ACS Publications. Most Trusted. Most Cited. Most Read
Random Forest:  A Classification and Regression Tool for Compound Classification and QSAR Modeling
My Activity

Figure 1Loading Img
    B: Liquids; Chemical and Dynamical Processes in Solution

    Random Forest:  A Classification and Regression Tool for Compound Classification and QSAR Modeling
    Click to copy article linkArticle link copied!

    View Author Information
    Biometrics Research, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065, Molecular Systems, Merck Research Laboratories, P.O. Box 4, West Point, Pennsylvania 19486, and Molecular Systems, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Information and Computer Sciences

    Cite this: J. Chem. Inf. Comput. Sci. 2003, 43, 6, 1947–1958
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ci034160g
    Published November 4, 2003
    Copyright © 2003 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    A new classification and regression tool, Random Forest, is introduced and investigated for predicting a compound's quantitative or categorical biological activity based on a quantitative description of the compound's molecular structure. Random Forest is an ensemble of unpruned classification or regression trees created by using bootstrap samples of the training data and random feature selection in tree induction. Prediction is made by aggregating (majority vote or averaging) the predictions of the ensemble. We built predictive models for six cheminformatics data sets. Our analysis demonstrates that Random Forest is a powerful tool capable of delivering performance that is among the most accurate methods to date. We also present three additional features of Random Forest:  built-in performance assessment, a measure of relative importance of descriptors, and a measure of compound similarity that is weighted by the relative importance of descriptors. It is the combination of relatively high prediction accuracy and its collection of desired features that makes Random Forest uniquely suited for modeling in cheminformatics.

    Copyright © 2003 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author phone:  (732)594-5544; fax:  (732)594-1565; e-mail:  [email protected].

     Biometrics Research.

     Molecular Systems, West Point, Pennsylvania.

    §

     Molecular Systems, Rahway, New Jersey.

    Supporting Information Available

    Click to copy section linkSection link copied!

    The R code used to generate most of the results in this paper is available as a text file, as are data files for the data sets for which we generated our own descriptors (P-gp, MDRR, and Dopamine). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 2521 publications.

