ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

From Structure Diagrams to Visual Chemical Patterns

View Author Information
Research Group for Computational Molecular Design, Center for Bioinformatics, University of Hamburg, Bundesstrasse 43, D-20146 Hamburg, Germany
* Corresponding author. E-mail: [email protected]. Telephone: +49-40-42838-7350.
Cite this: J. Chem. Inf. Model. 2010, 50, 9, 1529–1535
Publication Date (Web):August 26, 2010
https://doi.org/10.1021/ci100209a
Copyright © 2010 American Chemical Society

    Article Views

    1309

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The intuitive way of chemists to communicate molecules is via two-dimensional structure diagrams. The straightforward visual representations are mostly preferred to the often complicated systematic chemical names. For chemical patterns, however, no comparable visualization standards have evolved so far. Chemical patterns denoting descriptions of chemical features are needed whenever a set of molecules is filtered for certain properties. The currently available representations are constrained to linear molecular pattern languages which are hardly human readable and therefore keep chemists without computational background from systematically formulating patterns. Therefore, we introduce a new visualization concept for chemical patterns. The common standard concept of structure diagrams is extended to account for property descriptions and logic combinations of chemical features in patterns. As a first application of the new concept, we developed the SMARTSviewer, a tool that converts chemical patterns encoded in SMARTS strings to a visual representation. The graphic pattern depiction provides an overview of the specified chemical features, variations, and similarities without needing to decode the often cryptic linear expressions. Taking recent chemical publications from various fields, we demonstrate the wide application range of a graphical chemical pattern language.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The complete visualization concept covering the full power of the SMARTS language and details of the SMARTStrim concept. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 49 publications.

