ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Spatially Addressed Synthesis of Amino- and Amino-Oxy-Substituted 1,3,5-Triazine Arrays on Polymeric Membranes

View Author Information
Institut für Medizinische Immunologie, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Schumannstr. 20-21, D-10098 Berlin, Germany, Jerini Bio Tools GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany, and ChemotopiX GmbH, Rudower Chaussee 29, D-12489 Berlin, Germany
Cite this: J. Comb. Chem. 2000, 2, 4, 361–369
Publication Date (Web):May 26, 2000
https://doi.org/10.1021/cc000012g
Copyright © 2000 American Chemical Society

    Article Views

    755

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (205 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Effective spatially addressed parallel assembly of trisamino- and amino-oxy-1,3,5-triazines was achieved by applying the SPOT-synthesis technique on cellulose and polypropylene membranes. In addition to developing a suitable linker strategy and employing amines and phenolate ions as building blocks, a highly effective microwave-assisted nucleophilic substitution procedure at membrane-bound monochlorotriazines was developed. The 1,3,5-triazines obtained could be cleaved in parallel from the solid support by TFA vapor to give compounds adsorbed on the membrane surface in a conserved spatially addressed format for analysis and screening. The reaction conditions developed were employed for the synthesis of 8000 cellulose-bound 1,3,5-triazines which were probed in parallel for binding to the anti-transforming growth factor-α monoclonal antibody Tab2 in order to identify epitope mimics.

     Universitätsklinikum Charité.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Jerini Bio Tools GmbH.

    §

     ChemotopiX GmbH.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Purities of crude 1,3,5-triazines, obtained by selective “spot-wise” nucleophilic substitution of a single chlorine at cellulose or PP-membrane-bound dichlorotriazines, subsequent replacement of remaining chlorines by an appropriate amine,14 and cleavage by TFA. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 88 publications.

    1. Joseph R. Stringer, Matthew D. Bowman, Bernard Weisblum, and Helen E. Blackwell . Improved Small-Molecule Macroarray Platform for the Rapid Synthesis and Discovery of Antibacterial Chalcones. ACS Combinatorial Science 2011, 13 (2) , 175-180. https://doi.org/10.1021/co100053p
    2. Young-Hoon Ahn and Young-Tae Chang. Tagged Small Molecule Library Approach for Facilitated Chemical Genetics. Accounts of Chemical Research 2007, 40 (10) , 1025-1033. https://doi.org/10.1021/ar700030k
    3. Alahyar Emami-Nori, Zahra Karamshahi, Ramin Ghorbani-Vaghei. Efficient Synthesis of Multiply Substituted Triazines Using GO@N-Ligand-Cu Nano-Composite as a Novel Catalyst. Journal of Inorganic and Organometallic Polymers and Materials 2021, 31 (4) , 1801-1810. https://doi.org/10.1007/s10904-020-01830-0
    4. Dirk F. H. Winkler. SPOT Synthesis: The Solid-Phase Peptide Synthesis on Planar Surfaces. 2020, 151-173. https://doi.org/10.1007/978-1-0716-0227-0_10
    5. Navjeet Kaur. Six-membered N-heterocycles. 2020, 1-64. https://doi.org/10.1016/B978-0-12-820282-1.00001-4
    6. Yeongju Lee, Brian Chung, Daseul Ko, Hyun-Suk Lim. A solid-phase method for synthesis of dimeric and trimeric ligands: Identification of potent bivalent ligands of 14-3-3σ. Bioorganic Chemistry 2019, 91 , 103141. https://doi.org/10.1016/j.bioorg.2019.103141
    7. Mani Shanmugam, Kuppusamy Narayanan, Kamatam Hari Prasad, Dhanapalan Karthikeyan, Loganathan Chandrasekaran, Raji Atchudan, V. Chidambaranathan. Synthesis, characterization, and antiproliferative and apoptosis inducing effects of novel s -triazine derivatives. New Journal of Chemistry 2018, 42 (3) , 1698-1714. https://doi.org/10.1039/C7NJ03348F
    8. Yosi Gilad, Michael Firer, Gary Gellerman. Recent Innovations in Peptide Based Targeted Drug Delivery to Cancer Cells. Biomedicines 2016, 4 (2) , 11. https://doi.org/10.3390/biomedicines4020011
    9. Tarek A. Ahmad, Amrou E. Eweida, Salah A. Sheweita. B-cell epitope mapping for the design of vaccines and effective diagnostics. Trials in Vaccinology 2016, 5 , 71-83. https://doi.org/10.1016/j.trivac.2016.04.003
    10. Navjeet Kaur. Six-Membered N -Heterocycles: Microwave-Assisted Synthesis. Synthetic Communications 2015, 45 (1) , 1-34. https://doi.org/10.1080/00397911.2013.813548
    11. Navjeet Kaur. Microwave-Assisted Synthesis of Five-Membered O,N -Heterocycles. Synthetic Communications 2014, 44 (24) , 3509-3537. https://doi.org/10.1080/00397911.2013.800214
    12. George M. Weinstock, David Šmajs, Petra Matějková, Timothy Palzkill, Steven J. Norris. Comparative Pathogenomics of Spirochetes. 2014, 141-159. https://doi.org/10.1128/9781555815530.ch6
    13. J. Aubé, S.A. Rogers, C. Santini. 9.01 Enabling Technologies in High Throughput Chemistry. 2014, 1-27. https://doi.org/10.1016/B978-0-08-097742-3.00904-6
    14. Rudolf Volkmer, Victor Tapia, Christiane Landgraf. Synthetic peptide arrays for investigating protein interaction domains. FEBS Letters 2012, 586 (17) , 2780-2786. https://doi.org/10.1016/j.febslet.2012.04.028
    15. . Microwave Processing Techniques. 2012, 83-150. https://doi.org/10.1002/9783527647828.ch4
    16. . Literature Survey Part D: Combinatorial Chemistry and High‐Throughput Organic Synthesis. 2012, 543-648. https://doi.org/10.1002/9783527647828.ch8
    17. Chang Sup Kim, Yoo Seong Choi, Wooree Ko, Jeong Hyun Seo, Jieun Lee, Hyung Joon Cha. A Mussel Adhesive Protein Fused with the BC Domain of Protein A is a Functional Linker Material that Efficiently Immobilizes Antibodies onto Diverse Surfaces. Advanced Functional Materials 2011, 21 (21) , 4101-4108. https://doi.org/10.1002/adfm.201100710
    18. Cristina Gómez de la Oliva, Pilar Goya Laza, Carmen Ochoa de Ocariz. Six‐Membered Heterocycles: Triazines, Tetrazines and Other Polyaza Systems. 2011, 1777-1864. https://doi.org/10.1002/9783527637737.ch20
    19. Tommaso Carofiglio, Elisa Lubian, Alessandro Varotto. Synthesis, heterogenization and sensing properties of melamine-bridged bis-porphyrin dimers. Journal of Porphyrins and Phthalocyanines 2010, 14 (08) , 701-707. https://doi.org/10.1142/S1088424610002550
    20. Olga Serup Andersen, Prisca Boisguerin, Simon Glerup, Sune Skeldal, Rudolf Volkmer, Thomas E. Willnow, Anders Nykjær, Olav M. Andersen. Identification of a Linear Epitope in Sortilin That Partakes in Pro-neurotrophin Binding. Journal of Biological Chemistry 2010, 285 (16) , 12210-12222. https://doi.org/10.1074/jbc.M109.062364