    1. Jae Young Kim, Salman A. Khan, Dionisios G. Vlachos. Similarity-Based Machine Learning for Small Data Sets: Predicting Biolubricant Base Oil Viscosities. The Journal of Physical Chemistry B 2024, Article ASAP.
    2. Jaehyun Park, Farshud Sorourifar, Madhav R. Muthyala, Abigail M. Houser, Madison Tuttle, Joel A. Paulson, Shiyu Zhang. Zero-Shot Discovery of High-Performance, Low-Cost Organic Battery Materials Using Machine Learning. Journal of the American Chemical Society 2024, 146 (45) , 31230-31239. https://doi.org/10.1021/jacs.4c11663
    3. Ruoqi Yang, Zhepeng Ma, Zhiheng Wei, Fan Wang, Guangfu Yang. Improved Ensemble Model for Insecticide Recognition by Incorporating Insect Toxicity Data. Journal of Agricultural and Food Chemistry 2024, 72 (44) , 24219-24227. https://doi.org/10.1021/acs.jafc.4c04252
    4. Siying Wu, Linping Wang, Daniel Schlenk, Jing Liu. Machine Learning-Based Toxicological Modeling for Screening Environmental Obesogens. Environmental Science & Technology 2024, 58 (41) , 18133-18144. https://doi.org/10.1021/acs.est.4c05070
    5. Wei Ma, Jiaqi Hu, Zhuangzhi Chen, Yaoqin Ai, Yihang Zhang, Keke Dong, Xiangfei Meng, Liu Liu. The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform. Journal of Chemical Information and Modeling 2024, 64 (19) , 7273-7290. https://doi.org/10.1021/acs.jcim.4c00595
    6. Gamage Isuri P. Wijesekera, Fahidat A. Gbadamosi, Muhammad Saddam Hossain, Abhilash Patra, Christopher Sutton, Linda S. Shimizu. Understanding the Key Factors for Photoinduced Radical Generation in Crystalline Triphenylamines Using Experiment and Machine Learning. The Journal of Physical Chemistry C 2024, 128 (39) , 16713-16720. https://doi.org/10.1021/acs.jpcc.4c03579
    7. Jiaojiao Fang, Yan Tang, Changda Gong, Zejun Huang, Yanjun Feng, Guixia Liu, Yun Tang, Weihua Li. Prediction of Cytochrome P450 Substrates Using the Explainable Multitask Deep Learning Models. Chemical Research in Toxicology 2024, 37 (9) , 1535-1548. https://doi.org/10.1021/acs.chemrestox.4c00199
    8. Ashish Masarkar, Auhin Kumar Maparu, Yaswanth Sai Nukavarapu, Beena Rai. Predicting Cytotoxicity of Nanoparticles: A Meta-Analysis Using Machine Learning. ACS Applied Nano Materials 2024, 7 (17) , 19991-20002. https://doi.org/10.1021/acsanm.4c02269
    9. Donghyeon Kim, Jaeseong Jeong, Jinhee Choi. Identification of Optimal Machine Learning Algorithms and Molecular Fingerprints for Explainable Toxicity Prediction Models Using ToxCast/Tox21 Bioassay Data. ACS Omega 2024, 9 (36) , 37934-37941. https://doi.org/10.1021/acsomega.4c04474
    10. Jordan E. Crivelli-Decker, Zane Beckwith, Gary Tom, Ly Le, Sheenam Khuttan, Romelia Salomon-Ferrer, Jackson Beall, Rafael Gómez-Bombarelli, Andrea Bortolato. Machine Learning Guided AQFEP: A Fast and Efficient Absolute Free Energy Perturbation Solution for Virtual Screening. Journal of Chemical Theory and Computation 2024, 20 (16) , 7188-7198. https://doi.org/10.1021/acs.jctc.4c00399
    11. Yuting Xu, Andy Liaw, Robert P. Sheridan, Vladimir Svetnik. Development and Evaluation of Conformal Prediction Methods for Quantitative Structure–Activity Relationship. ACS Omega 2024, 9 (27) , 29478-29490. https://doi.org/10.1021/acsomega.4c02017
    12. Duancheng Zhao, Yanhong Zhang, Yihao Chen, Biaoshun Li, Wenguang Zhou, Ling Wang. Highly Accurate and Explainable Predictions of Small-Molecule Antioxidants for Eight In Vitro Assays Simultaneously through an Alternating Multitask Learning Strategy. Journal of Chemical Information and Modeling 2024, Article ASAP.
    13. Kirill P. Larionov, Vasilii Yu. Evtushok. From Synthesis Conditions to UiO-66 Properties: Machine Learning Approach. Chemistry of Materials 2024, 36 (9) , 4291-4302. https://doi.org/10.1021/acs.chemmater.3c03180
    14. Moritz Walter, Samuel J. Webb, Valerie J. Gillet. Interpreting Neural Network Models for Toxicity Prediction by Extracting Learned Chemical Features. Journal of Chemical Information and Modeling 2024, 64 (9) , 3670-3688. https://doi.org/10.1021/acs.jcim.4c00127
    15. Evgenii Ziaikin, Edisson Tello, Devin G. Peterson, Masha Y. Niv. BitterMasS: Predicting Bitterness from Mass Spectra. Journal of Agricultural and Food Chemistry 2024, 72 (18) , 10537-10547. https://doi.org/10.1021/acs.jafc.3c09767
    16. Jawad Al-Darweesh, Murtada Saleh Aljawad, Zeeshan Tariq, Shabeeb Alajmei, Bicheng Yan, Muhammad Shahzad Kamal. Prediction of Foam Rheology Models Parameters Utilizing Machine Learning Tools. ACS Omega 2024, 9 (18) , 20397-20409. https://doi.org/10.1021/acsomega.4c00965
    17. Shang Lou, Zhuohang Yu, Zejun Huang, Haoqiang Wang, Fei Pan, Weihua Li, Guixia Liu, Yun Tang. In Silico Prediction of Chemical Acute Dermal Toxicity Using Explainable Machine Learning Methods. Chemical Research in Toxicology 2024, 37 (3) , 513-524. https://doi.org/10.1021/acs.chemrestox.4c00012
    18. Haoyue Tan, Jinsha Jin, Chao Fang, Ying Zhang, Baodi Chang, Xiaowei Zhang, Hongxia Yu, Wei Shi. Deep Learning in Environmental Toxicology: Current Progress and Open Challenges. ACS ES&T Water 2024, 4 (3) , 805-819. https://doi.org/10.1021/acsestwater.3c00152
    19. Runyao Huang, Chenyang Yu, Hongtao Wang, Shike Zhang, Leyi Wang, Huiping Li, Zhenjian Zhang, Zhen Zhou. Spatial and Temporal Modeling on Energy Consumption of Wastewater Treatment Based on Machine Learning Algorithms. ACS ES&T Water 2024, 4 (3) , 1119-1130. https://doi.org/10.1021/acsestwater.3c00430
    20. Franco Lombardo, Jörg Bentzien, Giuliano Berellini, Ingo Muegge. Prediction of Human Clearance Using In Silico Models with Reduced Bias. Molecular Pharmaceutics 2024, 21 (3) , 1192-1203. https://doi.org/10.1021/acs.molpharmaceut.3c00812
    21. Yiming Wang, Kathleen J. Stebe, Cesar de la Fuente-Nunez, Ravi Radhakrishnan. Computational Design of Peptides for Biomaterials Applications. ACS Applied Bio Materials 2024, 7 (2) , 617-625. https://doi.org/10.1021/acsabm.2c01023
    22. Robert J. Appleton, Peter Salek, Alex D. Casey, Brian C. Barnes, Steven F. Son, Alejandro Strachan. Interpretable Performance Models for Energetic Materials using Parsimonious Neural Networks. The Journal of Physical Chemistry A 2024, 128 (6) , 1142-1153. https://doi.org/10.1021/acs.jpca.3c06159
    23. Zeguo Yang, Ling Wang, Ying Yang, Xudi Pang, Yuzhen Sun, Yong Liang, Huiming Cao. Screening of the Antagonistic Activity of Potential Bisphenol A Alternatives toward the Androgen Receptor Using Machine Learning and Molecular Dynamics Simulation. Environmental Science & Technology 2024, 58 (6) , 2817-2829. https://doi.org/10.1021/acs.est.3c09779
    24. Zhen Song, Jiahui Chen, Jie Cheng, Guzhong Chen, Zhiwen Qi. Computer-Aided Molecular Design of Ionic Liquids as Advanced Process Media: A Review from Fundamentals to Applications. Chemical Reviews 2024, 124 (2) , 248-317. https://doi.org/10.1021/acs.chemrev.3c00223
    25. Varvara Voinarovska, Mikhail Kabeshov, Dmytro Dudenko, Samuel Genheden, Igor V. Tetko. When Yield Prediction Does Not Yield Prediction: An Overview of the Current Challenges. Journal of Chemical Information and Modeling 2024, 64 (1) , 42-56. https://doi.org/10.1021/acs.jcim.3c01524
    26. L. Edwin Gonzalez, Dalton T. Snyder, Harman Casey, Yanyang Hu, Donna M. Wang, Megan Guetzloff, Nicole Huckaby, Eric T. Dziekonski, J. Mitchell Wells, R. Graham Cooks. Machine-Learning Classification of Bacteria Using Two-Dimensional Tandem Mass Spectrometry. Analytical Chemistry 2023, 95 (46) , 17082-17088. https://doi.org/10.1021/acs.analchem.3c04016
    27. Saer Samanipour, Jake W. O’Brien, Malcolm J. Reid, Kevin V. Thomas, Antonia Praetorius. From Molecular Descriptors to Intrinsic Fish Toxicity of Chemicals: An Alternative Approach to Chemical Prioritization. Environmental Science & Technology 2023, 57 (46) , 17950-17958. https://doi.org/10.1021/acs.est.2c07353
    28. Xuelian Jia, Tong Wang, Hao Zhu. Advancing Computational Toxicology by Interpretable Machine Learning. Environmental Science & Technology 2023, 57 (46) , 17690-17706. https://doi.org/10.1021/acs.est.3c00653
    29. Huiming Cao, Zhunjie Li, Bolei Chen, Jing Wang, Zhen Zhou, Zhi Li, Yun Qian, Yong Liang. From Environmental Toxicants to Antibacterial Agents: BPA Analogues Selectively Inhibit the Growth of Gram-Positive Bacteria by Disturbing Biosynthesis of the Cell Wall. Environment & Health 2023, 1 (4) , 291-299. https://doi.org/10.1021/envhealth.3c00092
    30. Shilpa Shilpa, Gargee Kashyap, Raghavan B. Sunoj. Recent Applications of Machine Learning in Molecular Property and Chemical Reaction Outcome Predictions. The Journal of Physical Chemistry A 2023, 127 (40) , 8253-8271. https://doi.org/10.1021/acs.jpca.3c04779
    31. Nicola Gambacorta, Fulvio Ciriaco, Nicola Amoroso, Cosimo Damiano Altomare, Jürgen Bajorath, Orazio Nicolotti. CIRCE: Web-Based Platform for the Prediction of Cannabinoid Receptor Ligands Using Explainable Machine Learning. Journal of Chemical Information and Modeling 2023, 63 (18) , 5916-5926. https://doi.org/10.1021/acs.jcim.3c00914
    32. Loriano Storchi, Gabriele Cruciani, Simon Cross. DeepGRID: Deep Learning Using GRID Descriptors for BBB Prediction. Journal of Chemical Information and Modeling 2023, 63 (17) , 5496-5512. https://doi.org/10.1021/acs.jcim.3c00768
    33. Amro Othman, Zeeshan Tariq, Murtada Saleh Aljawad, Bicheng Yan, Muhammad Shahzad Kamal. Enhancing Fracturing Fluid Viscosity in High Salinity Water: A Data-Driven Approach for Prediction and Optimization. Energy & Fuels 2023, 37 (17) , 13065-13079. https://doi.org/10.1021/acs.energyfuels.3c02272
    34. Longqiang Li, Zhou Lu, Guixia Liu, Yun Tang, Weihua Li. Machine Learning Models to Predict Cytochrome P450 2B6 Inhibitors and Substrates. Chemical Research in Toxicology 2023, 36 (8) , 1332-1344. https://doi.org/10.1021/acs.chemrestox.3c00065
    35. Qunfeng Zhang, Wenlong Zheng, Zhongdi Song, Qiang Zhang, Lirong Yang, Jianping Wu, Jianping Lin, Gang Xu, Haoran Yu. Machine Learning Enables Prediction of Pyrrolysyl-tRNA Synthetase Substrate Specificity. ACS Synthetic Biology 2023, 12 (8) , 2403-2417. https://doi.org/10.1021/acssynbio.3c00225
    36. Zhiling Zheng, Oufan Zhang, Christian Borgs, Jennifer T. Chayes, Omar M. Yaghi. ChatGPT Chemistry Assistant for Text Mining and the Prediction of MOF Synthesis. Journal of the American Chemical Society 2023, 145 (32) , 18048-18062. https://doi.org/10.1021/jacs.3c05819
    37. Tom Bailey, Adam Jackson, Razvan-Antonio Berbece, Kejun Wu, Nicole Hondow, Elaine Martin. Gradient Boosted Machine Learning Model to Predict H2, CH4, and CO2 Uptake in Metal–Organic Frameworks Using Experimental Data. Journal of Chemical Information and Modeling 2023, 63 (15) , 4545-4551. https://doi.org/10.1021/acs.jcim.3c00135
    38. Yuxuan Hu, Qiuhan Ren, Xintong Liu, Liming Gao, Lecheng Xiao, Wenying Yu. In Silico Prediction of Human Organ Toxicity via Artificial Intelligence Methods. Chemical Research in Toxicology 2023, 36 (7) , 1044-1054. https://doi.org/10.1021/acs.chemrestox.2c00411
    39. Cheng Fang, Ye Wang, Richard Grater, Sudarshan Kapadnis, Cheryl Black, Patrick Trapa, Simone Sciabola. Prospective Validation of Machine Learning Algorithms for Absorption, Distribution, Metabolism, and Excretion Prediction: An Industrial Perspective. Journal of Chemical Information and Modeling 2023, 63 (11) , 3263-3274. https://doi.org/10.1021/acs.jcim.3c00160
    40. Edison Mucllari, Vasily Zadorozhnyy, Qiang Ye, Duc Duy Nguyen. Novel Molecular Representations Using Neumann-Cayley Orthogonal Gated Recurrent Unit. Journal of Chemical Information and Modeling 2023, 63 (9) , 2656-2666. https://doi.org/10.1021/acs.jcim.2c01526
    41. Zaw-Myo Win, Allen M. Y. Cheong, W. Scott Hopkins. Using Machine Learning To Predict Partition Coefficient (Log P) and Distribution Coefficient (Log D) with Molecular Descriptors and Liquid Chromatography Retention Time. Journal of Chemical Information and Modeling 2023, 63 (7) , 1906-1913. https://doi.org/10.1021/acs.jcim.2c01373
    42. Jose D. Hernandez-Betancur, Gerardo J. Ruiz-Mercado, Mariano Martin. Predicting Chemical End-of-Life Scenarios Using Structure-Based Classification Models. ACS Sustainable Chemistry & Engineering 2023, 11 (9) , 3594-3602. https://doi.org/10.1021/acssuschemeng.2c05662
    43. Tianxiong Liu, Zihao Dong, Wenguang Zhu, Yusen Chen, Mengjin Zhou, Peizhe Cui, Yinglong Wang, Zhaoyou Zhu. Prediction of the Solubility of Acid Gas Hydrogen Sulfide in Green Solvent Ionic Liquids via Quantitative Structure–Property Relationship Models Based on the Molecular Structure. ACS Sustainable Chemistry & Engineering 2023, 11 (9) , 3917-3931. https://doi.org/10.1021/acssuschemeng.2c07541
    44. Seungchan An, Seok Young Hwang, Junpyo Gong, Sungjin Ahn, In Guk Park, Soyeon Oh, Young-Won Chin, Minsoo Noh. Computational Prediction of the Phenotypic Effect of Flavonoids on Adiponectin Biosynthesis. Journal of Chemical Information and Modeling 2023, 63 (3) , 856-869. https://doi.org/10.1021/acs.jcim.3c00033
    45. Maogang Li, Weipeng Lai, Ruirui Li, Jiajun Zhou, Yingzhe Liu, Tao Yu, Tianlong Zhang, Hongsheng Tang, Hua Li. Novel Random Forest Ensemble Modeling Strategy Combined with Quantitative Structure–Property Relationship for Density Prediction of Energetic Materials. ACS Omega 2023, 8 (2) , 2752-2759. https://doi.org/10.1021/acsomega.2c07436
    46. Weimin Zhu, Yi Zhang, Duancheng Zhao, Jianrong Xu, Ling Wang. HiGNN: A Hierarchical Informative Graph Neural Network for Molecular Property Prediction Equipped with Feature-Wise Attention. Journal of Chemical Information and Modeling 2023, 63 (1) , 43-55. https://doi.org/10.1021/acs.jcim.2c01099
    47. Changhun Kim, Jaeseong Jeong, Jinhee Choi. Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data. Chemical Research in Toxicology 2022, 35 (12) , 2219-2226. https://doi.org/10.1021/acs.chemrestox.2c00189
    48. Xia Zhao, Yuhao Sun, Ruiqiu Zhang, Zhaoyang Chen, Yuqing Hua, Pei Zhang, Huizhu Guo, Xueyan Cui, Xin Huang, Xiao Li. Machine Learning Modeling and Insights into the Structural Characteristics of Drug-Induced Neurotoxicity. Journal of Chemical Information and Modeling 2022, 62 (23) , 6035-6045. https://doi.org/10.1021/acs.jcim.2c01131
    49. Minjie Mou, Ziqi Pan, Mingkun Lu, Huaicheng Sun, Yunxia Wang, Yongchao Luo, Feng Zhu. Application of Machine Learning in Spatial Proteomics. Journal of Chemical Information and Modeling 2022, 62 (23) , 5875-5895. https://doi.org/10.1021/acs.jcim.2c01161
    50. Thereza A. Soares, Ariane Nunes-Alves, Angelica Mazzolari, Fiorella Ruggiu, Guo-Wei Wei, Kenneth Merz. The (Re)-Evolution of Quantitative Structure–Activity Relationship (QSAR) Studies Propelled by the Surge of Machine Learning Methods. Journal of Chemical Information and Modeling 2022, 62 (22) , 5317-5320. https://doi.org/10.1021/acs.jcim.2c01422
    51. Daniel J. Woodward, Anthony R. Bradley, Willem P. van Hoorn. Coverage Score: A Model Agnostic Method to Efficiently Explore Chemical Space. Journal of Chemical Information and Modeling 2022, 62 (18) , 4391-4402. https://doi.org/10.1021/acs.jcim.2c00258
    52. Longqiang Li, Zhou Lu, Guixia Liu, Yun Tang, Weihua Li. In Silico Prediction of Human and Rat Liver Microsomal Stability via Machine Learning Methods. Chemical Research in Toxicology 2022, 35 (9) , 1614-1624. https://doi.org/10.1021/acs.chemrestox.2c00207
    53. Qinghua Wang, Zhe Wang, Sheng Tian, Lingling Wang, Rongfan Tang, Yang Yu, Jingxuan Ge, Tingjun Hou, Haiping Hao, Huiyong Sun. Determination of Molecule Category of Ligands Targeting the Ligand-Binding Pocket of Nuclear Receptors with Structural Elucidation and Machine Learning. Journal of Chemical Information and Modeling 2022, 62 (17) , 3993-4007. https://doi.org/10.1021/acs.jcim.2c00851
    54. Joseph D. Romano, Yun Hao, Jason H. Moore, Trevor M. Penning. Automating Predictive Toxicology Using ComptoxAI. Chemical Research in Toxicology 2022, 35 (8) , 1370-1382. https://doi.org/10.1021/acs.chemrestox.2c00074
    55. Robert P. Sheridan. Stability of Prediction in Production ADMET Models as a Function of Version: Why and When Predictions Change. Journal of Chemical Information and Modeling 2022, 62 (15) , 3477-3485. https://doi.org/10.1021/acs.jcim.2c00803
    56. Robert P. Sheridan, J. Chris Culberson, Elizabeth Joshi, Matthew Tudor, Prabha Karnachi. Prediction Accuracy of Production ADMET Models as a Function of Version: Activity Cliffs Rule. Journal of Chemical Information and Modeling 2022, 62 (14) , 3275-3280. https://doi.org/10.1021/acs.jcim.2c00699
    57. Seid Hamzic, Richard Lewis, Sandrine Desrayaud, Cihan Soylu, Mike Fortunato, Grégori Gerebtzoff, Raquel Rodríguez-Pérez. Predicting In Vivo Compound Brain Penetration Using Multi-task Graph Neural Networks. Journal of Chemical Information and Modeling 2022, 62 (13) , 3180-3190. https://doi.org/10.1021/acs.jcim.2c00412
    58. Jiahui Yu, Jike Wang, Hong Zhao, Junbo Gao, Yu Kang, Dongsheng Cao, Zhe Wang, Tingjun Hou. Organic Compound Synthetic Accessibility Prediction Based on the Graph Attention Mechanism. Journal of Chemical Information and Modeling 2022, 62 (12) , 2973-2986. https://doi.org/10.1021/acs.jcim.2c00038
    59. Yajuan Shi, Jiang Wang, Qiang Wang, Qingzhu Jia, Fangyou Yan, Zheng-Hong Luo, Yin-Ning Zhou. Supervised Machine Learning Algorithms for Predicting Rate Constants of Ozone Reaction with Micropollutants. Industrial & Engineering Chemistry Research 2022, 61 (24) , 8359-8367. https://doi.org/10.1021/acs.iecr.1c04697
    60. Chang He, Shuo Zhu, Xiaorong Wu, Jiale Zhou, Yonghui Chen, Xiaohua Qian, Jian Ye. Accurate Tumor Subtype Detection with Raman Spectroscopy via Variational Autoencoder and Machine Learning. ACS Omega 2022, 7 (12) , 10458-10468. https://doi.org/10.1021/acsomega.1c07263
    61. Vishal Dey, Raghu Machiraju, Xia Ning. Improving Compound Activity Classification via Deep Transfer and Representation Learning. ACS Omega 2022, 7 (11) , 9465-9483. https://doi.org/10.1021/acsomega.1c06805
    62. Karteek K. Bejagam, Jessica Lalonde, Carl N. Iverson, Babetta L. Marrone, Ghanshyam Pilania. Machine Learning for Melting Temperature Predictions and Design in Polyhydroxyalkanoate-Based Biopolymers. The Journal of Physical Chemistry B 2022, 126 (4) , 934-945. https://doi.org/10.1021/acs.jpcb.1c08354
    63. Maxim S. Molokeev, Binbin Su, Aleksandr S. Aleksandrovsky, Nicolay N. Golovnev, Mikhail E. Plyaskin, Zhiguo Xia. Machine Learning Analysis and Discovery of Zero-Dimensional ns2 Metal Halides toward Enhanced Photoluminescence Quantum Yield. Chemistry of Materials 2022, 34 (2) , 537-546. https://doi.org/10.1021/acs.chemmater.1c02725
    64. Raquel Rodríguez-Pérez, Jürgen Bajorath. Explainable Machine Learning for Property Predictions in Compound Optimization. Journal of Medicinal Chemistry 2021, 64 (24) , 17744-17752. https://doi.org/10.1021/acs.jmedchem.1c01789
    65. Xinyi Xu, Taihao Han, Jie Huang, Albert A. Kruger, Aditya Kumar, Ashutosh Goel. Machine Learning Enabled Models to Predict Sulfur Solubility in Nuclear Waste Glasses. ACS Applied Materials & Interfaces 2021, 13 (45) , 53375-53387. https://doi.org/10.1021/acsami.1c10359
    66. Jiachen Yan, Xiliang Yan, Song Hu, Hao Zhu, Bing Yan. Comprehensive Interrogation on Acetylcholinesterase Inhibition by Ionic Liquids Using Machine Learning and Molecular Modeling. Environmental Science & Technology 2021, 55 (21) , 14720-14731. https://doi.org/10.1021/acs.est.1c02960
    67. Wendy L. Williams, Lingyu Zeng, Tobias Gensch, Matthew S. Sigman, Abigail G. Doyle, Eric V. Anslyn. The Evolution of Data-Driven Modeling in Organic Chemistry. ACS Central Science 2021, 7 (10) , 1622-1637. https://doi.org/10.1021/acscentsci.1c00535
    68. Adam C. Mater, Michelle L. Coote. Explainable Molecular Sets: Using Information Theory to Generate Meaningful Descriptions of Groups of Molecules. Journal of Chemical Information and Modeling 2021, 61 (10) , 4877-4889. https://doi.org/10.1021/acs.jcim.1c00519
    69. Oscar Mammoliti, Koen Jansen, Sandy El Bkassiny, Adeline Palisse, Nicolas Triballeau, Denis Bucher, Brigitte Allart, Alex Jaunet, Giovanni Tricarico, Maxim De Wachter, Christel Menet, Javier Blanc, Vatroslav Letfus, Renata Rupčić, Mario Šmehil, Tanja Poljak, Beatrice Coornaert, Kathleen Sonck, Inge Duys, Ludovic Waeckel, Lola Lecru, Florence Marsais, Catherine Jagerschmidt, Marielle Auberval, Philippe Pujuguet, Line Oste, Monica Borgonovi, Emanuelle Wakselman, Thierry Christophe, Nicolas Houvenaghel, Mia Jans, Bertrand Heckmann, Laurent Sanière, Reginald Brys. Discovery and Optimization of Orally Bioavailable Phthalazone and Cinnolone Carboxylic Acid Derivatives as S1P2 Antagonists against Fibrotic Diseases. Journal of Medicinal Chemistry 2021, 64 (19) , 14557-14586. https://doi.org/10.1021/acs.jmedchem.1c01066
    70. Shangqian Xu, Jiechun Liang, Yunduo Yu, Rulin Liu, Yao Xu, Xi Zhu, Yu Zhao. Machine Learning-Assisted Discovery of High-Voltage Organic Materials for Rechargeable Batteries. The Journal of Physical Chemistry C 2021, 125 (39) , 21352-21358. https://doi.org/10.1021/acs.jpcc.1c06821
    71. Steven Bennett, Filip T. Szczypiński, Lukas Turcani, Michael E. Briggs, Rebecca L. Greenaway, Kim E. Jelfs. Materials Precursor Score: Modeling Chemists’ Intuition for the Synthetic Accessibility of Porous Organic Cage Precursors. Journal of Chemical Information and Modeling 2021, 61 (9) , 4342-4356. https://doi.org/10.1021/acs.jcim.1c00375
    72. John N. Koberstein, Melissa L. Stewart, Taylor L. Mighell, Chadwick B. Smith, Michael S. Cohen. A Sort-Seq Approach to the Development of Single Fluorescent Protein Biosensors. ACS Chemical Biology 2021, 16 (9) , 1709-1720. https://doi.org/10.1021/acschembio.1c00423
    73. Xinpeng Zhao, Keke Song, Haiyou Huang, Yu Yan, Yanjing Su, Ping Qian. Effect of Alloying Elements on the Stacking Fault Energy and Ductility in Mg2Si Intermetallic Compounds. ACS Omega 2021, 6 (31) , 20254-20263. https://doi.org/10.1021/acsomega.1c02099
    74. Rasmus Kronberg, Heikki Lappalainen, Kari Laasonen. Hydrogen Adsorption on Defective Nitrogen-Doped Carbon Nanotubes Explained via Machine Learning Augmented DFT Calculations and Game-Theoretic Feature Attributions. The Journal of Physical Chemistry C 2021, 125 (29) , 15918-15933. https://doi.org/10.1021/acs.jpcc.1c03858
    75. Daiguo Deng, Xiaowei Chen, Ruochi Zhang, Zengrong Lei, Xiaojian Wang, Fengfeng Zhou. XGraphBoost: Extracting Graph Neural Network-Based Features for a Better Prediction of Molecular Properties. Journal of Chemical Information and Modeling 2021, 61 (6) , 2697-2705. https://doi.org/10.1021/acs.jcim.0c01489
    76. Srilatha Sakamuru, Jinghua Zhao, Menghang Xia, Huixiao Hong, Anton Simeonov, Iosif Vaisman, Ruili Huang. Predictive Models to Identify Small Molecule Activators and Inhibitors of Opioid Receptors. Journal of Chemical Information and Modeling 2021, 61 (6) , 2675-2685. https://doi.org/10.1021/acs.jcim.1c00439
    77. Daniel J. Fowles, David S. Palmer, Rui Guo, Sarah L. Price, John B. O. Mitchell. Toward Physics-Based Solubility Computation for Pharmaceuticals to Rival Informatics. Journal of Chemical Theory and Computation 2021, 17 (6) , 3700-3709. https://doi.org/10.1021/acs.jctc.1c00130
    78. Yuanqing Mao, Hongliang Yang, Ye Sheng, Jiping Wang, Runhai Ouyang, Caichao Ye, Jiong Yang, Wenqing Zhang. Prediction and Classification of Formation Energies of Binary Compounds by Machine Learning: An Approach without Crystal Structure Information. ACS Omega 2021, 6 (22) , 14533-14541. https://doi.org/10.1021/acsomega.1c01517
    79. Oscar Mammoliti, Adeline Palisse, Caroline Joannesse, Sandy El Bkassiny, Brigitte Allart, Alex Jaunet, Christel Menet, Beatrice Coornaert, Kathleen Sonck, Inge Duys, Philippe Clément-Lacroix, Line Oste, Monica Borgonovi, Emanuelle Wakselman, Thierry Christophe, Nicolas Houvenaghel, Mia Jans, Bertrand Heckmann, Laurent Sanière, Reginald Brys. Discovery of the S1P2 Antagonist GLPG2938 (1-[2-Ethoxy-6-(trifluoromethyl)-4-pyridyl]-3-[[5-methyl-6-[1-methyl-3-(trifluoromethyl)pyrazol-4-yl]pyridazin-3-yl]methyl]urea), a Preclinical Candidate for the Treatment of Idiopathic Pulmonary Fibrosis. Journal of Medicinal Chemistry 2021, 64 (9) , 6037-6058. https://doi.org/10.1021/acs.jmedchem.1c00138
    80. Ziduo Yang, Weihe Zhong, Lu Zhao, Calvin Yu-Chian Chen. ML-DTI: Mutual Learning Mechanism for Interpretable Drug–Target Interaction Prediction. The Journal of Physical Chemistry Letters 2021, 12 (17) , 4247-4261. https://doi.org/10.1021/acs.jpclett.1c00867
    81. Guohong Liu, Xiliang Yan, Shenqing Wang, Qianhui Yu, Jianbo Jia, Bing Yan. Elucidation of the Critical Role of Core Materials in PM2.5-Induced Cytotoxicity by Interrogating Silica- and Carbon-Based Model PM2.5 Particle Libraries. Environmental Science & Technology 2021, 55 (9) , 6128-6139. https://doi.org/10.1021/acs.est.1c00001
    82. Jian Jiang, Rui Wang, Guo-Wei Wei. GGL-Tox: Geometric Graph Learning for Toxicity Prediction. Journal of Chemical Information and Modeling 2021, 61 (4) , 1691-1700. https://doi.org/10.1021/acs.jcim.0c01294
    83. Andrzej M. Żurański, Jesus I. Martinez Alvarado, Benjamin J. Shields, Abigail G. Doyle. Predicting Reaction Yields via Supervised Learning. Accounts of Chemical Research 2021, 54 (8) , 1856-1865. https://doi.org/10.1021/acs.accounts.0c00770
    84. Guokui Zheng, Yanle Li, Xu Qian, Ge Yao, Ziqi Tian, Xingwang Zhang, Liang Chen. High-Throughput Screening of a Single-Atom Alloy for Electroreduction of Dinitrogen to Ammonia. ACS Applied Materials & Interfaces 2021, 13 (14) , 16336-16344. https://doi.org/10.1021/acsami.1c01098
    85. Yohei Kosugi, Natalie Hosea. Prediction of Oral Pharmacokinetics Using a Combination of In Silico Descriptors and In Vitro ADME Properties. Molecular Pharmaceutics 2021, 18 (3) , 1071-1079. https://doi.org/10.1021/acs.molpharmaceut.0c01009
    86. Kelvin Cooper, Christopher Baddeley, Bernie French, Katherine Gibson, James Golden, Thiam Lee, Sadrach Pierre, Brent Weiss, Jason Yang. Novel Development of Predictive Feature Fingerprints to Identify Chemistry-Based Features for the Effective Drug Design of SARS-CoV-2 Target Antagonists and Inhibitors Using Machine Learning. ACS Omega 2021, 6 (7) , 4857-4877. https://doi.org/10.1021/acsomega.0c05303
    87. Benjamin P. Brown, Jeffrey Mendenhall, Alexander R. Geanes, Jens Meiler. General Purpose Structure-Based Drug Discovery Neural Network Score Functions with Human-Interpretable Pharmacophore Maps. Journal of Chemical Information and Modeling 2021, 61 (2) , 603-620. https://doi.org/10.1021/acs.jcim.0c01001
    88. Sankalp Jain, Vishal B. Siramshetty, Vinicius M. Alves, Eugene N. Muratov, Nicole Kleinstreuer, Alexander Tropsha, Marc C. Nicklaus, Anton Simeonov, Alexey V. Zakharov. Large-Scale Modeling of Multispecies Acute Toxicity End Points Using Consensus of Multitask Deep Learning Methods. Journal of Chemical Information and Modeling 2021, 61 (2) , 653-663. https://doi.org/10.1021/acs.jcim.0c01164
    89. Domenico Gadaleta, Marco Marzo, Andrey Toropov, Alla Toropova, Giovanna J. Lavado, Sylvia E. Escher, Jean Lou C. M. Dorne, Emilio Benfenati. Integrated In Silico Models for the Prediction of No-Observed-(Adverse)-Effect Levels and Lowest-Observed-(Adverse)-Effect Levels in Rats for Sub-chronic Repeated-Dose Toxicity. Chemical Research in Toxicology 2021, 34 (2) , 247-257. https://doi.org/10.1021/acs.chemrestox.0c00176
    90. Marcus W. H. Wang, Jonathan M. Goodman, Timothy E. H. Allen. Machine Learning in Predictive Toxicology: Recent Applications and Future Directions for Classification Models. Chemical Research in Toxicology 2021, 34 (2) , 217-239. https://doi.org/10.1021/acs.chemrestox.0c00316
    91. Ting Li, Weida Tong, Ruth Roberts, Zhichao Liu, Shraddha Thakkar. DeepDILI: Deep Learning-Powered Drug-Induced Liver Injury Prediction Using Model-Level Representation. Chemical Research in Toxicology 2021, 34 (2) , 550-565. https://doi.org/10.1021/acs.chemrestox.0c00374
    92. Vishal B. Siramshetty, Dac-Trung Nguyen, Natalia J. Martinez, Noel T. Southall, Anton Simeonov, Alexey V. Zakharov. Critical Assessment of Artificial Intelligence Methods for Prediction of hERG Channel Inhibition in the “Big Data” Era. Journal of Chemical Information and Modeling 2020, 60 (12) , 6007-6019. https://doi.org/10.1021/acs.jcim.0c00884
    93. Anthony DiFranzo, Robert P. Sheridan, Andy Liaw, Matthew Tudor. Nearest Neighbor Gaussian Process for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling 2020, 60 (10) , 4653-4663. https://doi.org/10.1021/acs.jcim.0c00678
    94. Kangway V. Chuang, Laura M. Gunsalus, Michael J. Keiser. Learning Molecular Representations for Medicinal Chemistry. Journal of Medicinal Chemistry 2020, 63 (16) , 8705-8722. https://doi.org/10.1021/acs.jmedchem.0c00385
    95. Adrian Stecula, Muhammad S. Hussain, Ronald E. Viola. Discovery of Novel Inhibitors of a Critical Brain Enzyme Using a Homology Model and a Deep Convolutional Neural Network. Journal of Medicinal Chemistry 2020, 63 (16) , 8867-8875. https://doi.org/10.1021/acs.jmedchem.0c00473
    96. Evan N. Feinberg, Elizabeth Joshi, Vijay S. Pande, Alan C. Cheng. Improvement in ADMET Prediction with Multitask Deep Featurization. Journal of Medicinal Chemistry 2020, 63 (16) , 8835-8848. https://doi.org/10.1021/acs.jmedchem.9b02187
    97. Yohei Kosugi, Natalie Hosea. Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-Up Approach Using In Vitro Assay. Molecular Pharmaceutics 2020, 17 (7) , 2299-2309. https://doi.org/10.1021/acs.molpharmaceut.9b01294
    98. Yuting Xu, Deeptak Verma, Robert P. Sheridan, Andy Liaw, Junshui Ma, Nicholas M. Marshall, John McIntosh, Edward C. Sherer, Vladimir Svetnik, Jennifer M. Johnston. Deep Dive into Machine Learning Models for Protein Engineering. Journal of Chemical Information and Modeling 2020, 60 (6) , 2773-2790. https://doi.org/10.1021/acs.jcim.0c00073
    99. Weikaixin Kong, Xinyu Tu, Weiran Huang, Yang Yang, Zhengwei Xie, Zhuo Huang. Prediction and Optimization of NaV1.7 Sodium Channel Inhibitors Based on Machine Learning and Simulated Annealing. Journal of Chemical Information and Modeling 2020, 60 (6) , 2739-2753. https://doi.org/10.1021/acs.jcim.9b01180
    100. Clyde A. Daly, Jr, Rigoberto Hernandez. Learning from the Machine: Uncovering Sustainable Nanoparticle Design Rules. The Journal of Physical Chemistry C 2020, 124 (24) , 13409-13420. https://doi.org/10.1021/acs.jpcc.0c01195
    Load more citations

    Journal of Chemical Information and Computer Sciences

    Cite this: J. Chem. Inf. Comput. Sci. 2003, 43, 6, 1947–1958
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ci034160g
    Published November 4, 2003
    Copyright © 2003 American Chemical Society

    Article Views

    25k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.