    1. Ewelina Jamrozik, Marek Śmieja, Sabina Podlewska. ADMET-PrInt: Evaluation of ADMET Properties: Prediction and Interpretation. Journal of Chemical Information and Modeling 2024, Article ASAP.
    2. Dakota L. Folmsbee, David R. Koes, Geoffrey R. Hutchison. Systematic Comparison of Experimental Crystallographic Geometries and Gas-Phase Computed Conformers for Torsion Preferences. Journal of Chemical Information and Modeling 2023, 63 (23) , 7401-7411. https://doi.org/10.1021/acs.jcim.3c01278
    3. Somaya A. Abdel-Rahman, Valerij Talagayev, Szymon Pach, Gerhard Wolber, Moustafa T. Gabr. Discovery of Small-Molecule TIM-3 Inhibitors for Acute Myeloid Leukemia Using Pharmacophore-Based Virtual Screening. Journal of Medicinal Chemistry 2023, 66 (16) , 11464-11475. https://doi.org/10.1021/acs.jmedchem.3c00960
    4. Geemi P. Wellawatte, Heta A. Gandhi, Aditi Seshadri, Andrew D. White. A Perspective on Explanations of Molecular Prediction Models. Journal of Chemical Theory and Computation 2023, 19 (8) , 2149-2160. https://doi.org/10.1021/acs.jctc.2c01235
    5. Uschi Dolfus, Hans Briem, Matthias Rarey. Visualizing Generic Reaction Patterns. Journal of Chemical Information and Modeling 2022, 62 (19) , 4680-4689. https://doi.org/10.1021/acs.jcim.2c00992
    6. Michael C. Hutter. Differential Multimolecule Fingerprint for Similarity Search─Making Use of Active and Inactive Compound Sets in Virtual Screening. Journal of Chemical Information and Modeling 2022, 62 (11) , 2726-2736. https://doi.org/10.1021/acs.jcim.2c00242
    7. Fabio Begnini, Stefan Geschwindner, Patrik Johansson, Lisa Wissler, Richard J. Lewis, Emma Danelius, Andreas Luttens, Pierre Matricon, Jens Carlsson, Stijn Lenders, Beate König, Anna Friedel, Peter Sjö, Stefan Schiesser, Jan Kihlberg. Importance of Binding Site Hydration and Flexibility Revealed When Optimizing a Macrocyclic Inhibitor of the Keap1–Nrf2 Protein–Protein Interaction. Journal of Medicinal Chemistry 2022, 65 (4) , 3473-3517. https://doi.org/10.1021/acs.jmedchem.1c01975
    8. Andreas Luttens, Hjalmar Gullberg, Eldar Abdurakhmanov, Duy Duc Vo, Dario Akaberi, Vladimir O. Talibov, Natalia Nekhotiaeva, Laura Vangeel, Steven De Jonghe, Dirk Jochmans, Janina Krambrich, Ali Tas, Bo Lundgren, Ylva Gravenfors, Alexander J. Craig, Yoseph Atilaw, Anja Sandström, Lindon W. K. Moodie, Åke Lundkvist, Martijn J. van Hemert, Johan Neyts, Johan Lennerstrand, Jan Kihlberg, Kristian Sandberg, U. Helena Danielson, Jens Carlsson. Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. Journal of the American Chemical Society 2022, 144 (7) , 2905-2920. https://doi.org/10.1021/jacs.1c08402
    9. Dominique Sydow Jaime Rodríguez-Guerra Andrea Volkamer . Teaching Computer-Aided Drug Design Using TeachOpenCADD. , 135-158. https://doi.org/10.1021/bk-2021-1387.ch010
    10. Emanuel S. R. Ehmki, Robert Schmidt, Farina Ohm, Matthias Rarey. Comparing Molecular Patterns Using the Example of SMARTS: Applications and Filter Collection Analysis. Journal of Chemical Information and Modeling 2019, 59 (6) , 2572-2586. https://doi.org/10.1021/acs.jcim.9b00249
    11. Robert Schmidt, Emanuel S. R. Ehmki, Farina Ohm, Hans-Christian Ehrlich, Andriy Mashychev, Matthias Rarey. Comparing Molecular Patterns Using the Example of SMARTS: Theory and Algorithms. Journal of Chemical Information and Modeling 2019, 59 (6) , 2560-2571. https://doi.org/10.1021/acs.jcim.9b00250
    12. Alf Claesson, Alexander Minidis. Systematic Approach to Organizing Structural Alerts for Reactive Metabolite Formation from Potential Drugs. Chemical Research in Toxicology 2018, 31 (6) , 389-411. https://doi.org/10.1021/acs.chemrestox.8b00046
    13. Therese Inhester, Eva Nittinger, Kai Sommer, Pascal Schmidt, Stefan Bietz, and Matthias Rarey . NAOMInova: Interactive Geometric Analysis of Noncovalent Interactions in Macromolecular Structures. Journal of Chemical Information and Modeling 2017, 57 (9) , 2132-2142. https://doi.org/10.1021/acs.jcim.7b00291
    14. Wolfgang Guba, Agnes Meyder, Matthias Rarey, and Jérôme Hert . Torsion Library Reloaded: A New Version of Expert-Derived SMARTS Rules for Assessing Conformations of Small Molecules. Journal of Chemical Information and Modeling 2016, 56 (1) , 1-5. https://doi.org/10.1021/acs.jcim.5b00522
    15. Teague Sterling and John J. Irwin . ZINC 15 – Ligand Discovery for Everyone. Journal of Chemical Information and Modeling 2015, 55 (11) , 2324-2337. https://doi.org/10.1021/acs.jcim.5b00559