    21. Dirk F. H. Winkler, Kai Hilpert. Synthesis of Antimicrobial Peptides Using the SPOT Technique. 2010, 111-124. https://doi.org/10.1007/978-1-60761-594-1_8
    22. Mónica Moral, Amparo Ruiz, Andrés Moreno, Angel Díaz-Ortiz, Isabel López-Solera, Antonio de la Hoz, Ana Sánchez-Migallón. Microwave-assisted synthesis of pyrazolyl bistriazines. Tetrahedron 2010, 66 (1) , 121-127. https://doi.org/10.1016/j.tet.2009.11.028
    23. Simani Gaseitsiwe, Davide Valentini, Shahnaz Mahdavifar, Marie Reilly, Anneka Ehrnst, Markus Maeurer. Peptide Microarray-Based Identification of Mycobacterium tuberculosis Epitope Binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. Clinical and Vaccine Immunology 2010, 17 (1) , 168-175. https://doi.org/10.1128/CVI.00208-09
    24. Rudolf Volkmer. Synthesis and Application of Peptide Arrays: Quo Vadis SPOT Technology. ChemBioChem 2009, 10 (9) , 1431-1442. https://doi.org/10.1002/cbic.200900078
    25. Keunhong Jeong, Min Kyum Kim, Woo Young Chung, Young Sik Kye, Ji-Hyun Kim, Junghun Suh. Solution phase synthesis of amyloid-cleaving catalysts, two [1,3,5]triazine based compounds. Journal of Industrial and Engineering Chemistry 2009, 15 (3) , 342-347. https://doi.org/10.1016/j.jiec.2008.12.010
    26. Simani Gaseitsiwe, Davide Valentini, Raija Ahmed, Shahnaz Mahdavifar, Isabelle Magalhaes, Johannes Zerweck, Mike Schutkowski, Emmanuel Gautherot, Felix Montero, Anneka Ehrnst, Marie Reilly, Markus Maeurer. Major Histocompatibility Complex Class II Molecule-Human Immunodeficiency Virus Peptide Analysis Using a Microarray Chip. Clinical and Vaccine Immunology 2009, 16 (4) , 567-573. https://doi.org/10.1128/CVI.00441-08
    27. Dirk F.H. Winkler, Kai Hilpert, Ole Brandt, Robert E.W. Hancock. Synthesis of Peptide Arrays Using SPOT-Technology and the CelluSpots-Method. 2009, 157-174. https://doi.org/10.1007/978-1-60327-394-7_5
    28. . Microwave Processing Techniques. 2008, 87-160. https://doi.org/10.1002/9783527623907.ch4
    29. G. Metz, H. Ottleben, D. Vetter. Chemical Microarrays for Small Molecule Ligand Screening. 2008, 213-236. https://doi.org/10.1002/9783527610754.fa01
    30. Dirk F.H. Winkler, William D. Campbell. The Spot Technique: Synthesis and Screening of Peptide Macroarrays on Cellulose Membranes. 2008, 47-70. https://doi.org/10.1007/978-1-59745-419-3_4
    31. G. Giacomelli, A. Porcheddu. 1,3,5-Triazines. 2008, 197-290. https://doi.org/10.1016/B978-008044992-0.00803-8
    32. Xin Qi, Sook Kyung Kim, Su Jung Han, Li Xu, Ah Young Jee, Ha Na Kim, Chongmok Lee, Youngmee Kim, Minyung Lee, Sung-Jin Kim, Juyoung Yoon. New BODIPY–triazine based tripod fluorescent systems. Tetrahedron Letters 2008, 49 (2) , 261-264. https://doi.org/10.1016/j.tetlet.2007.11.063
    33. Tommaso Carofiglio, Milko Schiorlin, Umberto Tonellato. Supporting porphyrins on resin-beads by cyanuric chloride linker. Journal of Porphyrins and Phthalocyanines 2007, 11 (10) , 749-754. https://doi.org/10.1142/S1088424607000862
    34. Nicolas Winssinger, Zbigniew Pianowski, Francois Debaene. Probing Biology with Small Molecule Microarrays (SMM). 2007, 311-342. https://doi.org/10.1007/128_2007_109
    35. P.W. Erhardt, J.R. Proudfoot. Drug Discovery: Historical Perspective, Current Status, and Outlook. 2007, 29-96. https://doi.org/10.1016/B0-08-045044-X/00002-X
    36. Kai Hilpert, Dirk FH Winkler, Robert EW Hancock. Cellulose-bound Peptide Arrays: Preparation and Applications. Biotechnology and Genetic Engineering Reviews 2007, 24 (1) , 31-106. https://doi.org/10.1080/02648725.2007.10648093
    37. Antonius Dikmans, Ulrike Beutling, Edelgard Schmeisser, Sabine Thiele, Ronald Frank. SC 2 : A Novel Process for Manufacturing Multipurpose High‐Density Chemical Microarrays. QSAR & Combinatorial Science 2006, 25 (11) , 1069-1080. https://doi.org/10.1002/qsar.200640130
    38. Alexander Stadler, C. Oliver Kappe. Microwave‐assisted Combinatorial and High‐throughput Synthesis. 2006, 726-787. https://doi.org/10.1002/9783527619559.ch16
    39. Matthew D. Bowman, Megan M. Jacobson, Brian G. Pujanauski, Helen E. Blackwell. Efficient synthesis of small molecule macroarrays: optimization of the macroarray synthesis platform and examination of microwave and conventional heating methods. Tetrahedron 2006, 62 (19) , 4715-4727. https://doi.org/10.1016/j.tet.2006.02.083
    40. Máté Erdélyi. Solid-Phase Methods for the Microwave-Assisted Synthesis of Heterocycles. 2006, 79-128. https://doi.org/10.1007/7081_001
    41. C. Oliver Kappe, Doris Dallinger. The impact of microwave synthesis on drug discovery. Nature Reviews Drug Discovery 2006, 5 (1) , 51-63. https://doi.org/10.1038/nrd1926
    42. Mahesh Uttamchandani, Jun Wang, Shao Q. Yao. Protein and small molecule microarrays: powerful tools for high-throughput proteomics. Mol. BioSyst. 2006, 2 (1) , 58-68. https://doi.org/10.1039/B513935J
    43. Pappanaicken R. Kumaresan, Kit S. Lam. Screening chemical microarrays: methods and applications. Molecular BioSystems 2006, 2 (5) , 259. https://doi.org/10.1039/b602004f
    44. Yurie Mine, Shiho Yoshihara, Kaori Murakami, Keiko Azuma, Sayaka Nasu, Tomoe Tanaka, Kimitoshi Fukunaga, Takashi Saeki, Etsuo Sawano. Preparations of Tofu from Soymilk Containing Okara hydrolysates Treated with Immobilized Transglutaminase. Nippon Shokuhin Kagaku Kogaku Kaishi 2006, 53 (1) , 39-47. https://doi.org/10.3136/nskkk.53.39
    45. D. V. Kuznetsov, V. A. Raev, G. L. Kuranov, O. V. Arapov, R. R. Kostikov. Microwave Activation in Organic Synthesis. Russian Journal of Organic Chemistry 2005, 41 (12) , 1719-1749. https://doi.org/10.1007/s11178-006-0030-z
    46. Dong-Sik Shin, Do-Hyun Kim, Woo-Jae Chung, Yoon-Sik Lee. Combinatorial Solid Phase Peptide Synthesis and Bioassays. BMB Reports 2005, 38 (5) , 517-525. https://doi.org/10.5483/BMBRep.2005.38.5.517
    47. Ángel Díaz-Ortiz, José Elguero, Antonio de la Hoz, Agustín Jiménez, Andrés Moreno, Sergio Moreno, Ana Sánchez-Migallón. Microwave-Assisted Synthesis and Dynamic Behaviour ofN2,N4,N6-Tris(1H-pyrazolyl)-1,3,5-triazine-2,4,6-triamines. QSAR & Combinatorial Science 2005, 24 (5) , 649-659. https://doi.org/10.1002/qsar.200420116
    48. Jane R. Snyder, Andrea Hall, Li Ni-Komatsu, Sonya M. Khersonsky, Young-Tae Chang, Seth J. Orlow. Dissection of Melanogenesis with Small Molecules Identifies Prohibitin as a Regulator. Chemistry & Biology 2005, 12 (4) , 477-484. https://doi.org/10.1016/j.chembiol.2005.02.014
    49. Mahesh Uttamchandani, Daniel P Walsh, Shao Q Yao, Young-Tae Chang. Small molecule microarrays: recent advances and applications. Current Opinion in Chemical Biology 2005, 9 (1) , 4-13. https://doi.org/10.1016/j.cbpa.2004.12.005
    50. C. Oliver Kappe. Kontrolliertes Erhitzen mit Mikrowellen in der modernen organischen Synthese. Angewandte Chemie 2004, 116 (46) , 6408-6443. https://doi.org/10.1002/ange.200400655
    51. C. Oliver Kappe. Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition 2004, 43 (46) , 6250-6284. https://doi.org/10.1002/anie.200400655
    52. Tommaso Carofiglio, Alessandro Varotto, Umberto Tonellato. One-Pot Synthesis of Cyanuric Acid-Bridged Porphyrin−Porphyrin Dyads. The Journal of Organic Chemistry 2004, 69 (23) , 8121-8124. https://doi.org/10.1021/jo048713d
    53. Thomas Kodadek, M. Muralidhar Reddy, Hernando J. Olivos, Kiran Bachhawat-Sikder, Prasanna G. Alluri. Synthetic Molecules as Antibody Replacements. Accounts of Chemical Research 2004, 37 (9) , 711-718. https://doi.org/10.1021/ar030145l
    54. Matthew D. Bowman, Ryan C. Jeske, Helen E. Blackwell. Microwave-Accelerated SPOT-Synthesis on Cellulose Supports. Organic Letters 2004, 6 (12) , 2019-2022. https://doi.org/10.1021/ol049313f
    55. Shuwei Li, Dawn Bowerman, Nishanth Marthandan, Stanley Klyza, Kevin J. Luebke, Harold R. Garner, Thomas Kodadek. Photolithographic Synthesis of Peptoids. Journal of the American Chemical Society 2004, 126 (13) , 4088-4089. https://doi.org/10.1021/ja039565w
    56. Davood Azarifar, Mohammad Ali Zolfigol, Ali Forghaniha. A Convenient Method for the Preparation of Some New Derivatives of 1,3,5-s- Triazine under Solvent Free Condition. HETEROCYCLES 2004, 63 (8) , 1897. https://doi.org/10.3987/COM-04-10114
    57. Marcel Patek, Pavel Safar, Martin Smrčina, Eric Wegrzyniak, Kirsten Bjergarde, Aleksandra Weichsel, Peter Strop. 2D and 3D Spatially Addressed Arrays for High-Throughput Automated Synthesis of Combinatorial Libraries. Journal of Combinatorial Chemistry 2004, 6 (1) , 43-49. https://doi.org/10.1021/cc0300311
    58. Niklas Heine, Thomas Ast, Jens Schneider-Mergener, Ulrich Reineke, Lothar Germeroth, Holger Wenschuh. Synthesis and screening of peptoid arrays on cellulose membranes. Tetrahedron 2003, 59 (50) , 9919-9930. https://doi.org/10.1016/j.tet.2003.10.044
    59. Wendy A. Warr. High‐Throughput Chemistry. 2003, 1604-1639. https://doi.org/10.1002/9783527618279.ch44f
    60. Lidia De Luca, Giampaolo Giacomelli, Andrea Porcheddu, Margherita Salaris, Maurizio Taddei. Cellulose Beads:  a New Versatile Solid Support for Microwave- Assisted Synthesis. Preparation of Pyrazole and Isoxazole Libraries. Journal of Combinatorial Chemistry 2003, 5 (4) , 465-471. https://doi.org/10.1021/cc0201187
    61. Ghotas Evindar, Robert A. Batey. Peptide Heterocycle Conjugates:  A Diverted Edman Degradation Protocol for the Synthesis of N-Terminal 2-Iminohydantoins. Organic Letters 2003, 5 (8) , 1201-1204. https://doi.org/10.1021/ol034032d
    62. Eduard R Felder, Wolfgang K.-D Brill, Katia Martina. Derivatization Reactions of Heterocyclic Scaffolds on Solid Phase: Tools for the Synthesis of Drug-Like Molecule Libraries. 2003, 435-469. https://doi.org/10.1016/S0076-6879(03)69023-3
    63. Florencio Zaragoza. New Strategies for the Solid-Phase Synthesis of Highly Functionalized, Small Molecules: Sequential Nucleophilic Substitutions on Polymer-Bound Polyelectrophiles. 2003, 517-527. https://doi.org/10.1016/S0076-6879(03)69026-9
    64. Jacqueline T. Bork, Jae Wook Lee, Sonya M Khersonsky, Ho-Sang Moon, Young-Tae Chang. Novel Orthogonal Strategy toward Solid-Phase Synthesis of 1,3,5-Substituted Triazines. Organic Letters 2003, 5 (2) , 117-120. https://doi.org/10.1021/ol027195v
    65. Brad R. Henke, Thomas G. Consler, Ning Go, Ron L. Hale, Dana R. Hohman, Stacey A. Jones, Amy T. Lu, Linda B. Moore, John T. Moore, Lisa A. Orband-Miller, R. Graham Robinett, Jean Shearin, Paul K. Spearing, Eugene L. Stewart, Philip S. Turnbull, Susan L. Weaver, Shawn P. Williams, G. Bruce Wisely, Millard H. Lambert. A New Series of Estrogen Receptor Modulators That Display Selectivity for Estrogen Receptor β. Journal of Medicinal Chemistry 2002, 45 (25) , 5492-5505. https://doi.org/10.1021/jm020291h
    66. Ho-Sang Moon, Eric M. Jacobson, Sonya M. Khersonsky, Michael R. Luzung, Daniel P. Walsh, Wennan Xiong, Jae Wook Lee, Puja B. Parikh, Jennifer C. Lam, Tae-Wook Kang, Gustavo R. Rosania, Alexander F. Schier, Young-Tae Chang. A Novel Microtubule Destabilizing Entity from Orthogonal Synthesis of Triazine Library and Zebrafish Embryo Screening. Journal of the American Chemical Society 2002, 124 (39) , 11608-11609. https://doi.org/10.1021/ja026720i
    67. Ulrich Reineke, Claudia Ivascu, Marén Schlief, Christiane Landgraf, Seike Gericke, Grit Zahn, Hanspeter Herzel, Rudolf Volkmer-Engert, Jens Schneider-Mergener. Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences. Journal of Immunological Methods 2002, 267 (1) , 37-51. https://doi.org/10.1016/S0022-1759(02)00139-4
    68. C.Oliver Kappe. High-speed combinatorial synthesis utilizing microwave irradiation. Current Opinion in Chemical Biology 2002, 6 (3) , 314-320. https://doi.org/10.1016/S1367-5931(02)00306-X
    69. Nicholas A Boyle, Kim D Janda. Formats for combinatorial synthesis: solid-phase, liquid-phase and surface. Current Opinion in Chemical Biology 2002, 6 (3) , 339-346. https://doi.org/10.1016/S1367-5931(02)00308-3
    70. Bernard Wathey, Jason Tierney, Pelle Lidström, Jacob Westman. The impact of microwave-assisted organic chemistry on drug discovery. Drug Discovery Today 2002, 7 (6) , 373-380. https://doi.org/10.1016/S1359-6446(02)02178-5
    71. Amy Lew, Peter O. Krutzik, Matthew E. Hart, A. Richard Chamberlin. Increasing Rates of Reaction:  Microwave-Assisted Organic Synthesis for Combinatorial Chemistry. Journal of Combinatorial Chemistry 2002, 4 (2) , 95-105. https://doi.org/10.1021/cc010048o
    72. Gernot A. Strohmeier, C. Oliver Kappe. Rapid Parallel Synthesis of Polymer-Bound Enones Utilizing Microwave-Assisted Solid-Phase Chemistry. Journal of Combinatorial Chemistry 2002, 4 (2) , 154-161. https://doi.org/10.1021/cc010043r
    73. Oliver Birkert, Rolf Tünnemann, Günther Jung, Günter Gauglitz. Label-Free Parallel Screening of Combinatorial Triazine Libraries Using Reflectometric Interference Spectroscopy. Analytical Chemistry 2002, 74 (4) , 834-840. https://doi.org/10.1021/ac0106952
    74. Dirk Vetter. Chemical microarrays, fragment diversity, label-free imaging by plasmon resonance?a chemical genomics approach. Journal of Cellular Biochemistry 2002, 87 (S39) , 79-84. https://doi.org/10.1002/jcb.10408
    75. Carolyn D Dzierba, Andrew P Combs. Chapter 25. Microwave-assisted chemistry as a tool for drug discovery. 2002, 247-256. https://doi.org/10.1016/S0065-7743(02)37026-X
    76. Claire M. Coleman, J. M. D. MacElroy, John F. Gallagher, Donal F. O'Shea. Microwave Parallel Library Generation:  Comparison of a Conventional- and Microwave-Generated Substituted 4(5)-Sulfanyl-1 H -imidazole Library. Journal of Combinatorial Chemistry 2002, 4 (1) , 87-93. https://doi.org/10.1021/cc0100619
    77. Pelle Lidström, Jason Tierney, Bernard Wathey, Jacob Westman. Microwave assisted organic synthesis—a review. Tetrahedron 2001, 57 (45) , 9225-9283. https://doi.org/10.1016/S0040-4020(01)00906-1
    78. Roland E. Dolle. Comprehensive Survey of Combinatorial Library Synthesis:  2000. Journal of Combinatorial Chemistry 2001, 3 (6) , 477-517. https://doi.org/10.1021/cc010049g
    79. Nathanael S Gray. Combinatorial libraries and biological discovery. Current Opinion in Neurobiology 2001, 11 (5) , 608-614. https://doi.org/10.1016/S0959-4388(00)00257-9
    80. Rhett L Affleck. Solutions for library encoding to create collections of discrete compounds. Current Opinion in Chemical Biology 2001, 5 (3) , 257-263. https://doi.org/10.1016/S1367-5931(00)00200-3
    81. Alexander Stadler, C.Oliver Kappe. The effect of microwave irradiation on carbodiimide-mediated esterifications on solid support. Tetrahedron 2001, 57 (18) , 3915-3920. https://doi.org/10.1016/S0040-4020(01)00260-5
    82. Ulrich Reineke, Rudolf Volkmer-Engert, Jens Schneider-Mergener. Applications of peptide arrays prepared by the SPOT-technology. Current Opinion in Biotechnology 2001, 12 (1) , 59-64. https://doi.org/10.1016/S0958-1669(00)00178-6
    83. Niklas Heine, Jens Schneider-Mergener, Holger Wenschuh. SPOT Synthesis of 1,3,5-Trisubstituted Hydantoins on Cellulose Membranes. 2001, 579-580. https://doi.org/10.1007/978-94-010-0464-0_268
    84. Niklas Heine, Lothar Germeroth, Jens Schneider-Mergener, Holger Wenschuh. A modular approach to the SPOT synthesis of 1,3,5-trisubstituted hydantoins on cellulose membranes. Tetrahedron Letters 2001, 42 (2) , 227-230. https://doi.org/10.1016/S0040-4039(00)01960-2
    85. Carmen Ochoa, Pilar Goya. Six-Membered Ring Systems: Triazines, Tetrazines and Fused Ring Polyaza Systems. 2001, 296-316. https://doi.org/10.1016/S0959-6380(01)80016-7
    86. Dirk Scharn, Lothar Germeroth, Jens Schneider-Mergener, Holger Wenschuh. Sequential Nucleophilic Substitution on Halogenated Triazines, Pyrimidines, and Purines:  A Novel Approach to Cyclic Peptidomimetics. The Journal of Organic Chemistry 2001, 66 (2) , 507-513. https://doi.org/10.1021/jo005631q
    87. Holger Wenschuh, Rudolf Volkmer-Engert, Margit Schmidt, Marco Schulz, Jens Schneider-Mergener, Ulrich Reineke. Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 2000, 55 (3) , 188-206. https://doi.org/10.1002/1097-0282(2000)55:3<188::AID-BIP20>3.0.CO;2-T
    88. Ulrich Reineke, Jens Schneider-Mergener, Mike Schutkowski. Peptide Arrays in Proteomics and Drug Discovery. , 161-282. https://doi.org/10.1007/978-0-387-25843-0_7

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect