pan, C.; Ghasemigharagoz, A.; Todorov, M. I.; Förstera, B.; Zhao, S.; Bhatia, H. S.; Parra-Damas, A.; Mrowka, L.; Theodorou, D.; Rempfler, M.; Xavier, A. L. R.; Kress, B. T.; Benakis, C.; Steinke, H.; Liebscher, S.; Bechmann, I.; Liesz, A.; Menze, B.; Kerschensteiner, M.; Nedergaard, M.; Ertürk, A. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat. Neurosci. 2019, 22, 317, DOI: 10.1038/s41593-018-0301-3Google ScholarThere is no corresponding record for this reference.
- 12Dyachuk, V.; Furlan, A.; Shahidi, M. K.; Giovenco, M.; Kaukua, N.; Konstantinidou, C.; Pachnis, V.; Memic, F.; Marklund, U.; Muller, T.; Birchmeier, C.; Fried, K.; Ernfors, P.; Adameyko, I. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 2014, 345, 82– 87, DOI: 10.1126/science.1253281Google ScholarThere is no corresponding record for this reference.
- 13Furlan, A.; Dyachuk, V.; Kastriti, M. E.; Calvo-Enrique, L.; Abdo, H.; Hadjab, S.; Chontorotzea, T.; Akkuratova, N.; Usoskin, D.; Kamenev, D.; Petersen, J.; Sunadome, K.; Memic, F.; Marklund, U.; Fried, K.; Topilko, P.; Lallemend, F.; Kharchenko, P. V.; Ernfors, P.; Adameyko, I. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 2017, 357, eaal3753 DOI: 10.1126/science.aal3753Google ScholarThere is no corresponding record for this reference.
- 14Puelles, V. G., Bertram, J. F., Firth, S., Harper, I. BABB Clearing and Imaging for High Resolution Confocal Microscopy. Leica Microsystems . September 13, 2016. https://www.leica-microsystems.com/science-lab/life-science/babb-clearing-and-imaging-for-high-resolution-confocal-microscopy/.Google ScholarThere is no corresponding record for this reference.
- 15Milichko, V. A.; Makarov, S. V.; Yulin, A. V.; Vinogradov, A. V.; Krasilin, A. A.; Ushakova, E.; Dzyuba, V. P.; Hey-Hawkins, E.; Pidko, E. A.; Belov, P. A. van der Waals Metal-Organic Framework as an Excitonic Material for Advanced Photonics. Adv. Mater. 2017, 29, 1606034, DOI: 10.1002/adma.201606034Google ScholarThere is no corresponding record for this reference.
- 16Milichko, V. A.; Zuev, D. A.; Baranov, D. G.; Zograf, G. P.; Volodina, K.; Krasilin, A. A.; Mukhin, I. S.; Dmitriev, P. A.; Vinogradov, V. V.; Makarov, S. V.; Belov, P. A. Metal-Dielectric Nanocavity for Real-Time Tracing Molecular Events with Temperature Feedback. Laser Photon. Rev. 2018, 12, 1700227, DOI: 10.1002/lpor.201700227Google ScholarThere is no corresponding record for this reference.
- 17Krasilin, A. A.; Volodina, K.; Sukhova, A. A.; Petrov, M. I.; Zuev, D. A.; Dyachuk, V. A.; Milichko, V. A. The conformation of bovine serum albumin adsorbed to the surface of single all-dielectric nanoparticles following light-induced heating. J. Biophoton. 2018, 11, e201700322 DOI: 10.1002/jbio.201700322Google ScholarThere is no corresponding record for this reference.
- 18Kulachenkov, N. K.; Sun, D.; Mezenov, Y. A.; Yankin, A. N.; Rzhevskiy, S.; Dyachuk, V.; Nominé, A.; Medjahdi, G.; Pidko, E. A.; Milichko, V. A. Photochromic Free MOF-Based Near-Infrared Optical Switch. Angew. Chemie Int. Ed. 2020, 59, 15522– 15526, DOI: 10.1002/anie.202004293Google ScholarThere is no corresponding record for this reference.
- 19Wilson, T. Resolution and optical sectioning in the confocal microscope. J. Microscopy 2011, 244, 113– 121, DOI: 10.1111/j.1365-2818.2011.03549.xGoogle ScholarThere is no corresponding record for this reference.
- 20Zhang, G. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490, 49– 54, DOI: 10.1038/nature11413Google ScholarThere is no corresponding record for this reference.