    16. Stefan Bietz, Karen T. Schomburg, Matthias Hilbig, and Matthias Rarey . Discriminative Chemical Patterns: Automatic and Interactive Design. Journal of Chemical Information and Modeling 2015, 55 (8) , 1535-1546. https://doi.org/10.1021/acs.jcim.5b00323
    17. Boris Brus, Urban Košak, Samo Turk, Anja Pišlar, Nicolas Coquelle, Janko Kos, Jure Stojan, Jacques-Philippe Colletier, and Stanislav Gobec . Discovery, Biological Evaluation, and Crystal Structure of a Novel Nanomolar Selective Butyrylcholinesterase Inhibitor. Journal of Medicinal Chemistry 2014, 57 (19) , 8167-8179. https://doi.org/10.1021/jm501195e
    18. Hans-Christian Ehrlich, Angela M. Henzler, and Matthias Rarey . Searching for Recursively Defined Generic Chemical Patterns in Nonenumerated Fragment Spaces. Journal of Chemical Information and Modeling 2013, 53 (7) , 1676-1688. https://doi.org/10.1021/ci400107k
    19. Christin Schärfer, Tanja Schulz-Gasch, Hans-Christian Ehrlich, Wolfgang Guba, Matthias Rarey, and Martin Stahl . Torsion Angle Preferences in Druglike Chemical Space: A Comprehensive Guide. Journal of Medicinal Chemistry 2013, 56 (5) , 2016-2028. https://doi.org/10.1021/jm3016816
    20. John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman . ZINC: A Free Tool to Discover Chemistry for Biology. Journal of Chemical Information and Modeling 2012, 52 (7) , 1757-1768. https://doi.org/10.1021/ci3001277
    21. Stephen D. Roughley and Allan M. Jordan . The Medicinal Chemist’s Toolbox: An Analysis of Reactions Used in the Pursuit of Drug Candidates. Journal of Medicinal Chemistry 2011, 54 (10) , 3451-3479. https://doi.org/10.1021/jm200187y
    22. Grace Patlewicz, Mark Nelms, Diego Rua. Evaluating the utility of the Threshold of Toxicological Concern (TTC) and its exclusions in the biocompatibility assessment of extractable chemical substances from medical devices. Computational Toxicology 2022, 24 , 100246. https://doi.org/10.1016/j.comtox.2022.100246
    23. Andreas Tosstorff, Jason C. Cole, Richard Bartelt, Bernd Kuhn. Augmenting Structure‐Based Design with Experimental Protein‐Ligand Interaction Data: Molecular Recognition, Interactive Visualization, and Rescoring. ChemMedChem 2021, 16 (22) , 3428-3438. https://doi.org/10.1002/cmdc.202100387
    24. R. P. Vivek-Ananth, Ajaya Kumar Sahoo, Kavyaa Kumaravel, Karthikeyan Mohanraj, Areejit Samal. MeFSAT: a curated natural product database specific to secondary metabolites of medicinal fungi. RSC Advances 2021, 11 (5) , 2596-2607. https://doi.org/10.1039/D0RA10322E
    25. Christiane Ehrt, Bennet Krause, Robert Schmidt, Emanuel S. R. Ehmki, Matthias Rarey. SMARTS.plus – A Toolbox for Chemical Pattern Design. Molecular Informatics 2020, 39 (12) https://doi.org/10.1002/minf.202000216
    26. Pavel Polishchuk. CReM: chemically reasonable mutations framework for structure generation. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-00431-w
    27. Stephen D. Roughley. Five Years of the KNIME Vernalis Cheminformatics Community Contribution. Current Medicinal Chemistry 2020, 27 (38) , 6495-6522. https://doi.org/10.2174/0929867325666180904113616
    28. E. Goya-Jorge, T.Q. Doan, M.L. Scippo, M. Muller, R.M. Giner, S.J. Barigye, R. Gozalbes. Elucidating the aryl hydrocarbon receptor antagonism from a chemical-structural perspective. SAR and QSAR in Environmental Research 2020, 31 (3) , 209-226. https://doi.org/10.1080/1062936X.2019.1708460
    29. Ignacio Ponzoni, Víctor Sebastián-Pérez, María J. Martínez, Carlos Roca, Carlos De la Cruz Pérez, Fiorella Cravero, Gustavo E. Vazquez, Juan A. Páez, Mónica F. Díaz, Nuria E. Campillo. QSAR Classification Models for Predicting the Activity of Inhibitors of Beta-Secretase (BACE1) Associated with Alzheimer’s Disease. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-45522-3
    30. Simon Müller. Flexible heuristic algorithm for automatic molecule fragmentation: application to the UNIFAC group contribution model. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0382-3
    31. Ya Chen, Conrad Stork, Steffen Hirte, Johannes Kirchmair. NP-Scout: Machine Learning Approach for the Quantification and Visualization of the Natural Product-Likeness of Small Molecules. Biomolecules 2019, 9 (2) , 43. https://doi.org/10.3390/biom9020043
    32. Thomas Engel, Oliver Sacher, Adrian Kolodzik, Matthias Rarey, Joao Aires de Sousa, Thomas Engel, Christof Schwab, Thomas Engel. Computer Processing of Chemical Structure Information. 2018, 43-119. https://doi.org/10.1002/9783527816880.ch3
