Current Assessment of Docking into GPCR Crystal Structures and Homology Models: Successes, Challenges, and GuidelinesClick to copy article linkArticle link copied!
Abstract
The growing availability of novel structures for several G protein-coupled receptors (GPCRs) has provided new opportunities for structure-based drug design of ligands against this important class of targets. Here, we report a systematic analysis of the accuracy of docking small molecules into GPCR structures and homology models using both rigid receptor (Glide SP and Glide XP) and flexible receptor (Induced Fit Docking; IFD) methods. The ability to dock ligands into different structures of the same target (cross-docking) is evaluated for both agonist and inverse agonist structures of the A2A receptor and the β1- and β2-adrenergic receptors. In addition, we have produced homology models for the β1-adrenergic, β2-adrenergic, D3 dopamine, H1 histamine, M2 muscarine, M3 muscarine, A2A adenosine, S1P1, κ-opioid, and C-X-C chemokine 4 receptors using multiple templates and investigated the ability of docking to predict the binding mode of ligands in these models. Clear correlations are observed between the docking accuracy and the similarity of the sequence of interest to the template, suggesting regimes in which docking can correctly identify ligand binding modes.
Cited By
This article is cited by 78 publications.
- Thijs Beuming, Helena Martín, Anna M. Díaz-Rovira, Lucía Díaz, Victor Guallar, Soumya S. Ray. Are Deep Learning Structural Models Sufficiently Accurate for Free-Energy Calculations? Application of FEP+ to AlphaFold2-Predicted Structures. Journal of Chemical Information and Modeling 2022, 62
(18)
, 4351-4360. https://doi.org/10.1021/acs.jcim.2c00796
- Jakob Schneider, Ksenia Korshunova, Zeineb Si Chaib, Alejandro Giorgetti, Mercedes Alfonso-Prieto, Paolo Carloni. Ligand Pose Predictions for Human G Protein-Coupled Receptors: Insights from the Amber-Based Hybrid Molecular Mechanics/Coarse-Grained Approach. Journal of Chemical Information and Modeling 2020, 60
(10)
, 5103-5116. https://doi.org/10.1021/acs.jcim.0c00661
- Haiyi Chen, Weitao Fu, Zhe Wang, Xuwen Wang, Tailong Lei, Feng Zhu, Dan Li, Shan Chang, Lei Xu, Tingjun Hou. Reliability of Docking-Based Virtual Screening for GPCR Ligands with Homology Modeled Structures: A Case Study of the Angiotensin II Type I Receptor. ACS Chemical Neuroscience 2019, 10
(1)
, 677-689. https://doi.org/10.1021/acschemneuro.8b00489
- Daniel Cappel, Michelle Lynn Hall, Eelke B. Lenselink, Thijs Beuming, Jun Qi, James Bradner, and Woody Sherman . Relative Binding Free Energy Calculations Applied to Protein Homology Models. Journal of Chemical Information and Modeling 2016, 56
(12)
, 2388-2400. https://doi.org/10.1021/acs.jcim.6b00362
- Antonella Ciancetta, Alberto Cuzzolin, and Stefano Moro . Alternative Quality Assessment Strategy to Compare Performances of GPCR-Ligand Docking Protocols: The Human Adenosine A2A Receptor as a Case Study. Journal of Chemical Information and Modeling 2014, 54
(8)
, 2243-2254. https://doi.org/10.1021/ci5002857
- Paul C. D. Hawkins, Brian P. Kelley, and Gregory L. Warren . The Application of Statistical Methods to Cognate Docking: A Path Forward?. Journal of Chemical Information and Modeling 2014, 54
(5)
, 1339-1355. https://doi.org/10.1021/ci5001086
- Darius. P. Zlotos, Ralf Jockers, Erika Cecon, Silvia Rivara, and Paula A. Witt-Enderby . MT1 and MT2 Melatonin Receptors: Ligands, Models, Oligomers, and Therapeutic Potential. Journal of Medicinal Chemistry 2014, 57
(8)
, 3161-3185. https://doi.org/10.1021/jm401343c
- Trayder Thomas, Kimberley C. McLean, Fiona M. McRobb, David T. Manallack, David K. Chalmers, and Elizabeth Yuriev . Homology Modeling of Human Muscarinic Acetylcholine Receptors. Journal of Chemical Information and Modeling 2014, 54
(1)
, 243-253. https://doi.org/10.1021/ci400502u
- Ákos Tarcsay, Gábor Paragi, Márton Vass, Balázs Jójárt, Ferenc Bogár, and György M. Keserű . The Impact of Molecular Dynamics Sampling on the Performance of Virtual Screening against GPCRs. Journal of Chemical Information and Modeling 2013, 53
(11)
, 2990-2999. https://doi.org/10.1021/ci400087b
- Daniele Pala, Thijs Beuming, Woody Sherman, Alessio Lodola, Silvia Rivara, and Marco Mor . Structure-Based Virtual Screening of MT2 Melatonin Receptor: Influence of Template Choice and Structural Refinement. Journal of Chemical Information and Modeling 2013, 53
(4)
, 821-835. https://doi.org/10.1021/ci4000147
- Jiankun Lyu, Nicholas Kapolka, Ryan Gumpper, Assaf Alon, Liang Wang, Manish K. Jain, Ximena Barros-Álvarez, Kensuke Sakamoto, Yoojoong Kim, Jeffrey DiBerto, Kuglae Kim, Isabella S. Glenn, Tia A. Tummino, Sijie Huang, John J. Irwin, Olga O. Tarkhanova, Yurii Moroz, Georgios Skiniotis, Andrew C. Kruse, Brian K. Shoichet, Bryan L. Roth. AlphaFold2 structures guide prospective ligand discovery. Science 2024, https://doi.org/10.1126/science.adn6354
- Masha Karelina, Joseph J Noh, Ron O Dror. How accurately can one predict drug binding modes using AlphaFold models?. eLife 2023, 12 https://doi.org/10.7554/eLife.89386
- Masha Karelina, Joseph J Noh, Ron O Dror. How accurately can one predict drug binding modes using AlphaFold models?. eLife 2023, 12 https://doi.org/10.7554/eLife.89386.2
- Furkan Ayberk Binbay, Dhruv Chetanbhai Rathod, Ajay Abisheck Paul George, Diana Imhof. Quality Assessment of Selected Protein Structures Derived from Homology Modeling and AlphaFold. Pharmaceuticals 2023, 16
(12)
, 1662. https://doi.org/10.3390/ph16121662
- Hyeonah Lee, Hyeran Noh. Advancements in Nanogels for Enhanced Ocular Drug Delivery: Cutting-Edge Strategies to Overcome Eye Barriers. Gels 2023, 9
(9)
, 718. https://doi.org/10.3390/gels9090718
- Masha Karelina, Joseph J. Noh, Ron O. Dror. How accurately can one predict drug binding modes using AlphaFold models?. 2023https://doi.org/10.7554/eLife.89386.1
- Eleonora Alfinito, Rosella Cataldo, Jean-Francois Millithaler. In silico studies of macromolecules as sensors. 2023, 533-565. https://doi.org/10.1016/B978-0-323-90995-2.00024-2
- AyoOluwa O. Aderibigbe, Pankaj Pandey, Robert J. Doerksen. Negative allosteric modulators of cannabinoid receptor 1: Ternary complexes including CB1, orthosteric CP55940 and allosteric ORG27569. Journal of Biomolecular Structure and Dynamics 2022, 40
(13)
, 5729-5747. https://doi.org/10.1080/07391102.2021.1873187
- Lan Zhu, Xiaoyu Chen, Enrique E. Abola, Liang Jing, Wei Liu. Serial Crystallography for Structure-Based Drug Discovery. Trends in Pharmacological Sciences 2020, 41
(11)
, 830-839. https://doi.org/10.1016/j.tips.2020.08.009
- Mei Qian Yau, Abigail L. Emtage, Jason S. E. Loo. Benchmarking the performance of MM/PBSA in virtual screening enrichment using the GPCR-Bench dataset. Journal of Computer-Aided Molecular Design 2020, 34
(11)
, 1133-1145. https://doi.org/10.1007/s10822-020-00339-5
- Jakob Schneider, Rui Ribeiro, Mercedes Alfonso-Prieto, Paolo Carloni, Alejandro Giorgetti. Hybrid MM/CG Webserver: Automatic Set Up of Molecular Mechanics/Coarse-Grained Simulations for Human G Protein-Coupled Receptor/Ligand Complexes. Frontiers in Molecular Biosciences 2020, 7 https://doi.org/10.3389/fmolb.2020.576689
- Hanna V. Dudko, Viktar A. Urban, Alexander I. Davidovskii, Valery G. Veresov. Structure-based modeling of turnover of Bcl-2 family proteins bound to voltage-dependent anion channel 2 (VDAC2): Implications for the mechanisms of proapoptotic activation of Bak and Bax in vivo. Computational Biology and Chemistry 2020, 85 , 107203. https://doi.org/10.1016/j.compbiolchem.2020.107203
- Pratanphorn Nakliang, Raudah Lazim, Hyerim Chang, Sun Choi. Multiscale Molecular Modeling in G Protein-Coupled Receptor (GPCR)-Ligand Studies. Biomolecules 2020, 10
(4)
, 631. https://doi.org/10.3390/biom10040631
- Lu Qu, Qingtong Zhou, Yueming Xu, Yu Guo, Xiaoyu Chen, Deqiang Yao, Gye Won Han, Zhi-Jie Liu, Raymond C. Stevens, Guisheng Zhong, Dong Wu, Suwen Zhao. Structural Basis of the Diversity of Adrenergic Receptors. Cell Reports 2019, 29
(10)
, 2929-2935.e4. https://doi.org/10.1016/j.celrep.2019.10.088
- Fabrizio Fierro, Alejandro Giorgetti, Paolo Carloni, Wolfgang Meyerhof, Mercedes Alfonso-Prieto. Dual binding mode of “bitter sugars” to their human bitter taste receptor target. Scientific Reports 2019, 9
(1)
https://doi.org/10.1038/s41598-019-44805-z
- . The Dopaminergic System. 2019, 1-39. https://doi.org/10.1002/9783527813421.ch1
- Mingzhi Luo, Kai Ni, Yang Jin, Zifan Yu, Linhong Deng. Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine. Frontiers in Physiology 2019, 10 https://doi.org/10.3389/fphys.2019.00861
- Jason S. E. Loo, Abigail L. Emtage, Lahari Murali, Sze Siew Lee, Alvina L. W. Kueh, Stephen P. H. Alexander. Ligand discrimination during virtual screening of the CB1 cannabinoid receptor crystal structures following cross-docking and microsecond molecular dynamics simulations. RSC Advances 2019, 9
(28)
, 15949-15956. https://doi.org/10.1039/C9RA01095E
- Mercedes Alfonso-Prieto, Luciano Navarini, Paolo Carloni. Understanding Ligand Binding to G-Protein Coupled Receptors Using Multiscale Simulations. Frontiers in Molecular Biosciences 2019, 6 https://doi.org/10.3389/fmolb.2019.00029
- Mei Qian Yau, Abigail L. Emtage, Nathaniel J. Y. Chan, Stephen W. Doughty, Jason S. E. Loo. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures. Journal of Computer-Aided Molecular Design 2019, 33
(5)
, 487-496. https://doi.org/10.1007/s10822-019-00201-3
- Christian A. Söldner, Anselm H. C. Horn, Heinrich Sticht. A Metadynamics-Based Protocol for the Determination of GPCR-Ligand Binding Modes. International Journal of Molecular Sciences 2019, 20
(8)
, 1970. https://doi.org/10.3390/ijms20081970
- Paige N. Castleman, Chandler K. Sears, Judith A. Cole, Daniel L. Baker, Abby L. Parrill. GPCR homology model template selection benchmarking: Global versus local similarity measures. Journal of Molecular Graphics and Modelling 2019, 86 , 235-246. https://doi.org/10.1016/j.jmgm.2018.10.016
- Jason S.E. Loo, Abigail L. Emtage, Kar Weng Ng, Alene S.J. Yong, Stephen W. Doughty. Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: Binding mode prediction and docking enrichment. Journal of Molecular Graphics and Modelling 2018, 80 , 38-47. https://doi.org/10.1016/j.jmgm.2017.12.017
- Jakob Schneider, Ksenia Korshunova, Francesco Musiani, Mercedes Alfonso-Prieto, Alejandro Giorgetti, Paolo Carloni. Predicting ligand binding poses for low-resolution membrane protein models: Perspectives from multiscale simulations. Biochemical and Biophysical Research Communications 2018, 498
(2)
, 366-374. https://doi.org/10.1016/j.bbrc.2018.01.160
- Jason B. Cross. Methods for Virtual Screening of GPCR Targets: Approaches and Challenges. 2018, 233-264. https://doi.org/10.1007/978-1-4939-7465-8_11
- Christofer S. Tautermann. GPCR Homology Model Generation for Lead Optimization. 2018, 115-131. https://doi.org/10.1007/978-1-4939-7465-8_5
- Fabrizio Fierro, Eda Suku, Mercedes Alfonso-Prieto, Alejandro Giorgetti, Sven Cichon, Paolo Carloni. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Frontiers in Molecular Biosciences 2017, 4 https://doi.org/10.3389/fmolb.2017.00063
- Damian Bartuzi, Agnieszka Kaczor, Katarzyna Targowska-Duda, Dariusz Matosiuk. Recent Advances and Applications of Molecular Docking to G Protein-Coupled Receptors. Molecules 2017, 22
(2)
, 340. https://doi.org/10.3390/molecules22020340
- Andrea Strasser, Hans-Joachim Wittmann. Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands. 2017, 31-61. https://doi.org/10.1007/164_2016_113
- M. Congreve, A. Bortolato, G. Brown, R.M. Cooke. Modeling and Design for Membrane Protein Targets. 2017, 145-188. https://doi.org/10.1016/B978-0-12-409547-2.12358-3
- Durba Sengupta, Krushna Sonar, Manali Joshi. Characterizing clinically relevant natural variants of GPCRs using computational approaches. 2017, 187-204. https://doi.org/10.1016/bs.mcb.2017.07.013
- Róbert Kiss, György M. Keserű. Structure-based discovery and binding site analysis of histamine receptor ligands. Expert Opinion on Drug Discovery 2016, 11
(12)
, 1165-1185. https://doi.org/10.1080/17460441.2016.1245288
- Jinqiang Hou, Carlie L. Charron, Milan M. Fowkes, Leonard G. Luyt. Bridging computational modeling with amino acid replacements to investigate GHS-R1a-peptidomimetic recognition. European Journal of Medicinal Chemistry 2016, 123 , 822-833. https://doi.org/10.1016/j.ejmech.2016.07.078
- Tony Ngo, Irina Kufareva, James LJ Coleman, Robert M Graham, Ruben Abagyan, Nicola J Smith. Identifying ligands at orphan GPCRs: current status using structure‐based approaches. British Journal of Pharmacology 2016, 173
(20)
, 2934-2951. https://doi.org/10.1111/bph.13452
- Michael Stocks, Lilian Alcaraz. Lead Generation Approaches Delivering Inhaled β
2
‐Adrenoreceptor Agonist Drug Candidates. 2016, 575-596. https://doi.org/10.1002/9783527677047.ch20
- Agnieszka A. Kaczor, Ewelina Rutkowska, Damian Bartuzi, Katarzyna M. Targowska-Duda, Dariusz Matosiuk, Jana Selent. Computational methods for studying G protein-coupled receptors (GPCRs). 2016, 359-399. https://doi.org/10.1016/bs.mcb.2015.11.002
- Minsup Kim, Art E. Cho. Incorporating QM and solvation into docking for applications to GPCR targets. Physical Chemistry Chemical Physics 2016, 18
(40)
, 28281-28289. https://doi.org/10.1039/C6CP04742D
- Trayder Thomas, David K. Chalmers, Elizabeth Yuriev. Homology Modeling and Docking Evaluation of Human Muscarinic Acetylcholine Receptors. 2016, 15-35. https://doi.org/10.1007/978-1-4939-2858-3_2
- Christoffer Norn, Maria Hauge, Maja S. Engelstoft, Sun Hee Kim, Juerg Lehmann, Robert M. Jones, Thue W. Schwartz, Thomas M. Frimurer. Mutation-Guided Unbiased Modeling of the Fat Sensor GPR119 for High-Yield Agonist Screening. Structure 2015, 23
(12)
, 2377-2386. https://doi.org/10.1016/j.str.2015.09.014
- Antonella Ciancetta, Davide Sabbadin, Stephanie Federico, Giampiero Spalluto, Stefano Moro. Advances in Computational Techniques to Study GPCR–Ligand Recognition. Trends in Pharmacological Sciences 2015, 36
(12)
, 878-890. https://doi.org/10.1016/j.tips.2015.08.006
- Jan Jakubík, Esam E. El-Fakahany, Vladimír Doležal. Towards predictive docking at aminergic G-protein coupled receptors. Journal of Molecular Modeling 2015, 21
(11)
https://doi.org/10.1007/s00894-015-2824-9
- Karl‐Heinz Baringhaus, Gerhard Hessler. Virtual Screening. 2015, 251-280. https://doi.org/10.1002/9781118771723.ch9
- Sid Topiol, Michael Sabio. The role of experimental and computational structural approaches in 7TM drug discovery. Expert Opinion on Drug Discovery 2015, 10
(10)
, 1071-1084. https://doi.org/10.1517/17460441.2015.1072166
- Francesca Spyrakis, Claudio N. Cavasotto. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Archives of Biochemistry and Biophysics 2015, 583 , 105-119. https://doi.org/10.1016/j.abb.2015.08.002
- Bryan D. Cox, Anil K. Mehta, John O. DiRaddo, Dennis C. Liotta, Lawrence J. Wilson, James P. Snyder. Structural analysis of CXCR4 – Antagonist interactions using saturation-transfer double-difference NMR. Biochemical and Biophysical Research Communications 2015, 466
(1)
, 28-32. https://doi.org/10.1016/j.bbrc.2015.08.084
- Elizabeth Yuriev, Jessica Holien, Paul A. Ramsland. Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. Journal of Molecular Recognition 2015, 28
(10)
, 581-604. https://doi.org/10.1002/jmr.2471
- Mikitaka Kinoshita, Tetsuji Okada. Structural conservation among the rhodopsin-like and other G protein-coupled receptors. Scientific Reports 2015, 5
(1)
https://doi.org/10.1038/srep09176
- Edit Szőllősi, Amrita Bobok, László Kiss, Márton Vass, Dalma Kurkó, Sándor Kolok, András Visegrády, György M. Keserű. Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Bioorganic & Medicinal Chemistry 2015, 23
(14)
, 3991-3999. https://doi.org/10.1016/j.bmc.2015.01.013
- Gengyang Yuan, Nicholas G Gedeon, Tanner C Jankins, Graham B Jones. Novel approaches for targeting the adenosine A
2A
receptor. Expert Opinion on Drug Discovery 2015, 10
(1)
, 63-80. https://doi.org/10.1517/17460441.2015.971006
- Marie-Annick Persuy, Guenhaël Sanz, Anne Tromelin, Thierry Thomas-Danguin, Jean-François Gibrat, Edith Pajot-Augy. Mammalian Olfactory Receptors. 2015, 1-36. https://doi.org/10.1016/bs.pmbts.2014.11.001
- Mayako Michino, Thijs Beuming, Prashant Donthamsetti, Amy Hauck Newman, Jonathan A. Javitch, Lei Shi, . What Can Crystal Structures of Aminergic Receptors Tell Us about Designing Subtype-Selective Ligands?. Pharmacological Reviews 2015, 67
(1)
, 198-213. https://doi.org/10.1124/pr.114.009944
- Mayako Michino, Lei Shi. Computational Approaches in the Structure–Function Studies of Dopamine Receptors. 2015, 31-42. https://doi.org/10.1007/978-1-4939-2196-6_3
- Thijs Beuming, Bart Lenselink, Daniele Pala, Fiona McRobb, Matt Repasky, Woody Sherman. Docking and Virtual Screening Strategies for GPCR Drug Discovery. 2015, 251-276. https://doi.org/10.1007/978-1-4939-2914-6_17
- Kavita Kumari Kakarala, Kaiser Jamil, Vinod Devaraji. Structure and putative signaling mechanism of Protease activated receptor 2 (PAR2) – A promising target for breast cancer. Journal of Molecular Graphics and Modelling 2014, 53 , 179-199. https://doi.org/10.1016/j.jmgm.2014.07.012
- Bryan D. Cox, Anthony R. Prosser, Brooke M. Katzman, Ana A. Alcaraz, Dennis C. Liotta, Lawrence J. Wilson, James P. Snyder. Anti‐HIV Small‐Molecule Binding in the Peptide Subpocket of the CXCR4:CVX15 Crystal Structure. ChemBioChem 2014, 15
(11)
, 1614-1620. https://doi.org/10.1002/cbic.201402056
- Tobias Schmidt, Andreas Bergner, Torsten Schwede. Modelling three-dimensional protein structures for applications in drug design. Drug Discovery Today 2014, 19
(7)
, 890-897. https://doi.org/10.1016/j.drudis.2013.10.027
- Krzysztof Rataj, Jagna Witek, Stefan Mordalski, Tomasz Kosciolek, Andrzej J. Bojarski. Impact of Template Choice on Homology Model Efficiency in Virtual Screening. Journal of Chemical Information and Modeling 2014, 54
(6)
, 1661-1668. https://doi.org/10.1021/ci500001f
- Subha Kalyaanamoorthy, Yi-Ping Phoebe Chen. Modelling and enhanced molecular dynamics to steer structure-based drug discovery. Progress in Biophysics and Molecular Biology 2014, 114
(3)
, 123-136. https://doi.org/10.1016/j.pbiomolbio.2013.06.004
- Nikos S. Hatzakis. Single molecule insights on conformational selection and induced fit mechanism. Biophysical Chemistry 2014, 186 , 46-54. https://doi.org/10.1016/j.bpc.2013.11.003
- Raymond J. Terryn, Helen W. German, Theresa M. Kummerer, Richard R. Sinden, J. Clayton Baum, Mark J. Novak. Novel computational study on
π
-stacking to understand mechanistic interactions of Tryptanthrin analogues with DNA. Toxicology Mechanisms and Methods 2014, 24
(1)
, 73-79. https://doi.org/10.3109/15376516.2013.859194
- Guenhaël Sanz, Jean-François Gibrat, Edith Pajot-Augy. Olfactory Receptor Proteins. 2014, 47-68. https://doi.org/10.1007/978-94-017-8613-3_3
- Sid Topiol. X-ray structural information of GPCRs in drug design: what are the limitations and where do we go?. Expert Opinion on Drug Discovery 2013, 8
(6)
, 607-620. https://doi.org/10.1517/17460441.2013.783815
- Yohsuke Hagiwara, Kazuki Ohno, Masazumi Kamohara, Jun Takasaki, Toshihiro Watanabe, Yoshifumi Fukunishi, Haruki Nakamura, Masaya Orita. Molecular modeling of vasopressin receptor and
in silico
screening of V1b receptor antagonists. Expert Opinion on Drug Discovery 2013, 8
(8)
, 951-964. https://doi.org/10.1517/17460441.2013.799134
- Elisabet Gregori-Puigjané. Computational methods based on molecular shape. 2013, 120-132. https://doi.org/10.4155/ebo.13.183
- Elizabeth Dong Nguyen, Christoffer Norn, Thomas M. Frimurer, Jens Meiler, . Assessment and Challenges of Ligand Docking into Comparative Models of G-Protein Coupled Receptors. PLoS ONE 2013, 8
(7)
, e67302. https://doi.org/10.1371/journal.pone.0067302
- Miquel Duran-Frigola, Roberto Mosca, Patrick Aloy. Structural Systems Pharmacology: The Role of 3D Structures in Next-Generation Drug Development. Chemistry & Biology 2013, 20
(5)
, 674-684. https://doi.org/10.1016/j.chembiol.2013.03.004
- Stefano Costanzi. Modeling G protein-coupled receptors and their interactions with ligands. Current Opinion in Structural Biology 2013, 23
(2)
, 185-190. https://doi.org/10.1016/j.sbi.2013.01.008
- Daniele Pala, Alessio Lodola, Annalida Bedini, Gilberto Spadoni, Silvia Rivara. Homology Models of Melatonin Receptors: Challenges and Recent Advances. International Journal of Molecular Sciences 2013, 14
(4)
, 8093-8121. https://doi.org/10.3390/ijms14048093
- G. Madhavi Sastry, Matvey Adzhigirey, Tyler Day, Ramakrishna Annabhimoju, Woody Sherman. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design 2013, 27
(3)
, 221-234. https://doi.org/10.1007/s10822-013-9644-8
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.