- 21Yurchenko, O. V.; Skiteva, O. I.; Voronezhskaya, E. E.; Dyachuk, V. A. Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia). Front. Zool. 2018, 15, 10, DOI: 10.1186/s12983-018-0259-8Google ScholarThere is no corresponding record for this reference.
- 22Bullock, T. H.; Horridge, G. A. Structure and function in the nervous system of invertebrates; W. H. Freeman and Company Ltd.: San Francisco and London, 1965.Google ScholarThere is no corresponding record for this reference.
- 23Galtsoff, P. S. The American Oyster Crassostrea virginica Gmelin; Fishery Bulletin: Washington, USA, 1964.Google ScholarThere is no corresponding record for this reference.
- 24Grizel, H.; Auffret, M.; Barillé, L.; Besnard-Cochennec, N.; Blanc, F.; Boucaud-Camou, E.; Chollet, B.; Henry, M.; Jabbour-Zahab, R.; Le Pennec, M.; Lubet, P.; Mathieu, M.; Thielley, M. An atlas of histology and cytology of marine bivalve mollusks. Grizel, H., Ed., 2003.Google ScholarThere is no corresponding record for this reference.
- 25Beninger, P. G.; Le Pennec, M. Structure and function in scallops. In Scallops: Ecology and Aquaculture; Elsevier, Biology, pp 123– 227, 2006.Google ScholarThere is no corresponding record for this reference.
- 26Gosling, E. Marine Bivalve Molluscs; John Wiley & Sons, Ltd: Chichester, UK, 2015.Google ScholarThere is no corresponding record for this reference.
- 27De Biasi, S.; Vitellaro-Zuccarello, L.; Blum, I. Histochemical localization of monoamines and cholinesterases in Mytilus pedal ganglion. Histochemistry 1984, 81, 561– 565, DOI: 10.1007/BF00489535Google ScholarThere is no corresponding record for this reference.
- 28Karhunen, T.; Airaksinen, M. S.; Tuomisto, L.; Panula, P. Neurotransmitters in the nervous system of Macoma balthica (Bivalvia). J. Comparative Neurology 1993, 334, 477– 488, DOI: 10.1002/cne.903340311Google ScholarThere is no corresponding record for this reference.
- 29Too, C. K. L.; Croll, R. P. Detection of FMRFamide-like immunoreactivities in the sea scallop Placopecten magellanicus by immunohistochemistry and Western blot analysis. Cell Tissue Res. 1995, 281, 295– 304, DOI: 10.1007/BF00583398Google ScholarThere is no corresponding record for this reference.
- 30Garnerot, F.; Pellerin, J.; Blaise, C.; Mathieu, M. Immunohistochemical localization of serotonin (5-hydroxytryptamine) in the gonad and digestive gland of Mya arenaria (Mollusca: Bivalvia). Gen. Compar. Endocrin. 2006, 149, 278– 284, DOI: 10.1016/j.ygcen.2006.06.008Google ScholarThere is no corresponding record for this reference.
- 31Meechonkit, P.; Kovitvadhi, U.; Chatchavalvanich, K.; Sretarugsa, P.; Weerachatyanukul, W. Localization of serotonin in neuronal ganglia of the freshwater pearl mussel, Hyriopsis (Hyriopsis) bialata. J. Mollusc. Stud. 2010, 76, 267– 274, DOI: 10.1093/mollus/eyq009Google ScholarThere is no corresponding record for this reference.
- 32Tantiwisawaruji, S.; Rocha, E.; Kovitvadhi, U.; Rocha, M. J. The bivalve nervous system and its relevance for the physiology of reproduction. Ind. J. Anatomy 2014, 3, 227– 240Google ScholarThere is no corresponding record for this reference.
- 33Sato, Y.; Miyawaki, T.; Ouchi, A.; Noguchi, A.; Yamaguchi, S.; Ikegaya, Y. Quick visualization of neurons in brain tissues using an optical clearing technique. Anat. Sci. Int. 2019, 94, 199, DOI: 10.1007/s12565-018-00473-zGoogle ScholarThere is no corresponding record for this reference.
- 34Fu, Y.; Lin, C.; Enikolopov, G.; Sibley, E.; Chiang, A.; Tang, S. Microtome-Free 3-Dimensional Confocal Imaging Method for Visualization of Mouse Intestine With Subcellular-Level Resolution. Gastroenterology 2009, 137, 453, DOI: 10.1053/j.gastro.2009.05.008Google ScholarThere is no corresponding record for this reference.
- 35Lu, C.-H.; Lin, C.-W.; Juang, J.-H.; Enikolopov, G.; Sibley, E.; Chiang, A.-S.; Tang, S.-C.; Fu, Y.-Y. Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. J. Biomed. Opt. 2010, 15, 046018, DOI: 10.1117/1.3470241Google ScholarThere is no corresponding record for this reference.
- 36Kim, J. H.; Jang, M. J.; Choi, J.; Lee, E.; Song, K. D.; Cho, J.; Kim, K. T.; Cha, H. J.; Sun, W. Optimizing tissue-clearing conditions based on analysis of the critical factors affecting tissue-clearing procedures. Sci. Rep. 2018, 8, 12815, DOI: 10.1038/s41598-018-31153-7Google ScholarThere is no corresponding record for this reference.
- 37Na, M.; Kim, K.; Oh, K.; Choi, H. J.; Ha, C.; Chang, S. Sodium Cholate-Based Active Delipidation for Rapid and Efficient Clearing and Immunostaining of Deep Biological Samples. Small Meth. 2022, 6, 2100943, DOI: 10.1002/smtd.202100943Google ScholarThere is no corresponding record for this reference.
- 38Song, J.; Zeng, N.; Guo, W.; Guo, J.; Ma, H. Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. Biomed. Opt. Express 2021, 12, 4821– 4836, DOI: 10.1364/BOE.426653Google ScholarThere is no corresponding record for this reference.
- 39Kirschnick, N.; Drees, D.; Redder, E.; Erapaneedi, R.; Pereira da Graca, A.; Schafers, M.; Jiang, X.; Kiefer, F. Rapid methods for the evaluation of fluorescent reporters in tissue clearing and the segmentation of large vascular structures. iScience 2021, 24, 102650, DOI: 10.1016/j.isci.2021.102650Google ScholarThere is no corresponding record for this reference.
- 40Susaki, E. A.; Ueda, H. R. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chemi. Biol. 2016, 23, 137– 157, DOI: 10.1016/j.chembiol.2015.11.009Google ScholarThere is no corresponding record for this reference.
- 41Murray, J. D. Mathematical Biology; Springer, 1993.Google ScholarThere is no corresponding record for this reference.
- 42Karkach, A. S. Trajectories and models of individual growth. Demog. Res. 2006, 15, 347– 400, DOI: 10.4054/DemRes.2006.15.12Google ScholarThere is no corresponding record for this reference.
- 43Zwietering, M. H.; Jongenburger, I.; Rombouts, F. M.; van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875– 1881, DOI: 10.1128/aem.56.6.1875-1881.1990Google ScholarThere is no corresponding record for this reference.
- 44Richardson, D. S.; Lichtman, J. W. Clarifying tissue clearing. Cell 2015, 162, 246– 257, DOI: 10.1016/j.cell.2015.06.067Google ScholarThere is no corresponding record for this reference.
- 45Tainaka, K.; Kuno, A.; Kubota, S. I.; Murakami, T.; Ueda, H. R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell Dev. Biol. 2016, 32, 713– 741, DOI: 10.1146/annurev-cellbio-111315-125001Google ScholarThere is no corresponding record for this reference.
- 46Kotsyuba, E.; Kalachev, A.; Kameneva, P.; Dyachuk, V. Distribution of Molecules Related to Neurotransmission in the Nervous System of the Mussel Crenomytilus grayanus. Front. Neuroanat. 2020, 14, 35, DOI: 10.3389/fnana.2020.00035Google ScholarThere is no corresponding record for this reference.
- 47Wang, W.; Song, X.; Wang, L.; Song, L. Pathogen-Derived Carbohydrate Recognition in Molluscs Immune Defense. Int. J. Mol. Sci. 2018, 19, 721, DOI: 10.3390/ijms19030721Google ScholarThere is no corresponding record for this reference.
- 48Stabili, L.; Licciano, M.; Giangrande, A.; Gerardi, C.; De Pascali, S. A.; Fanizzi, F. P. First Insight on the Mucus of the Annelid Myxicola infundibulum (Polychaeta, Sabellidae) as a Potential Prospect for Drug Discovery. Mar. Drugs. 2019, 17, 396, DOI: 10.3390/md17070396Google ScholarThere is no corresponding record for this reference.
- 49Kotsyuba, E.; Dyachuk, V. Immunocytochemical Localization of Enzymes Involved in Dopamine, Serotonin, and Acetylcholine Synthesis in the Optic Neuropils and Neuroendocrine System of Eyestalks of Paralithodes camtschaticus. Front. Neuroanat. 2022, 16, 844654, DOI: 10.3389/fnana.2022.844654Google ScholarThere is no corresponding record for this reference.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
References
This article references 49 other publications.
- 1Ueda, H. R.; Ertürk, A.; Chung, K.; Gradinaru, V.; Chédotal, A.; Tomancak, P.; Keller, P. J. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 2020, 21, 61– 79, DOI: 10.1038/s41583-019-0250-1There is no corresponding record for this reference.
- 2Kurihara, D.; Mizuta, Y.; Nagahara, S.; Higashiyama, T. ClearSeeAlpha: Advanced Optical Clearing for Whole-Plant Imaging. Plant Cell Physiol. 2021, 62, 1302– 1310, DOI: 10.1093/pcp/pcab033There is no corresponding record for this reference.
- 3Tuchin, V. V. Tissue Optics and Photonics: Light-Tissue Interaction. J. Biomed. Photon. Eng. 2015, 1, 98– 134, DOI: 10.18287/JBPE-2015-1-2-98There is no corresponding record for this reference.
- 4Matryba, P.; Kaczmarek, L.; Gołąb, J. Advances in Ex Situ Tissue Optical Clearing. Laser Photon. Rev. 2019, 13, 1800292, DOI: 10.1002/lpor.201800292There is no corresponding record for this reference.
- 5Kim, H.; Youn, S.; Kim, J.; Park, S.; Lee, M.; Hwang, J. Y.; Chang, J. H. Deep laser microscopy using optical clearing by ultrasound-induced gas bubbles. Nat. Photonics 2022, 16, 762– 768, DOI: 10.1038/s41566-022-01068-xThere is no corresponding record for this reference.
- 6Costantini, I.; Cicchi, R.; Silvestri, L.; Vanzi, F.; Pavone, F. S. In-vivo and ex-vivo optical clearing methods for biological tissues: review. Biomed. Opt. Express 2019, 10, 5251– 5267, DOI: 10.1364/BOE.10.005251There is no corresponding record for this reference.
- 7Pende, M.; Vadiwala, K.; Schmidbaur, H.; Stockinger, A. W.; Murawala, P.; Saghafi, S.; Dekens, M. P. S.; Becker, K.; Revilla-i-Domingo, R.; Papadopoulos, S. C.; Zurl, M.; Pasierbek, P.; Simakov, O.; Tanaka, E. M.; Raible, F.; Dodt, H. U. A versatile depigmentation, clearing, and labeling method for exploring nervous system diversity. Sci. Adv. 2020, 6, eaba0365 DOI: 10.1126/sciadv.aba0365There is no corresponding record for this reference.
- 8Geng, J.; Zhang, X.; Prabhu, S.; Shahoei, S. H.; Nelson, E. R.; Swanson, K. S.; Anastasio, M. A.; Smith, A. M. 3D microscopy and deep learning reveal the heterogeneity of crown-like structure microenvironments in intact adipose tissue. Sci. Adv. 2021, 7, eabe2480 DOI: 10.1126/sciadv.abe2480There is no corresponding record for this reference.
- 9Zhu, X.; Huang, L.; Zheng, Y.; Song, Y.; Xu, Q.; Wang, J.; Si, K.; Duan, S.; Gong, W. Ultrafast optical clearing method for three-dimensional imaging with cellular resolution. Proc. Nat. Acad. Sci. 2019, 116, 11480– 11489, DOI: 10.1073/pnas.1819583116There is no corresponding record for this reference.
- 10Kolesová, H.; Čapek, M.; Radochová, B.; Janáček, J.; Sedmera, D. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts. Histochem. Cell Biol. 2016, 146, 141, DOI: 10.1007/s00418-016-1441-8There is no corresponding record for this reference.
- 11Cai, R.; Pan, C.; Ghasemigharagoz, A.; Todorov, M. I.; Förstera, B.; Zhao, S.; Bhatia, H. S.; Parra-Damas, A.; Mrowka, L.; Theodorou, D.; Rempfler, M.; Xavier, A. L. R.; Kress, B. T.; Benakis, C.; Steinke, H.; Liebscher, S.; Bechmann, I.; Liesz, A.; Menze, B.; Kerschensteiner, M.; Nedergaard, M.; Ertürk, A. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull-meninges connections. Nat. Neurosci. 2019, 22, 317, DOI: 10.1038/s41593-018-0301-3There is no corresponding record for this reference.
- 12Dyachuk, V.; Furlan, A.; Shahidi, M. K.; Giovenco, M.; Kaukua, N.; Konstantinidou, C.; Pachnis, V.; Memic, F.; Marklund, U.; Muller, T.; Birchmeier, C.; Fried, K.; Ernfors, P.; Adameyko, I. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 2014, 345, 82– 87, DOI: 10.1126/science.1253281There is no corresponding record for this reference.
- 13Furlan, A.; Dyachuk, V.; Kastriti, M. E.; Calvo-Enrique, L.; Abdo, H.; Hadjab, S.; Chontorotzea, T.; Akkuratova, N.; Usoskin, D.; Kamenev, D.; Petersen, J.; Sunadome, K.; Memic, F.; Marklund, U.; Fried, K.; Topilko, P.; Lallemend, F.; Kharchenko, P. V.; Ernfors, P.; Adameyko, I. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science 2017, 357, eaal3753 DOI: 10.1126/science.aal3753There is no corresponding record for this reference.
- 14Puelles, V. G., Bertram, J. F., Firth, S., Harper, I. BABB Clearing and Imaging for High Resolution Confocal Microscopy. Leica Microsystems . September 13, 2016. https://www.leica-microsystems.com/science-lab/life-science/babb-clearing-and-imaging-for-high-resolution-confocal-microscopy/.There is no corresponding record for this reference.
- 15Milichko, V. A.; Makarov, S. V.; Yulin, A. V.; Vinogradov, A. V.; Krasilin, A. A.; Ushakova, E.; Dzyuba, V. P.; Hey-Hawkins, E.; Pidko, E. A.; Belov, P. A. van der Waals Metal-Organic Framework as an Excitonic Material for Advanced Photonics. Adv. Mater. 2017, 29, 1606034, DOI: 10.1002/adma.201606034There is no corresponding record for this reference.
- 16Milichko, V. A.; Zuev, D. A.; Baranov, D. G.; Zograf, G. P.; Volodina, K.; Krasilin, A. A.; Mukhin, I. S.; Dmitriev, P. A.; Vinogradov, V. V.; Makarov, S. V.; Belov, P. A. Metal-Dielectric Nanocavity for Real-Time Tracing Molecular Events with Temperature Feedback. Laser Photon. Rev. 2018, 12, 1700227, DOI: 10.1002/lpor.201700227There is no corresponding record for this reference.
- 17Krasilin, A. A.; Volodina, K.; Sukhova, A. A.; Petrov, M. I.; Zuev, D. A.; Dyachuk, V. A.; Milichko, V. A. The conformation of bovine serum albumin adsorbed to the surface of single all-dielectric nanoparticles following light-induced heating. J. Biophoton. 2018, 11, e201700322 DOI: 10.1002/jbio.201700322There is no corresponding record for this reference.
- 18Kulachenkov, N. K.; Sun, D.; Mezenov, Y. A.; Yankin, A. N.; Rzhevskiy, S.; Dyachuk, V.; Nominé, A.; Medjahdi, G.; Pidko, E. A.; Milichko, V. A. Photochromic Free MOF-Based Near-Infrared Optical Switch. Angew. Chemie Int. Ed. 2020, 59, 15522– 15526, DOI: 10.1002/anie.202004293There is no corresponding record for this reference.
- 19Wilson, T. Resolution and optical sectioning in the confocal microscope. J. Microscopy 2011, 244, 113– 121, DOI: 10.1111/j.1365-2818.2011.03549.xThere is no corresponding record for this reference.
- 20Zhang, G. The oyster genome reveals stress adaptation and complexity of shell formation. Nature 2012, 490, 49– 54, DOI: 10.1038/nature11413There is no corresponding record for this reference.
- 21Yurchenko, O. V.; Skiteva, O. I.; Voronezhskaya, E. E.; Dyachuk, V. A. Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia). Front. Zool. 2018, 15, 10, DOI: 10.1186/s12983-018-0259-8There is no corresponding record for this reference.
- 22Bullock, T. H.; Horridge, G. A. Structure and function in the nervous system of invertebrates; W. H. Freeman and Company Ltd.: San Francisco and London, 1965.There is no corresponding record for this reference.
- 23Galtsoff, P. S. The American Oyster Crassostrea virginica Gmelin; Fishery Bulletin: Washington, USA, 1964.There is no corresponding record for this reference.
- 24Grizel, H.; Auffret, M.; Barillé, L.; Besnard-Cochennec, N.; Blanc, F.; Boucaud-Camou, E.; Chollet, B.; Henry, M.; Jabbour-Zahab, R.; Le Pennec, M.; Lubet, P.; Mathieu, M.; Thielley, M. An atlas of histology and cytology of marine bivalve mollusks. Grizel, H., Ed., 2003.There is no corresponding record for this reference.
- 25Beninger, P. G.; Le Pennec, M. Structure and function in scallops. In Scallops: Ecology and Aquaculture; Elsevier, Biology, pp 123– 227, 2006.There is no corresponding record for this reference.
- 26Gosling, E. Marine Bivalve Molluscs; John Wiley & Sons, Ltd: Chichester, UK, 2015.There is no corresponding record for this reference.
- 27De Biasi, S.; Vitellaro-Zuccarello, L.; Blum, I. Histochemical localization of monoamines and cholinesterases in Mytilus pedal ganglion. Histochemistry 1984, 81, 561– 565, DOI: 10.1007/BF00489535There is no corresponding record for this reference.
- 28Karhunen, T.; Airaksinen, M. S.; Tuomisto, L.; Panula, P. Neurotransmitters in the nervous system of Macoma balthica (Bivalvia). J. Comparative Neurology 1993, 334, 477– 488, DOI: 10.1002/cne.903340311There is no corresponding record for this reference.
- 29Too, C. K. L.; Croll, R. P. Detection of FMRFamide-like immunoreactivities in the sea scallop Placopecten magellanicus by immunohistochemistry and Western blot analysis. Cell Tissue Res. 1995, 281, 295– 304, DOI: 10.1007/BF00583398There is no corresponding record for this reference.
- 30Garnerot, F.; Pellerin, J.; Blaise, C.; Mathieu, M. Immunohistochemical localization of serotonin (5-hydroxytryptamine) in the gonad and digestive gland of Mya arenaria (Mollusca: Bivalvia). Gen. Compar. Endocrin. 2006, 149, 278– 284, DOI: 10.1016/j.ygcen.2006.06.008There is no corresponding record for this reference.
- 31Meechonkit, P.; Kovitvadhi, U.; Chatchavalvanich, K.; Sretarugsa, P.; Weerachatyanukul, W. Localization of serotonin in neuronal ganglia of the freshwater pearl mussel, Hyriopsis (Hyriopsis) bialata. J. Mollusc. Stud. 2010, 76, 267– 274, DOI: 10.1093/mollus/eyq009There is no corresponding record for this reference.
- 32Tantiwisawaruji, S.; Rocha, E.; Kovitvadhi, U.; Rocha, M. J. The bivalve nervous system and its relevance for the physiology of reproduction. Ind. J. Anatomy 2014, 3, 227– 240There is no corresponding record for this reference.
- 33Sato, Y.; Miyawaki, T.; Ouchi, A.; Noguchi, A.; Yamaguchi, S.; Ikegaya, Y. Quick visualization of neurons in brain tissues using an optical clearing technique. Anat. Sci. Int. 2019, 94, 199, DOI: 10.1007/s12565-018-00473-zThere is no corresponding record for this reference.
- 34Fu, Y.; Lin, C.; Enikolopov, G.; Sibley, E.; Chiang, A.; Tang, S. Microtome-Free 3-Dimensional Confocal Imaging Method for Visualization of Mouse Intestine With Subcellular-Level Resolution. Gastroenterology 2009, 137, 453, DOI: 10.1053/j.gastro.2009.05.008There is no corresponding record for this reference.
- 35Lu, C.-H.; Lin, C.-W.; Juang, J.-H.; Enikolopov, G.; Sibley, E.; Chiang, A.-S.; Tang, S.-C.; Fu, Y.-Y. Three-dimensional optical method for integrated visualization of mouse islet microstructure and vascular network with subcellular-level resolution. J. Biomed. Opt. 2010, 15, 046018, DOI: 10.1117/1.3470241There is no corresponding record for this reference.
- 36Kim, J. H.; Jang, M. J.; Choi, J.; Lee, E.; Song, K. D.; Cho, J.; Kim, K. T.; Cha, H. J.; Sun, W. Optimizing tissue-clearing conditions based on analysis of the critical factors affecting tissue-clearing procedures. Sci. Rep. 2018, 8, 12815, DOI: 10.1038/s41598-018-31153-7There is no corresponding record for this reference.
- 37Na, M.; Kim, K.; Oh, K.; Choi, H. J.; Ha, C.; Chang, S. Sodium Cholate-Based Active Delipidation for Rapid and Efficient Clearing and Immunostaining of Deep Biological Samples. Small Meth. 2022, 6, 2100943, DOI: 10.1002/smtd.202100943There is no corresponding record for this reference.
- 38Song, J.; Zeng, N.; Guo, W.; Guo, J.; Ma, H. Stokes polarization imaging applied for monitoring dynamic tissue optical clearing. Biomed. Opt. Express 2021, 12, 4821– 4836, DOI: 10.1364/BOE.426653There is no corresponding record for this reference.
- 39Kirschnick, N.; Drees, D.; Redder, E.; Erapaneedi, R.; Pereira da Graca, A.; Schafers, M.; Jiang, X.; Kiefer, F. Rapid methods for the evaluation of fluorescent reporters in tissue clearing and the segmentation of large vascular structures. iScience 2021, 24, 102650, DOI: 10.1016/j.isci.2021.102650There is no corresponding record for this reference.
- 40Susaki, E. A.; Ueda, H. R. Whole-body and Whole-Organ Clearing and Imaging Techniques with Single-Cell Resolution: Toward Organism-Level Systems Biology in Mammals. Cell Chemi. Biol. 2016, 23, 137– 157, DOI: 10.1016/j.chembiol.2015.11.009There is no corresponding record for this reference.
- 41Murray, J. D. Mathematical Biology; Springer, 1993.There is no corresponding record for this reference.
- 42Karkach, A. S. Trajectories and models of individual growth. Demog. Res. 2006, 15, 347– 400, DOI: 10.4054/DemRes.2006.15.12There is no corresponding record for this reference.
- 43Zwietering, M. H.; Jongenburger, I.; Rombouts, F. M.; van’t Riet, K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875– 1881, DOI: 10.1128/aem.56.6.1875-1881.1990There is no corresponding record for this reference.
- 44Richardson, D. S.; Lichtman, J. W. Clarifying tissue clearing. Cell 2015, 162, 246– 257, DOI: 10.1016/j.cell.2015.06.067There is no corresponding record for this reference.
- 45Tainaka, K.; Kuno, A.; Kubota, S. I.; Murakami, T.; Ueda, H. R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell Dev. Biol. 2016, 32, 713– 741, DOI: 10.1146/annurev-cellbio-111315-125001There is no corresponding record for this reference.
- 46Kotsyuba, E.; Kalachev, A.; Kameneva, P.; Dyachuk, V. Distribution of Molecules Related to Neurotransmission in the Nervous System of the Mussel Crenomytilus grayanus. Front. Neuroanat. 2020, 14, 35, DOI: 10.3389/fnana.2020.00035There is no corresponding record for this reference.
- 47Wang, W.; Song, X.; Wang, L.; Song, L. Pathogen-Derived Carbohydrate Recognition in Molluscs Immune Defense. Int. J. Mol. Sci. 2018, 19, 721, DOI: 10.3390/ijms19030721There is no corresponding record for this reference.
- 48Stabili, L.; Licciano, M.; Giangrande, A.; Gerardi, C.; De Pascali, S. A.; Fanizzi, F. P. First Insight on the Mucus of the Annelid Myxicola infundibulum (Polychaeta, Sabellidae) as a Potential Prospect for Drug Discovery. Mar. Drugs. 2019, 17, 396, DOI: 10.3390/md17070396There is no corresponding record for this reference.
- 49Kotsyuba, E.; Dyachuk, V. Immunocytochemical Localization of Enzymes Involved in Dopamine, Serotonin, and Acetylcholine Synthesis in the Optic Neuropils and Neuroendocrine System of Eyestalks of Paralithodes camtschaticus. Front. Neuroanat. 2022, 16, 844654, DOI: 10.3389/fnana.2022.844654There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/cbmi.3c00087.
Figures on confocal imaging of optically cleared mice and fish, as well as comparison of diffusion and Gompertz curves for the clearing dynamics (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.