    33. Stefan Bietz, Therese Inhester, Florian Lauck, Kai Sommer, Mathias M. von Behren, Rainer Fährrolfes, Florian Flachsenberg, Agnes Meyder, Eva Nittinger, Thomas Otto, Matthias Hilbig, Karen T. Schomburg, Andrea Volkamer, Matthias Rarey. From cheminformatics to structure-based design: Web services and desktop applications based on the NAOMI library. Journal of Biotechnology 2017, 261 , 207-214. https://doi.org/10.1016/j.jbiotec.2017.06.004
    34. Jakub Gunera, Florian Kindinger, Shu-Ming Li, Peter Kolb. PrenDB, a Substrate Prediction Database to Enable Biocatalytic Use of Prenyltransferases. Journal of Biological Chemistry 2017, 292 (10) , 4003-4021. https://doi.org/10.1074/jbc.M116.759118
    35. Hongbin Yang, Xiao Li, Yingchun Cai, Qin Wang, Weihua Li, Guixia Liu, Yun Tang. In silico prediction of chemical subcellular localization via multi-classification methods. MedChemComm 2017, 8 (6) , 1225-1234. https://doi.org/10.1039/C7MD00074J
    36. Qiaonan Duan, St Patrick Reid, Neil R Clark, Zichen Wang, Nicolas F Fernandez, Andrew D Rouillard, Ben Readhead, Sarah R Tritsch, Rachel Hodos, Marc Hafner, Mario Niepel, Peter K Sorger, Joel T Dudley, Sina Bavari, Rekha G Panchal, Avi Ma’ayan. L1000CDS2: LINCS L1000 characteristic direction signatures search engine. npj Systems Biology and Applications 2016, 2 (1) https://doi.org/10.1038/npjsba.2016.15
    37. Saw Simeon, Ola Spjuth, Maris Lapins, Sunanta Nabu, Nuttapat Anuwongcharoen, Virapong Prachayasittikul, Jarl E.S. Wikberg, Chanin Nantasenamat. Origin of aromatase inhibitory activity via proteochemometric modeling. PeerJ 2016, 4 , e1979. https://doi.org/10.7717/peerj.1979
    38. Volker D Hähnke, Evan E Bolton, Stephen H Bryant. PubChem atom environments. Journal of Cheminformatics 2015, 7 (1) https://doi.org/10.1186/s13321-015-0076-4
    39. Saurabh Bundela, Anjana Sharma, Prakash S. Bisen, . Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine. PLOS ONE 2015, 10 (11) , e0141719. https://doi.org/10.1371/journal.pone.0141719
    40. David Lagorce, Olivier Sperandio, Jonathan B. Baell, Maria A. Miteva, Bruno O. Villoutreix. FAF-Drugs3: a web server for compound property calculation and chemical library design. Nucleic Acids Research 2015, 43 (W1) , W200-W207. https://doi.org/10.1093/nar/gkv353
    41. Leticia Correa Manjolin, Matheus Balduíno Goncalves dos Reis, Claudia do Carmo Maquiaveli, Osvaldo Andrade Santos-Filho, Edson Roberto da Silva. Dietary flavonoids fisetin, luteolin and their derived compounds inhibit arginase, a central enzyme in Leishmania (Leishmania) amazonensis infection. Food Chemistry 2013, 141 (3) , 2253-2262. https://doi.org/10.1016/j.foodchem.2013.05.025
    42. Florian Lauck, Matthias Rarey. Coping with Combinatorial Space in Molecular Design. 2013, 325-347. https://doi.org/10.1002/9783527677016.ch14
    43. Karen T. Schomburg, Lars Wetzer, Matthias Rarey. Interactive design of generic chemical patterns. Drug Discovery Today 2013, 18 (13-14) , 651-658. https://doi.org/10.1016/j.drudis.2013.02.001
    44. Karen T. Schomburg, Katrin Stierand, Matthias Rarey. Visualisierung komplexer, molekularer Zusammenhänge. BIOspektrum 2013, 19 (2) , 146-148. https://doi.org/10.1007/s12268-013-0285-1
    45. Hans-Christian Ehrlich, Matthias Rarey. Systematic benchmark of substructure search in molecular graphs - From Ullmann to VF2. Journal of Cheminformatics 2012, 4 (1) https://doi.org/10.1186/1758-2946-4-13
    46. Vincent Le Guilloux, Alban Arrault, Lionel Colliandre, Stéphane Bourg, Philippe Vayer, Luc Morin-Allory. Mining collections of compounds with Screening Assistant 2. Journal of Cheminformatics 2012, 4 (1) https://doi.org/10.1186/1758-2946-4-20
    47. Janna Hastings, Despoina Magka, Colin Batchelor, Lian Duan, Robert Stevens, Marcus Ennis, Christoph Steinbeck. Structure-based classification and ontology in chemistry. Journal of Cheminformatics 2012, 4 (1) https://doi.org/10.1186/1758-2946-4-8
    48. . M. Rarey. ChemMedChem 2012, 355-355. https://doi.org/10.1002/cmdc.201200004
    49. A. Bak, T. Magdziarz, J. Polanski. Pharmacophore-based database mining for probing fragmental drug-likeness of diketo acid analogues. SAR and QSAR in Environmental Research 2012, 23 (1-2) , 185-204. https://doi.org/10.1080/1062936X.2011.645875

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect