Multimodal Imaging Unveils the Impact of Nanotopography on Cellular Metabolic ActivitiesClick to copy article linkArticle link copied!
- Zhi LiZhi LiShu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United StatesMore by Zhi Li
- Einollah SarikhaniEinollah SarikhaniAiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United StatesMore by Einollah Sarikhani
- Sirasit PrayotamornkulSirasit PrayotamornkulShu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United StatesMore by Sirasit Prayotamornkul
- Dhivya Pushpa MeganathanDhivya Pushpa MeganathanShu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United StatesMore by Dhivya Pushpa Meganathan
- Zeinab Jahed*Zeinab Jahed*[email protected]Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United StatesAiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United StatesMore by Zeinab Jahed
- Lingyan Shi*Lingyan Shi*[email protected]Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United StatesAiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United StatesElectrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United StatesInstitute of Engineering in Medicine, University of California San Diego, La Jolla, California 92093, United StatesSynthetic Biology Institute, University of California San Diego, La Jolla, California 92093, United StatesMore by Lingyan Shi
Abstract
Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform. This multimodal imaging platform, integrating two photon fluorescence (TPF) and stimulated Raman scattering (SRS) microscopy, allowed us to directly visualize and quantify metabolic activities of cells in 3D at the subcellular scale. We discovered that the nanopillar structure significantly reduced the cell spreading area and circularity compared to flat surfaces. Nanopillar-induced mechanical cues significantly modulate cellular metabolic activities with variations in nanopillar geometry further influencing these metabolic processes. Cells cultured on nanopillars exhibited reduced oxidative stress, decreased protein and lipid synthesis, and lower lipid unsaturation in comparison to those on flat substrates. Hierarchical clustering also revealed that pitch differences in the nanopillar had a more significant impact on cell metabolic activity than diameter variations. These insights improve our understanding of how engineered nanotopographies can be used to control cellular metabolism, offering possibilities for designing advanced cell culture platforms which can modulate cell behaviors and mimic natural cellular environment and optimize cell-based applications. By leveraging the unique metabolic effects of nanopillar arrays, one can develop more effective strategies for directing the fate of cells, enhancing the performance of cell-based therapies, and creating regenerative medicine applications.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Introduction
Materials and Methods
Nanopillar Fabrication
Nanopillar Preparation
Cell Culture and Seeding
Shape Analysis Method
Label-Free Multimodal Optical Imaging
Image Segmentation
Multivariate Analysis
Statistical Analysis
Results and Discussion
Multimodal Imaging of Cells on Nanopillar Arrays
Figure 1
Figure 1. Fabrication and characterization of nanopillar arrays and a multimodal imaging setup. (A) Schematic illustration of the fabrication process of nanopillar arrays. Scanning electron microscopy (SEM) images showed the detailed structure of the nanopillars. Then, the nanopillars were coated with extracellular matrix (ECM) proteins, followed by cell seeding, leading to cell and nuclear deformation observable under microscopy. (B) Schematic figure of the multimodal optical imaging platform combining TPF and SRS enabled a 3D visualization of cells with high spatial resolution and imaging of various biomolecules. (C) Raman spectra of HeLa cells under normal and 50% heavy water (D2O) conditions highlighting the shifts in carbon–hydrogen (C–H) and C–D chemical bonds. SRS images revealed the C–D signal shown in the 50% heavy water condition, allowing visualization of metabolic dynamics, including newly synthesized proteins and lipids.
Morphology Changes of Cells and Nuclei on Nanopillar Substrates
Figure 2
Figure 2. Morphological analysis of cells cultured on flat and nanopillar surfaces. (A) Cell area, (B) cell circularity, (C) nuclear area, and (D) nuclear circularity quantified for cells on flat surfaces and nanopillar surfaces with different diameter and pitch configurations: d1p2.5, d1p3.5, and d2p4.5. (E) Representative fluorescence microscopy images of cells stained for nuclei (blue) and actin (red) on flat and nanopillar surfaces. Statistical significance was determined using the one-way ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Scale bar, 40 μm. d1p2.5: diameter of nanopillar is 1 μm and the center-to-center pitch between nanopillars is 2.5 μm.
Cell Metabolism Alteration by Nanopillar–Cell Interactions
Figure 3
Figure 3. Multimodal imaging of metabolic activities of cells cultured on flat and nanopillar (d1p2.5) substrates. (A) 3D multimodal imaging of HeLa cells showing various metabolic markers on flat and nanopillar substrates, respectively. (B–H) Visualization of the optical redox ratio, protein turnover, lipid turnover, lipid unsaturation in cells on flat versus nanopillar surfaces, respectively. Protein turnover refers to the ratio of newly synthesized proteins (CDP) to total protein (CHP), and lipid turnover represents the ratio of newly synthesized lipids (CDL) to pre-existing lipids (CHL). (C, E, G, I) Quantitative analysis of optical redox ratio, protein turnover, lipid turnover, lipid unsaturation in cells on flat surfaces in contrast to nanopillar surfaces. The analysis included the segmentation of cytoplasmic and nuclear regions for comparison (n = 10 cells). Statistical significance was determined using the one-way ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Scale bar, 10 μm.
Multivariate Analysis of Metabolic Profiles
Figure 4
Figure 4. Multivariate analysis of metabolic profiles in cells cultured on flat and various nanopillar surfaces. (A) UMAP analysis of pixel clusters from cells on both flat (blue) and nanopillar (d1p2.5) surfaces (red). (B) Pairwise scatter plots of metabolic profiles of pixels including redox ratio, lipid unsaturation, protein turnover, and lipid turnover. (C) Hierarchical clustering heatmap of metabolic profiles for cells on flat and nanopillar (d1p2.5) surfaces. (D) UMAP analysis of pixel clusters from cells on different nanopillar configurations: d1p2.5 (red), d1p3.5 (purple), and d2p4.5 (green). (E) Pairwise scatter plots of metabolic profiles of pixels from cells across different nanopillar configurations. (F) Hierarchical clustering heatmap of metabolic features for cells on different nanopillar configurations (d1p2.5, d1p3.5, d2p4.5). (G–J) Violin plots in the redox ratio, protein turnover, lipid turnover and lipid unsaturation between cytoplasmic and nuclear regions for cells on nanopillar surfaces d1p2.5 and d1p3.5, respectively (n = 10 cells). Statistical significance is determined by using one-way ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. d1p2.5: diameter of nanopillar is 1 μm and the pitch between nanopillars is 2.5 μm. d1p3.5: diameter of nanopillar is 1 μm and the pitch between nanopillars is 3.5 μm. d2p4.5: diameter of nanopillar is 2 μm and the pitch between nanopillars is 4.5 μm.
Conclusion
Data Availability
All data generated or analyzed during this study are available upon request.
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/cbmi.4c00051.
3D multimodal metabolic images of HeLa cells on different nanopillar arrays; protein channel SRS image of HeLa cells and its segmented image for quantification (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant ECCS-2025752). This work was in part supported by Air Force Office of Scientific Research YIP award (AFOSR FA9550-23-1-0090) and Cancer research coordinating committee faculty seed grant to Z.J. We acknowledge support from NIH R01GM149976, NIH U01AI167892, NIH 5R01NS111039, NIH R21NS125395, U54CA132378, Sloan Research Fellow Award, and Hellman Fellow Award.
References
This article references 50 other publications.
- 1Ermis, M.; Antmen, E.; Hasirci, V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioactive materials 2018, 3 (3), 355– 369, DOI: 10.1016/j.bioactmat.2018.05.005Google ScholarThere is no corresponding record for this reference.
- 2Skoog, S. A.; Kumar, G.; Narayan, R. J.; Goering, P. L. Biological responses to immobilized microscale and nanoscale surface topographies. Pharmacology & therapeutics 2018, 182, 33– 55, DOI: 10.1016/j.pharmthera.2017.07.009Google ScholarThere is no corresponding record for this reference.
- 3Hansel, C. S.; Crowder, S. W.; Cooper, S.; Gopal, S.; João Pardelha da Cruz, M.; de Oliveira Martins, L.; Keller, D.; Rothery, S.; Becce, M.; Cass, A. E. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 2019, 13 (3), 2913– 2926, DOI: 10.1021/acsnano.8b06998Google ScholarThere is no corresponding record for this reference.
- 4Elnathan, R.; Tay, A.; Voelcker, N. H.; Chiappini, C. The start-ups taking nanoneedles into the clinic. Nat. Nanotechnol. 2022, 17 (8), 807– 811, DOI: 10.1038/s41565-022-01158-5Google ScholarThere is no corresponding record for this reference.
- 5Murphy, W. L.; McDevitt, T. C.; Engler, A. J. Materials as stem cell regulators. Nature materials 2014, 13 (6), 547– 557, DOI: 10.1038/nmat3937Google ScholarThere is no corresponding record for this reference.
- 6Finbloom, J. A.; Huynh, C.; Huang, X.; Desai, T. A. Bioinspired nanotopographical design of drug delivery systems. Nature Reviews Bioengineering 2023, 1 (2), 139– 152, DOI: 10.1038/s44222-022-00010-8Google ScholarThere is no corresponding record for this reference.
- 7Qiu, J.; Zhao, H.; Lei, Y. Emerging smart design of electrodes for micro-supercapacitors: A review. SmartMat 2022, 3 (3), 447– 473, DOI: 10.1002/smm2.1094Google ScholarThere is no corresponding record for this reference.
- 8Sarikhani, E.; Pushpa Meganathan, D.; Rahmani, K.; Tsai, C.-T.; Marquez-Serrano, A.; Li, X.; Santoro, F.; Cui, B.; Hyldgaard Klausen, L.; Jahed, Z. Engineering cell and nuclear morphology on nano topography by contact-free protein micropatterning. bioRxiv , 2023, 2023.06.05.543791Google ScholarThere is no corresponding record for this reference.
- 9Hanson, L.; Zhao, W.; Lou, H.-Y.; Lin, Z. C.; Lee, S. W.; Chowdary, P.; Cui, Y.; Cui, B. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nature Nanotechnol. 2015, 10 (6), 554– 562, DOI: 10.1038/nnano.2015.88Google ScholarThere is no corresponding record for this reference.
- 10Losero, E.; Jagannath, S.; Pezzoli, M.; Goblot, V.; Babashah, H.; Lashuel, H. A.; Galland, C.; Quack, N. Neuronal growth on high-aspect-ratio diamond nanopillar arrays for biosensing applications. Sci. Rep. 2023, 13 (1), 5909, DOI: 10.1038/s41598-023-32235-xGoogle ScholarThere is no corresponding record for this reference.
- 11Jahed, Z.; Yang, Y.; Tsai, C.-T.; Foster, E. P.; McGuire, A. F.; Yang, H.; Liu, A.; Forro, C.; Yan, Z.; Jiang, X. Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat. Commun. 2022, 13 (1), 2253, DOI: 10.1038/s41467-022-29726-2Google ScholarThere is no corresponding record for this reference.
- 12Zhang, A.; Lieber, C. M. Nano-bioelectronics. Chem. Rev. 2016, 116 (1), 215– 257, DOI: 10.1021/acs.chemrev.5b00608Google ScholarThere is no corresponding record for this reference.
- 13Lin, Z. C.; Xie, C.; Osakada, Y.; Cui, Y.; Cui, B. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 2014, 5 (1), 3206, DOI: 10.1038/ncomms4206Google ScholarThere is no corresponding record for this reference.
- 14Zeng, Y.; Zhuang, Y.; Vinod, B.; Guo, X.; Mitra, A.; Chen, P.; Saggio, I.; Shivashankar, G.; Gao, W.; Zhao, W. Guiding irregular nuclear morphology on nanopillar arrays for malignancy differentiation in tumor cells. Nano Lett. 2022, 22 (18), 7724– 7733, DOI: 10.1021/acs.nanolett.2c01849Google ScholarThere is no corresponding record for this reference.
- 15Li, X.; Klausen, L. H.; Zhang, W.; Jahed, Z.; Tsai, C.-T.; Li, T. L.; Cui, B. Nanoscale surface topography reduces focal adhesions and cell stiffness by enhancing integrin endocytosis. Nano Lett. 2021, 21 (19), 8518– 8526, DOI: 10.1021/acs.nanolett.1c01934Google ScholarThere is no corresponding record for this reference.
- 16Zhou, J.; Zhang, X.; Sun, J.; Dang, Z.; Li, J.; Li, X.; Chen, T. The effects of surface topography of nanostructure arrays on cell adhesion. Phys. Chem. Chem. Phys. 2018, 20 (35), 22946– 22951, DOI: 10.1039/C8CP03538EGoogle ScholarThere is no corresponding record for this reference.
- 17Wang, K.; Man, K.; Liu, J.; Meckes, B.; Yang, Y. Dissecting physical and biochemical effects in nanotopographical regulation of cell behavior. ACS Nano 2023, 17 (3), 2124– 2133, DOI: 10.1021/acsnano.2c08075Google ScholarThere is no corresponding record for this reference.
- 18Yang, L.; Jurczak, K. M.; Ge, L.; van Rijn, P. High-throughput screening and hierarchical topography-mediated neural differentiation of mesenchymal stem cells. Adv. Healthcare Mater. 2020, 9 (11), 2000117, DOI: 10.1002/adhm.202000117Google ScholarThere is no corresponding record for this reference.
- 19Lestrell, E.; Chen, Y.; Aslanoglou, S.; O’Brien, C. M.; Elnathan, R.; Voelcker, N. H. Silicon Nanoneedle-Induced Nuclear deformation: implications for human somatic and stem cell nuclear mechanics. ACS Appl. Mater. Interfaces 2022, 14 (40), 45124– 45136, DOI: 10.1021/acsami.2c10583Google ScholarThere is no corresponding record for this reference.
- 20Ramos, A. P.; Cruz, M. A.; Tovani, C. B.; Ciancaglini, P. Biomedical applications of nanotechnology. Biophysical reviews 2017, 9 (2), 79– 89, DOI: 10.1007/s12551-016-0246-2Google ScholarThere is no corresponding record for this reference.
- 21Villanueva-Flores, F.; Castro-Lugo, A.; Ramírez, O. T.; Palomares, L. A. Understanding cellular interactions with nanomaterials: Towards a rational design of medical nanodevices. Nanotechnology 2020, 31 (13), 132002, DOI: 10.1088/1361-6528/ab5bc8Google ScholarThere is no corresponding record for this reference.
- 22Ramburrun, P.; Khan, R. A.; Choonara, Y. E. Design, preparation, and functionalization of nanobiomaterials for enhanced efficacy in current and future biomedical applications. Nanotechnol. Rev. 2022, 11 (1), 1802– 1826, DOI: 10.1515/ntrev-2022-0106Google ScholarThere is no corresponding record for this reference.
- 23Liu, R.; Liu, Q.; Pan, Z.; Liu, X.; Ding, J. Cell type and nuclear size dependence of the nuclear deformation of cells on a micropillar array. Langmuir 2019, 35 (23), 7469– 7477, DOI: 10.1021/acs.langmuir.8b02510Google ScholarThere is no corresponding record for this reference.
- 24Wakhloo, N. T. Deformability of cancer cells on 3D microstructured surfaces. Université de Haute Alsace-Mulhouse, 2018.Google ScholarThere is no corresponding record for this reference.
- 25Vargason, A. M.; Anselmo, A. C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nature biomedical engineering 2021, 5 (9), 951– 967, DOI: 10.1038/s41551-021-00698-wGoogle ScholarThere is no corresponding record for this reference.
- 26Li, Z.; Nguyen, C.; Jang, H.; Hoang, D.; Min, S.; Ackerstaff, E.; Koutcher, J. A.; Shi, L. Multimodal imaging of metabolic activities for distinguishing subtypes of breast cancer. Biomedical Optics Express 2023, 14 (11), 5764– 5780, DOI: 10.1364/BOE.500252Google ScholarThere is no corresponding record for this reference.
- 27Fung, A. A.; Hoang, K.; Zha, H.; Chen, D.; Zhang, W.; Shi, L. Imaging sub-cellular methionine and insulin interplay in triple negative breast cancer lipid droplet metabolism. Frontiers in Oncology 2022, 12, 858017, DOI: 10.3389/fonc.2022.858017Google ScholarThere is no corresponding record for this reference.
- 28Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2 (12), 932– 940, DOI: 10.1038/nmeth818Google ScholarThere is no corresponding record for this reference.
- 29Griffiths, V. A.; Valera, A. M.; Lau, J. Y.; Roš, H.; Younts, T. J.; Marin, B.; Baragli, C.; Coyle, D.; Evans, G. J.; Konstantinou, G. Real-time 3D movement correction for two-photon imaging in behaving animals. Nat. Methods 2020, 17 (7), 741– 748, DOI: 10.1038/s41592-020-0851-7Google ScholarThere is no corresponding record for this reference.
- 30Freudiger, C. W.; Min, W.; Saar, B. G.; Lu, S.; Holtom, G. R.; He, C.; Tsai, J. C.; Kang, J. X.; Xie, X. S. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 2008, 322 (5909), 1857– 1861, DOI: 10.1126/science.1165758Google ScholarThere is no corresponding record for this reference.
- 31Wei, M.; Shi, L.; Shen, Y.; Zhao, Z.; Guzman, A.; Kaufman, L. J.; Wei, L.; Min, W. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (14), 6608– 6617, DOI: 10.1073/pnas.1813044116Google ScholarThere is no corresponding record for this reference.
- 32Wei, L.; Chen, Z.; Shi, L.; Long, R.; Anzalone, A. V.; Zhang, L.; Hu, F.; Yuste, R.; Cornish, V. W.; Min, W. Super-multiplex vibrational imaging. Nature 2017, 544 (7651), 465– 470, DOI: 10.1038/nature22051Google ScholarThere is no corresponding record for this reference.
- 33Shi, L.; Zheng, C.; Shen, Y.; Chen, Z.; Silveira, E. S.; Zhang, L.; Wei, M.; Liu, C.; de Sena-Tomas, C.; Targoff, K. Optical imaging of metabolic dynamics in animals. Nat. Commun. 2018, 9 (1), 2995, DOI: 10.1038/s41467-018-05401-3Google ScholarThere is no corresponding record for this reference.
- 34Sarikhani, E.; Meganathan, D. P.; Larsen, A.-K. K.; Rahmani, K.; Tsai, C.-T.; Lu, C.-H.; Marquez-Serrano, A.; Sadr, L.; Li, X.; Dong, M.; Santoro, F.; Cui, B.; Klausen, L. H.; Jahed, Z. Engineering the Cellular Microenvironment: Integrating Three-Dimensional Nontopographical and Two-Dimensional Biochemical Cues for Precise Control of Cellular Behavior. ACS Nano 2024, 18 (29), 19064– 19076, DOI: 10.1021/acsnano.4c03743Google ScholarThere is no corresponding record for this reference.
- 35Sarikhani, E.; Patel, V.; Li, Z.; Meganathan, D. P.; Rahmani, K.; Sadr, L.; Hosseini, R.; Visda, D.; Shukla, S.; Naghsh-Nilchi, H.; Balaji, A.; McMahon, G.; Chen, S.; Schoneberg, J.; McHugh, C. A.; Shi, L.; Jahed, Z. Engineered Nanotopographies Induce Transient Openings in the Nuclear Membrane. Adv. Funct. Mater. 2024, 2410035, DOI: 10.1002/adfm.202410035Google ScholarThere is no corresponding record for this reference.
- 36Bankhead, P.; Loughrey, M. B.; Fernández, J. A.; Dombrowski, Y.; McArt, D. G.; Dunne, P. D.; McQuaid, S.; Gray, R. T.; Murray, L. J.; Coleman, H. G. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7 (1), 1– 7, DOI: 10.1038/s41598-017-17204-5Google ScholarThere is no corresponding record for this reference.
- 37Guilak, F.; Cohen, D. M.; Estes, B. T.; Gimble, J. M.; Liedtke, W.; Chen, C. S. Control of stem cell fate by physical interactions with the extracellular matrix. Cell stem cell 2009, 5 (1), 17– 26, DOI: 10.1016/j.stem.2009.06.016Google ScholarThere is no corresponding record for this reference.
- 38Perestrelo, T.; Correia, M.; Ramalho-Santos, J.; Wirtz, D. Metabolic and mechanical cues regulating pluripotent stem cell fate. Trends in cell biology 2018, 28 (12), 1014– 1029, DOI: 10.1016/j.tcb.2018.09.005Google ScholarThere is no corresponding record for this reference.
- 39Chakraborty, S.; Nian, F.-S.; Tsai, J.-W.; Karmenyan, A.; Chiou, A. Quantification of the metabolic state in cell-model of Parkinson’s disease by fluorescence lifetime imaging microscopy. Sci. Rep. 2016, 6 (1), 1– 9, DOI: 10.1038/srep19145Google ScholarThere is no corresponding record for this reference.
- 40Hu, L.; Wang, N.; Cardona, E.; Walsh, A. J. Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells. Biomedical Optics Express 2020, 11 (10), 5674– 5688, DOI: 10.1364/BOE.401935Google ScholarThere is no corresponding record for this reference.
- 41Heikal, A. A. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomarkers in medicine 2010, 4 (2), 241– 263, DOI: 10.2217/bmm.10.1Google ScholarThere is no corresponding record for this reference.
- 42Wright, B. K.; Andrews, L. M.; Jones, M. R.; Stringari, C.; Digman, M. A.; Gratton, E. Phasor-FLIM analysis of NADH distribution and localization in the nucleus of live progenitor myoblast cells. Microscopy research and technique 2012, 75 (12), 1717– 1722, DOI: 10.1002/jemt.22121Google ScholarThere is no corresponding record for this reference.
- 43Jacob, A.; Xu, H. N.; Stout, A. L.; Li, L. Z. Subcellular analysis of nuclear and cytoplasmic redox indices differentiates breast cancer cell subtypes better than nuclear-to-cytoplasmic area ratio. Journal of Biomedical Optics 2022, 27 (8), 086001– 086001, DOI: 10.1117/1.JBO.27.8.086001Google ScholarThere is no corresponding record for this reference.
- 44Baccouch, R.; Shi, Y.; Vernay, E.; Mathelié-Guinlet, M.; Taib-Maamar, N.; Villette, S.; Feuillie, C.; Rascol, E.; Nuss, P.; Lecomte, S. The impact of lipid polyunsaturation on the physical and mechanical properties of lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2023, 1865 (2), 184084, DOI: 10.1016/j.bbamem.2022.184084Google ScholarThere is no corresponding record for this reference.
- 45Sarikhani, E.; Patel, V.; Li, Z.; Meganathan, D. P.; Rahmani, K.; Sadr, L.; Hosseini, R.; Visda, D.; Shukla, S.; Naghsh-Nilchi, H. Engineered Nanotopographies Induce Transient Openings in the Nuclear Membrane. Adv. Funct. Mater. 2024, 2410035, DOI: 10.1002/adfm.202410035Google ScholarThere is no corresponding record for this reference.
- 46McInnes, L.; Healy, J.; Melville, J., Umap: Uniform manifold approximation and projection for dimension reduction. arXiv , 2018, 1802.03426.Google ScholarThere is no corresponding record for this reference.
- 47Hoffman, B. D.; Grashoff, C.; Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 2011, 475 (7356), 316– 323, DOI: 10.1038/nature10316Google ScholarThere is no corresponding record for this reference.
- 48Zhang, W.; Lu, C.-H.; Nakamoto, M. L.; Tsai, C.-T.; Roy, A. R.; Lee, C. E.; Yang, Y.; Jahed, Z.; Li, X.; Cui, B. Curved adhesions mediate cell attachment to soft matrix fibres in three dimensions. Nat. Cell Biol. 2023, 25 (10), 1453– 1464, DOI: 10.1038/s41556-023-01238-1Google ScholarThere is no corresponding record for this reference.
- 49Dupont, S.; Wickström, S. A. Mechanical regulation of chromatin and transcription. Nat. Rev. Genet. 2022, 23 (10), 624– 643, DOI: 10.1038/s41576-022-00493-6Google ScholarThere is no corresponding record for this reference.
- 50Romani, P.; Brian, I.; Santinon, G.; Pocaterra, A.; Audano, M.; Pedretti, S.; Mathieu, S.; Forcato, M.; Bicciato, S.; Manneville, J.-B. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nature cell biology 2019, 21 (3), 338– 347, DOI: 10.1038/s41556-018-0270-5Google ScholarThere is no corresponding record for this reference.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Figure 1
Figure 1. Fabrication and characterization of nanopillar arrays and a multimodal imaging setup. (A) Schematic illustration of the fabrication process of nanopillar arrays. Scanning electron microscopy (SEM) images showed the detailed structure of the nanopillars. Then, the nanopillars were coated with extracellular matrix (ECM) proteins, followed by cell seeding, leading to cell and nuclear deformation observable under microscopy. (B) Schematic figure of the multimodal optical imaging platform combining TPF and SRS enabled a 3D visualization of cells with high spatial resolution and imaging of various biomolecules. (C) Raman spectra of HeLa cells under normal and 50% heavy water (D2O) conditions highlighting the shifts in carbon–hydrogen (C–H) and C–D chemical bonds. SRS images revealed the C–D signal shown in the 50% heavy water condition, allowing visualization of metabolic dynamics, including newly synthesized proteins and lipids.
Figure 2
Figure 2. Morphological analysis of cells cultured on flat and nanopillar surfaces. (A) Cell area, (B) cell circularity, (C) nuclear area, and (D) nuclear circularity quantified for cells on flat surfaces and nanopillar surfaces with different diameter and pitch configurations: d1p2.5, d1p3.5, and d2p4.5. (E) Representative fluorescence microscopy images of cells stained for nuclei (blue) and actin (red) on flat and nanopillar surfaces. Statistical significance was determined using the one-way ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Scale bar, 40 μm. d1p2.5: diameter of nanopillar is 1 μm and the center-to-center pitch between nanopillars is 2.5 μm.
Figure 3
Figure 3. Multimodal imaging of metabolic activities of cells cultured on flat and nanopillar (d1p2.5) substrates. (A) 3D multimodal imaging of HeLa cells showing various metabolic markers on flat and nanopillar substrates, respectively. (B–H) Visualization of the optical redox ratio, protein turnover, lipid turnover, lipid unsaturation in cells on flat versus nanopillar surfaces, respectively. Protein turnover refers to the ratio of newly synthesized proteins (CDP) to total protein (CHP), and lipid turnover represents the ratio of newly synthesized lipids (CDL) to pre-existing lipids (CHL). (C, E, G, I) Quantitative analysis of optical redox ratio, protein turnover, lipid turnover, lipid unsaturation in cells on flat surfaces in contrast to nanopillar surfaces. The analysis included the segmentation of cytoplasmic and nuclear regions for comparison (n = 10 cells). Statistical significance was determined using the one-way ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. Scale bar, 10 μm.
Figure 4
Figure 4. Multivariate analysis of metabolic profiles in cells cultured on flat and various nanopillar surfaces. (A) UMAP analysis of pixel clusters from cells on both flat (blue) and nanopillar (d1p2.5) surfaces (red). (B) Pairwise scatter plots of metabolic profiles of pixels including redox ratio, lipid unsaturation, protein turnover, and lipid turnover. (C) Hierarchical clustering heatmap of metabolic profiles for cells on flat and nanopillar (d1p2.5) surfaces. (D) UMAP analysis of pixel clusters from cells on different nanopillar configurations: d1p2.5 (red), d1p3.5 (purple), and d2p4.5 (green). (E) Pairwise scatter plots of metabolic profiles of pixels from cells across different nanopillar configurations. (F) Hierarchical clustering heatmap of metabolic features for cells on different nanopillar configurations (d1p2.5, d1p3.5, d2p4.5). (G–J) Violin plots in the redox ratio, protein turnover, lipid turnover and lipid unsaturation between cytoplasmic and nuclear regions for cells on nanopillar surfaces d1p2.5 and d1p3.5, respectively (n = 10 cells). Statistical significance is determined by using one-way ANOVA test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. d1p2.5: diameter of nanopillar is 1 μm and the pitch between nanopillars is 2.5 μm. d1p3.5: diameter of nanopillar is 1 μm and the pitch between nanopillars is 3.5 μm. d2p4.5: diameter of nanopillar is 2 μm and the pitch between nanopillars is 4.5 μm.
References
This article references 50 other publications.
- 1Ermis, M.; Antmen, E.; Hasirci, V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioactive materials 2018, 3 (3), 355– 369, DOI: 10.1016/j.bioactmat.2018.05.005There is no corresponding record for this reference.
- 2Skoog, S. A.; Kumar, G.; Narayan, R. J.; Goering, P. L. Biological responses to immobilized microscale and nanoscale surface topographies. Pharmacology & therapeutics 2018, 182, 33– 55, DOI: 10.1016/j.pharmthera.2017.07.009There is no corresponding record for this reference.
- 3Hansel, C. S.; Crowder, S. W.; Cooper, S.; Gopal, S.; João Pardelha da Cruz, M.; de Oliveira Martins, L.; Keller, D.; Rothery, S.; Becce, M.; Cass, A. E. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 2019, 13 (3), 2913– 2926, DOI: 10.1021/acsnano.8b06998There is no corresponding record for this reference.
- 4Elnathan, R.; Tay, A.; Voelcker, N. H.; Chiappini, C. The start-ups taking nanoneedles into the clinic. Nat. Nanotechnol. 2022, 17 (8), 807– 811, DOI: 10.1038/s41565-022-01158-5There is no corresponding record for this reference.
- 5Murphy, W. L.; McDevitt, T. C.; Engler, A. J. Materials as stem cell regulators. Nature materials 2014, 13 (6), 547– 557, DOI: 10.1038/nmat3937There is no corresponding record for this reference.
- 6Finbloom, J. A.; Huynh, C.; Huang, X.; Desai, T. A. Bioinspired nanotopographical design of drug delivery systems. Nature Reviews Bioengineering 2023, 1 (2), 139– 152, DOI: 10.1038/s44222-022-00010-8There is no corresponding record for this reference.
- 7Qiu, J.; Zhao, H.; Lei, Y. Emerging smart design of electrodes for micro-supercapacitors: A review. SmartMat 2022, 3 (3), 447– 473, DOI: 10.1002/smm2.1094There is no corresponding record for this reference.
- 8Sarikhani, E.; Pushpa Meganathan, D.; Rahmani, K.; Tsai, C.-T.; Marquez-Serrano, A.; Li, X.; Santoro, F.; Cui, B.; Hyldgaard Klausen, L.; Jahed, Z. Engineering cell and nuclear morphology on nano topography by contact-free protein micropatterning. bioRxiv , 2023, 2023.06.05.543791There is no corresponding record for this reference.
- 9Hanson, L.; Zhao, W.; Lou, H.-Y.; Lin, Z. C.; Lee, S. W.; Chowdary, P.; Cui, Y.; Cui, B. Vertical nanopillars for in situ probing of nuclear mechanics in adherent cells. Nature Nanotechnol. 2015, 10 (6), 554– 562, DOI: 10.1038/nnano.2015.88There is no corresponding record for this reference.
- 10Losero, E.; Jagannath, S.; Pezzoli, M.; Goblot, V.; Babashah, H.; Lashuel, H. A.; Galland, C.; Quack, N. Neuronal growth on high-aspect-ratio diamond nanopillar arrays for biosensing applications. Sci. Rep. 2023, 13 (1), 5909, DOI: 10.1038/s41598-023-32235-xThere is no corresponding record for this reference.
- 11Jahed, Z.; Yang, Y.; Tsai, C.-T.; Foster, E. P.; McGuire, A. F.; Yang, H.; Liu, A.; Forro, C.; Yan, Z.; Jiang, X. Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat. Commun. 2022, 13 (1), 2253, DOI: 10.1038/s41467-022-29726-2There is no corresponding record for this reference.
- 12Zhang, A.; Lieber, C. M. Nano-bioelectronics. Chem. Rev. 2016, 116 (1), 215– 257, DOI: 10.1021/acs.chemrev.5b00608There is no corresponding record for this reference.
- 13Lin, Z. C.; Xie, C.; Osakada, Y.; Cui, Y.; Cui, B. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials. Nat. Commun. 2014, 5 (1), 3206, DOI: 10.1038/ncomms4206There is no corresponding record for this reference.
- 14Zeng, Y.; Zhuang, Y.; Vinod, B.; Guo, X.; Mitra, A.; Chen, P.; Saggio, I.; Shivashankar, G.; Gao, W.; Zhao, W. Guiding irregular nuclear morphology on nanopillar arrays for malignancy differentiation in tumor cells. Nano Lett. 2022, 22 (18), 7724– 7733, DOI: 10.1021/acs.nanolett.2c01849There is no corresponding record for this reference.
- 15Li, X.; Klausen, L. H.; Zhang, W.; Jahed, Z.; Tsai, C.-T.; Li, T. L.; Cui, B. Nanoscale surface topography reduces focal adhesions and cell stiffness by enhancing integrin endocytosis. Nano Lett. 2021, 21 (19), 8518– 8526, DOI: 10.1021/acs.nanolett.1c01934There is no corresponding record for this reference.
- 16Zhou, J.; Zhang, X.; Sun, J.; Dang, Z.; Li, J.; Li, X.; Chen, T. The effects of surface topography of nanostructure arrays on cell adhesion. Phys. Chem. Chem. Phys. 2018, 20 (35), 22946– 22951, DOI: 10.1039/C8CP03538EThere is no corresponding record for this reference.
- 17Wang, K.; Man, K.; Liu, J.; Meckes, B.; Yang, Y. Dissecting physical and biochemical effects in nanotopographical regulation of cell behavior. ACS Nano 2023, 17 (3), 2124– 2133, DOI: 10.1021/acsnano.2c08075There is no corresponding record for this reference.
- 18Yang, L.; Jurczak, K. M.; Ge, L.; van Rijn, P. High-throughput screening and hierarchical topography-mediated neural differentiation of mesenchymal stem cells. Adv. Healthcare Mater. 2020, 9 (11), 2000117, DOI: 10.1002/adhm.202000117There is no corresponding record for this reference.
- 19Lestrell, E.; Chen, Y.; Aslanoglou, S.; O’Brien, C. M.; Elnathan, R.; Voelcker, N. H. Silicon Nanoneedle-Induced Nuclear deformation: implications for human somatic and stem cell nuclear mechanics. ACS Appl. Mater. Interfaces 2022, 14 (40), 45124– 45136, DOI: 10.1021/acsami.2c10583There is no corresponding record for this reference.
- 20Ramos, A. P.; Cruz, M. A.; Tovani, C. B.; Ciancaglini, P. Biomedical applications of nanotechnology. Biophysical reviews 2017, 9 (2), 79– 89, DOI: 10.1007/s12551-016-0246-2There is no corresponding record for this reference.
- 21Villanueva-Flores, F.; Castro-Lugo, A.; Ramírez, O. T.; Palomares, L. A. Understanding cellular interactions with nanomaterials: Towards a rational design of medical nanodevices. Nanotechnology 2020, 31 (13), 132002, DOI: 10.1088/1361-6528/ab5bc8There is no corresponding record for this reference.
- 22Ramburrun, P.; Khan, R. A.; Choonara, Y. E. Design, preparation, and functionalization of nanobiomaterials for enhanced efficacy in current and future biomedical applications. Nanotechnol. Rev. 2022, 11 (1), 1802– 1826, DOI: 10.1515/ntrev-2022-0106There is no corresponding record for this reference.
- 23Liu, R.; Liu, Q.; Pan, Z.; Liu, X.; Ding, J. Cell type and nuclear size dependence of the nuclear deformation of cells on a micropillar array. Langmuir 2019, 35 (23), 7469– 7477, DOI: 10.1021/acs.langmuir.8b02510There is no corresponding record for this reference.
- 24Wakhloo, N. T. Deformability of cancer cells on 3D microstructured surfaces. Université de Haute Alsace-Mulhouse, 2018.There is no corresponding record for this reference.
- 25Vargason, A. M.; Anselmo, A. C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nature biomedical engineering 2021, 5 (9), 951– 967, DOI: 10.1038/s41551-021-00698-wThere is no corresponding record for this reference.
- 26Li, Z.; Nguyen, C.; Jang, H.; Hoang, D.; Min, S.; Ackerstaff, E.; Koutcher, J. A.; Shi, L. Multimodal imaging of metabolic activities for distinguishing subtypes of breast cancer. Biomedical Optics Express 2023, 14 (11), 5764– 5780, DOI: 10.1364/BOE.500252There is no corresponding record for this reference.
- 27Fung, A. A.; Hoang, K.; Zha, H.; Chen, D.; Zhang, W.; Shi, L. Imaging sub-cellular methionine and insulin interplay in triple negative breast cancer lipid droplet metabolism. Frontiers in Oncology 2022, 12, 858017, DOI: 10.3389/fonc.2022.858017There is no corresponding record for this reference.
- 28Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2 (12), 932– 940, DOI: 10.1038/nmeth818There is no corresponding record for this reference.
- 29Griffiths, V. A.; Valera, A. M.; Lau, J. Y.; Roš, H.; Younts, T. J.; Marin, B.; Baragli, C.; Coyle, D.; Evans, G. J.; Konstantinou, G. Real-time 3D movement correction for two-photon imaging in behaving animals. Nat. Methods 2020, 17 (7), 741– 748, DOI: 10.1038/s41592-020-0851-7There is no corresponding record for this reference.
- 30Freudiger, C. W.; Min, W.; Saar, B. G.; Lu, S.; Holtom, G. R.; He, C.; Tsai, J. C.; Kang, J. X.; Xie, X. S. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 2008, 322 (5909), 1857– 1861, DOI: 10.1126/science.1165758There is no corresponding record for this reference.
- 31Wei, M.; Shi, L.; Shen, Y.; Zhao, Z.; Guzman, A.; Kaufman, L. J.; Wei, L.; Min, W. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (14), 6608– 6617, DOI: 10.1073/pnas.1813044116There is no corresponding record for this reference.
- 32Wei, L.; Chen, Z.; Shi, L.; Long, R.; Anzalone, A. V.; Zhang, L.; Hu, F.; Yuste, R.; Cornish, V. W.; Min, W. Super-multiplex vibrational imaging. Nature 2017, 544 (7651), 465– 470, DOI: 10.1038/nature22051There is no corresponding record for this reference.
- 33Shi, L.; Zheng, C.; Shen, Y.; Chen, Z.; Silveira, E. S.; Zhang, L.; Wei, M.; Liu, C.; de Sena-Tomas, C.; Targoff, K. Optical imaging of metabolic dynamics in animals. Nat. Commun. 2018, 9 (1), 2995, DOI: 10.1038/s41467-018-05401-3There is no corresponding record for this reference.
- 34Sarikhani, E.; Meganathan, D. P.; Larsen, A.-K. K.; Rahmani, K.; Tsai, C.-T.; Lu, C.-H.; Marquez-Serrano, A.; Sadr, L.; Li, X.; Dong, M.; Santoro, F.; Cui, B.; Klausen, L. H.; Jahed, Z. Engineering the Cellular Microenvironment: Integrating Three-Dimensional Nontopographical and Two-Dimensional Biochemical Cues for Precise Control of Cellular Behavior. ACS Nano 2024, 18 (29), 19064– 19076, DOI: 10.1021/acsnano.4c03743There is no corresponding record for this reference.
- 35Sarikhani, E.; Patel, V.; Li, Z.; Meganathan, D. P.; Rahmani, K.; Sadr, L.; Hosseini, R.; Visda, D.; Shukla, S.; Naghsh-Nilchi, H.; Balaji, A.; McMahon, G.; Chen, S.; Schoneberg, J.; McHugh, C. A.; Shi, L.; Jahed, Z. Engineered Nanotopographies Induce Transient Openings in the Nuclear Membrane. Adv. Funct. Mater. 2024, 2410035, DOI: 10.1002/adfm.202410035There is no corresponding record for this reference.
- 36Bankhead, P.; Loughrey, M. B.; Fernández, J. A.; Dombrowski, Y.; McArt, D. G.; Dunne, P. D.; McQuaid, S.; Gray, R. T.; Murray, L. J.; Coleman, H. G. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7 (1), 1– 7, DOI: 10.1038/s41598-017-17204-5There is no corresponding record for this reference.
- 37Guilak, F.; Cohen, D. M.; Estes, B. T.; Gimble, J. M.; Liedtke, W.; Chen, C. S. Control of stem cell fate by physical interactions with the extracellular matrix. Cell stem cell 2009, 5 (1), 17– 26, DOI: 10.1016/j.stem.2009.06.016There is no corresponding record for this reference.
- 38Perestrelo, T.; Correia, M.; Ramalho-Santos, J.; Wirtz, D. Metabolic and mechanical cues regulating pluripotent stem cell fate. Trends in cell biology 2018, 28 (12), 1014– 1029, DOI: 10.1016/j.tcb.2018.09.005There is no corresponding record for this reference.
- 39Chakraborty, S.; Nian, F.-S.; Tsai, J.-W.; Karmenyan, A.; Chiou, A. Quantification of the metabolic state in cell-model of Parkinson’s disease by fluorescence lifetime imaging microscopy. Sci. Rep. 2016, 6 (1), 1– 9, DOI: 10.1038/srep19145There is no corresponding record for this reference.
- 40Hu, L.; Wang, N.; Cardona, E.; Walsh, A. J. Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells. Biomedical Optics Express 2020, 11 (10), 5674– 5688, DOI: 10.1364/BOE.401935There is no corresponding record for this reference.
- 41Heikal, A. A. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomarkers in medicine 2010, 4 (2), 241– 263, DOI: 10.2217/bmm.10.1There is no corresponding record for this reference.
- 42Wright, B. K.; Andrews, L. M.; Jones, M. R.; Stringari, C.; Digman, M. A.; Gratton, E. Phasor-FLIM analysis of NADH distribution and localization in the nucleus of live progenitor myoblast cells. Microscopy research and technique 2012, 75 (12), 1717– 1722, DOI: 10.1002/jemt.22121There is no corresponding record for this reference.
- 43Jacob, A.; Xu, H. N.; Stout, A. L.; Li, L. Z. Subcellular analysis of nuclear and cytoplasmic redox indices differentiates breast cancer cell subtypes better than nuclear-to-cytoplasmic area ratio. Journal of Biomedical Optics 2022, 27 (8), 086001– 086001, DOI: 10.1117/1.JBO.27.8.086001There is no corresponding record for this reference.
- 44Baccouch, R.; Shi, Y.; Vernay, E.; Mathelié-Guinlet, M.; Taib-Maamar, N.; Villette, S.; Feuillie, C.; Rascol, E.; Nuss, P.; Lecomte, S. The impact of lipid polyunsaturation on the physical and mechanical properties of lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2023, 1865 (2), 184084, DOI: 10.1016/j.bbamem.2022.184084There is no corresponding record for this reference.
- 45Sarikhani, E.; Patel, V.; Li, Z.; Meganathan, D. P.; Rahmani, K.; Sadr, L.; Hosseini, R.; Visda, D.; Shukla, S.; Naghsh-Nilchi, H. Engineered Nanotopographies Induce Transient Openings in the Nuclear Membrane. Adv. Funct. Mater. 2024, 2410035, DOI: 10.1002/adfm.202410035There is no corresponding record for this reference.
- 46McInnes, L.; Healy, J.; Melville, J., Umap: Uniform manifold approximation and projection for dimension reduction. arXiv , 2018, 1802.03426.There is no corresponding record for this reference.
- 47Hoffman, B. D.; Grashoff, C.; Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 2011, 475 (7356), 316– 323, DOI: 10.1038/nature10316There is no corresponding record for this reference.
- 48Zhang, W.; Lu, C.-H.; Nakamoto, M. L.; Tsai, C.-T.; Roy, A. R.; Lee, C. E.; Yang, Y.; Jahed, Z.; Li, X.; Cui, B. Curved adhesions mediate cell attachment to soft matrix fibres in three dimensions. Nat. Cell Biol. 2023, 25 (10), 1453– 1464, DOI: 10.1038/s41556-023-01238-1There is no corresponding record for this reference.
- 49Dupont, S.; Wickström, S. A. Mechanical regulation of chromatin and transcription. Nat. Rev. Genet. 2022, 23 (10), 624– 643, DOI: 10.1038/s41576-022-00493-6There is no corresponding record for this reference.
- 50Romani, P.; Brian, I.; Santinon, G.; Pocaterra, A.; Audano, M.; Pedretti, S.; Mathieu, S.; Forcato, M.; Bicciato, S.; Manneville, J.-B. Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP. Nature cell biology 2019, 21 (3), 338– 347, DOI: 10.1038/s41556-018-0270-5There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/cbmi.4c00051.
3D multimodal metabolic images of HeLa cells on different nanopillar arrays; protein channel SRS image of HeLa cells and its segmented image for quantification (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.