ACS Publications. Most Trusted. Most Cited. Most Read
Current Assessment of Docking into GPCR Crystal Structures and Homology Models: Successes, Challenges, and Guidelines
My Activity

Figure 1Loading Img
    Article

    Current Assessment of Docking into GPCR Crystal Structures and Homology Models: Successes, Challenges, and Guidelines
    Click to copy article linkArticle link copied!

    View Author Information
    Schrödinger, Inc., 120 West 45th Street, New York, New York, United States
    *E-mail: [email protected]. Phone: 212 295 5800. Fax: 212 295 5801.
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2012, 52, 12, 3263–3277
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ci300411b
    Published November 3, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The growing availability of novel structures for several G protein-coupled receptors (GPCRs) has provided new opportunities for structure-based drug design of ligands against this important class of targets. Here, we report a systematic analysis of the accuracy of docking small molecules into GPCR structures and homology models using both rigid receptor (Glide SP and Glide XP) and flexible receptor (Induced Fit Docking; IFD) methods. The ability to dock ligands into different structures of the same target (cross-docking) is evaluated for both agonist and inverse agonist structures of the A2A receptor and the β1- and β2-adrenergic receptors. In addition, we have produced homology models for the β1-adrenergic, β2-adrenergic, D3 dopamine, H1 histamine, M2 muscarine, M3 muscarine, A2A adenosine, S1P1, κ-opioid, and C-X-C chemokine 4 receptors using multiple templates and investigated the ability of docking to predict the binding mode of ligands in these models. Clear correlations are observed between the docking accuracy and the similarity of the sequence of interest to the template, suggesting regimes in which docking can correctly identify ligand binding modes.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Full RMSD results for all methods and benchmarks are available as Tables S1–S9. A comparison of the performance of all methods with and without loops is shown in Table S10. Pairwise sequence identities for the full sequences are shown in Table S11. Rigid docking example poses are provided in Figures S1 and S2. A correlation plot between docking RMSD and binding site RMSD is shown in Figure S3. This material is available free of charge via the Internet at http://pubs.acs.org.

    Accession Codes

    PDB ID Codes:2VT4, 2YCW, 2Y00, 2Y02, 2Y03, 2Y04, 2RH1, 3D4S, 3NY8, 3NY9, 3NYA, 3P0G, 3PBL, 3RZE, 3UON, 4DAJ, 3EML, 3REY, 3RFM, 2YDO, 2YDV, 3QAK, 3V2Y, 3ODU, 4DHJ, 4DKL

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 78 publications.

    1. Thijs Beuming, Helena Martín, Anna M. Díaz-Rovira, Lucía Díaz, Victor Guallar, Soumya S. Ray. Are Deep Learning Structural Models Sufficiently Accurate for Free-Energy Calculations? Application of FEP+ to AlphaFold2-Predicted Structures. Journal of Chemical Information and Modeling 2022, 62 (18) , 4351-4360. https://doi.org/10.1021/acs.jcim.2c00796
    2. Jakob Schneider, Ksenia Korshunova, Zeineb Si Chaib, Alejandro Giorgetti, Mercedes Alfonso-Prieto, Paolo Carloni. Ligand Pose Predictions for Human G Protein-Coupled Receptors: Insights from the Amber-Based Hybrid Molecular Mechanics/Coarse-Grained Approach. Journal of Chemical Information and Modeling 2020, 60 (10) , 5103-5116. https://doi.org/10.1021/acs.jcim.0c00661
    3. Haiyi Chen, Weitao Fu, Zhe Wang, Xuwen Wang, Tailong Lei, Feng Zhu, Dan Li, Shan Chang, Lei Xu, Tingjun Hou. Reliability of Docking-Based Virtual Screening for GPCR Ligands with Homology Modeled Structures: A Case Study of the Angiotensin II Type I Receptor. ACS Chemical Neuroscience 2019, 10 (1) , 677-689. https://doi.org/10.1021/acschemneuro.8b00489
    4. Daniel Cappel, Michelle Lynn Hall, Eelke B. Lenselink, Thijs Beuming, Jun Qi, James Bradner, and Woody Sherman . Relative Binding Free Energy Calculations Applied to Protein Homology Models. Journal of Chemical Information and Modeling 2016, 56 (12) , 2388-2400. https://doi.org/10.1021/acs.jcim.6b00362
    5. Antonella Ciancetta, Alberto Cuzzolin, and Stefano Moro . Alternative Quality Assessment Strategy to Compare Performances of GPCR-Ligand Docking Protocols: The Human Adenosine A2A Receptor as a Case Study. Journal of Chemical Information and Modeling 2014, 54 (8) , 2243-2254. https://doi.org/10.1021/ci5002857
    6. Paul C. D. Hawkins, Brian P. Kelley, and Gregory L. Warren . The Application of Statistical Methods to Cognate Docking: A Path Forward?. Journal of Chemical Information and Modeling 2014, 54 (5) , 1339-1355. https://doi.org/10.1021/ci5001086
    7. Darius. P. Zlotos, Ralf Jockers, Erika Cecon, Silvia Rivara, and Paula A. Witt-Enderby . MT1 and MT2 Melatonin Receptors: Ligands, Models, Oligomers, and Therapeutic Potential. Journal of Medicinal Chemistry 2014, 57 (8) , 3161-3185. https://doi.org/10.1021/jm401343c
    8. Trayder Thomas, Kimberley C. McLean, Fiona M. McRobb, David T. Manallack, David K. Chalmers, and Elizabeth Yuriev . Homology Modeling of Human Muscarinic Acetylcholine Receptors. Journal of Chemical Information and Modeling 2014, 54 (1) , 243-253. https://doi.org/10.1021/ci400502u
    9. Ákos Tarcsay, Gábor Paragi, Márton Vass, Balázs Jójárt, Ferenc Bogár, and György M. Keserű . The Impact of Molecular Dynamics Sampling on the Performance of Virtual Screening against GPCRs. Journal of Chemical Information and Modeling 2013, 53 (11) , 2990-2999. https://doi.org/10.1021/ci400087b
    10. Daniele Pala, Thijs Beuming, Woody Sherman, Alessio Lodola, Silvia Rivara, and Marco Mor . Structure-Based Virtual Screening of MT2 Melatonin Receptor: Influence of Template Choice and Structural Refinement. Journal of Chemical Information and Modeling 2013, 53 (4) , 821-835. https://doi.org/10.1021/ci4000147
    11. Jiankun Lyu, Nicholas Kapolka, Ryan Gumpper, Assaf Alon, Liang Wang, Manish K. Jain, Ximena Barros-Álvarez, Kensuke Sakamoto, Yoojoong Kim, Jeffrey DiBerto, Kuglae Kim, Isabella S. Glenn, Tia A. Tummino, Sijie Huang, John J. Irwin, Olga O. Tarkhanova, Yurii Moroz, Georgios Skiniotis, Andrew C. Kruse, Brian K. Shoichet, Bryan L. Roth. AlphaFold2 structures guide prospective ligand discovery. Science 2024, https://doi.org/10.1126/science.adn6354
    12. Masha Karelina, Joseph J Noh, Ron O Dror. How accurately can one predict drug binding modes using AlphaFold models?. eLife 2023, 12 https://doi.org/10.7554/eLife.89386
    13. Masha Karelina, Joseph J Noh, Ron O Dror. How accurately can one predict drug binding modes using AlphaFold models?. eLife 2023, 12 https://doi.org/10.7554/eLife.89386.2
    14. Furkan Ayberk Binbay, Dhruv Chetanbhai Rathod, Ajay Abisheck Paul George, Diana Imhof. Quality Assessment of Selected Protein Structures Derived from Homology Modeling and AlphaFold. Pharmaceuticals 2023, 16 (12) , 1662. https://doi.org/10.3390/ph16121662
    15. Hyeonah Lee, Hyeran Noh. Advancements in Nanogels for Enhanced Ocular Drug Delivery: Cutting-Edge Strategies to Overcome Eye Barriers. Gels 2023, 9 (9) , 718. https://doi.org/10.3390/gels9090718
    16. Masha Karelina, Joseph J. Noh, Ron O. Dror. How accurately can one predict drug binding modes using AlphaFold models?. 2023https://doi.org/10.7554/eLife.89386.1
    17. Eleonora Alfinito, Rosella Cataldo, Jean-Francois Millithaler. In silico studies of macromolecules as sensors. 2023, 533-565. https://doi.org/10.1016/B978-0-323-90995-2.00024-2
    18. AyoOluwa O. Aderibigbe, Pankaj Pandey, Robert J. Doerksen. Negative allosteric modulators of cannabinoid receptor 1: Ternary complexes including CB1, orthosteric CP55940 and allosteric ORG27569. Journal of Biomolecular Structure and Dynamics 2022, 40 (13) , 5729-5747. https://doi.org/10.1080/07391102.2021.1873187
    19. Lan Zhu, Xiaoyu Chen, Enrique E. Abola, Liang Jing, Wei Liu. Serial Crystallography for Structure-Based Drug Discovery. Trends in Pharmacological Sciences 2020, 41 (11) , 830-839. https://doi.org/10.1016/j.tips.2020.08.009
    20. Mei Qian Yau, Abigail L. Emtage, Jason S. E. Loo. Benchmarking the performance of MM/PBSA in virtual screening enrichment using the GPCR-Bench dataset. Journal of Computer-Aided Molecular Design 2020, 34 (11) , 1133-1145. https://doi.org/10.1007/s10822-020-00339-5
    21. Jakob Schneider, Rui Ribeiro, Mercedes Alfonso-Prieto, Paolo Carloni, Alejandro Giorgetti. Hybrid MM/CG Webserver: Automatic Set Up of Molecular Mechanics/Coarse-Grained Simulations for Human G Protein-Coupled Receptor/Ligand Complexes. Frontiers in Molecular Biosciences 2020, 7 https://doi.org/10.3389/fmolb.2020.576689
    22. Hanna V. Dudko, Viktar A. Urban, Alexander I. Davidovskii, Valery G. Veresov. Structure-based modeling of turnover of Bcl-2 family proteins bound to voltage-dependent anion channel 2 (VDAC2): Implications for the mechanisms of proapoptotic activation of Bak and Bax in vivo. Computational Biology and Chemistry 2020, 85 , 107203. https://doi.org/10.1016/j.compbiolchem.2020.107203
    23. Pratanphorn Nakliang, Raudah Lazim, Hyerim Chang, Sun Choi. Multiscale Molecular Modeling in G Protein-Coupled Receptor (GPCR)-Ligand Studies. Biomolecules 2020, 10 (4) , 631. https://doi.org/10.3390/biom10040631
    24. Lu Qu, Qingtong Zhou, Yueming Xu, Yu Guo, Xiaoyu Chen, Deqiang Yao, Gye Won Han, Zhi-Jie Liu, Raymond C. Stevens, Guisheng Zhong, Dong Wu, Suwen Zhao. Structural Basis of the Diversity of Adrenergic Receptors. Cell Reports 2019, 29 (10) , 2929-2935.e4. https://doi.org/10.1016/j.celrep.2019.10.088
    25. Fabrizio Fierro, Alejandro Giorgetti, Paolo Carloni, Wolfgang Meyerhof, Mercedes Alfonso-Prieto. Dual binding mode of “bitter sugars” to their human bitter taste receptor target. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-44805-z
    26. . The Dopaminergic System. 2019, 1-39. https://doi.org/10.1002/9783527813421.ch1
    27. Mingzhi Luo, Kai Ni, Yang Jin, Zifan Yu, Linhong Deng. Toward the Identification of Extra-Oral TAS2R Agonists as Drug Agents for Muscle Relaxation Therapies via Bioinformatics-Aided Screening of Bitter Compounds in Traditional Chinese Medicine. Frontiers in Physiology 2019, 10 https://doi.org/10.3389/fphys.2019.00861
    28. Jason S. E. Loo, Abigail L. Emtage, Lahari Murali, Sze Siew Lee, Alvina L. W. Kueh, Stephen P. H. Alexander. Ligand discrimination during virtual screening of the CB1 cannabinoid receptor crystal structures following cross-docking and microsecond molecular dynamics simulations. RSC Advances 2019, 9 (28) , 15949-15956. https://doi.org/10.1039/C9RA01095E
    29. Mercedes Alfonso-Prieto, Luciano Navarini, Paolo Carloni. Understanding Ligand Binding to G-Protein Coupled Receptors Using Multiscale Simulations. Frontiers in Molecular Biosciences 2019, 6 https://doi.org/10.3389/fmolb.2019.00029
    30. Mei Qian Yau, Abigail L. Emtage, Nathaniel J. Y. Chan, Stephen W. Doughty, Jason S. E. Loo. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures. Journal of Computer-Aided Molecular Design 2019, 33 (5) , 487-496. https://doi.org/10.1007/s10822-019-00201-3
    31. Christian A. Söldner, Anselm H. C. Horn, Heinrich Sticht. A Metadynamics-Based Protocol for the Determination of GPCR-Ligand Binding Modes. International Journal of Molecular Sciences 2019, 20 (8) , 1970. https://doi.org/10.3390/ijms20081970
    32. Paige N. Castleman, Chandler K. Sears, Judith A. Cole, Daniel L. Baker, Abby L. Parrill. GPCR homology model template selection benchmarking: Global versus local similarity measures. Journal of Molecular Graphics and Modelling 2019, 86 , 235-246. https://doi.org/10.1016/j.jmgm.2018.10.016
    33. Jason S.E. Loo, Abigail L. Emtage, Kar Weng Ng, Alene S.J. Yong, Stephen W. Doughty. Assessing GPCR homology models constructed from templates of various transmembrane sequence identities: Binding mode prediction and docking enrichment. Journal of Molecular Graphics and Modelling 2018, 80 , 38-47. https://doi.org/10.1016/j.jmgm.2017.12.017
    34. Jakob Schneider, Ksenia Korshunova, Francesco Musiani, Mercedes Alfonso-Prieto, Alejandro Giorgetti, Paolo Carloni. Predicting ligand binding poses for low-resolution membrane protein models: Perspectives from multiscale simulations. Biochemical and Biophysical Research Communications 2018, 498 (2) , 366-374. https://doi.org/10.1016/j.bbrc.2018.01.160
    35. Jason B. Cross. Methods for Virtual Screening of GPCR Targets: Approaches and Challenges. 2018, 233-264. https://doi.org/10.1007/978-1-4939-7465-8_11
    36. Christofer S. Tautermann. GPCR Homology Model Generation for Lead Optimization. 2018, 115-131. https://doi.org/10.1007/978-1-4939-7465-8_5
    37. Fabrizio Fierro, Eda Suku, Mercedes Alfonso-Prieto, Alejandro Giorgetti, Sven Cichon, Paolo Carloni. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Frontiers in Molecular Biosciences 2017, 4 https://doi.org/10.3389/fmolb.2017.00063
    38. Damian Bartuzi, Agnieszka Kaczor, Katarzyna Targowska-Duda, Dariusz Matosiuk. Recent Advances and Applications of Molecular Docking to G Protein-Coupled Receptors. Molecules 2017, 22 (2) , 340. https://doi.org/10.3390/molecules22020340
    39. Andrea Strasser, Hans-Joachim Wittmann. Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands. 2017, 31-61. https://doi.org/10.1007/164_2016_113
    40. M. Congreve, A. Bortolato, G. Brown, R.M. Cooke. Modeling and Design for Membrane Protein Targets. 2017, 145-188. https://doi.org/10.1016/B978-0-12-409547-2.12358-3
    41. Durba Sengupta, Krushna Sonar, Manali Joshi. Characterizing clinically relevant natural variants of GPCRs using computational approaches. 2017, 187-204. https://doi.org/10.1016/bs.mcb.2017.07.013
    42. Róbert Kiss, György M. Keserű. Structure-based discovery and binding site analysis of histamine receptor ligands. Expert Opinion on Drug Discovery 2016, 11 (12) , 1165-1185. https://doi.org/10.1080/17460441.2016.1245288
    43. Jinqiang Hou, Carlie L. Charron, Milan M. Fowkes, Leonard G. Luyt. Bridging computational modeling with amino acid replacements to investigate GHS-R1a-peptidomimetic recognition. European Journal of Medicinal Chemistry 2016, 123 , 822-833. https://doi.org/10.1016/j.ejmech.2016.07.078
    44. Tony Ngo, Irina Kufareva, James LJ Coleman, Robert M Graham, Ruben Abagyan, Nicola J Smith. Identifying ligands at orphan GPCRs: current status using structure‐based approaches. British Journal of Pharmacology 2016, 173 (20) , 2934-2951. https://doi.org/10.1111/bph.13452
    45. Michael Stocks, Lilian Alcaraz. Lead Generation Approaches Delivering Inhaled β 2 ‐Adrenoreceptor Agonist Drug Candidates. 2016, 575-596. https://doi.org/10.1002/9783527677047.ch20
    46. Agnieszka A. Kaczor, Ewelina Rutkowska, Damian Bartuzi, Katarzyna M. Targowska-Duda, Dariusz Matosiuk, Jana Selent. Computational methods for studying G protein-coupled receptors (GPCRs). 2016, 359-399. https://doi.org/10.1016/bs.mcb.2015.11.002
    47. Minsup Kim, Art E. Cho. Incorporating QM and solvation into docking for applications to GPCR targets. Physical Chemistry Chemical Physics 2016, 18 (40) , 28281-28289. https://doi.org/10.1039/C6CP04742D
    48. Trayder Thomas, David K. Chalmers, Elizabeth Yuriev. Homology Modeling and Docking Evaluation of Human Muscarinic Acetylcholine Receptors. 2016, 15-35. https://doi.org/10.1007/978-1-4939-2858-3_2
    49. Christoffer Norn, Maria Hauge, Maja S. Engelstoft, Sun Hee Kim, Juerg Lehmann, Robert M. Jones, Thue W. Schwartz, Thomas M. Frimurer. Mutation-Guided Unbiased Modeling of the Fat Sensor GPR119 for High-Yield Agonist Screening. Structure 2015, 23 (12) , 2377-2386. https://doi.org/10.1016/j.str.2015.09.014
    50. Antonella Ciancetta, Davide Sabbadin, Stephanie Federico, Giampiero Spalluto, Stefano Moro. Advances in Computational Techniques to Study GPCR–Ligand Recognition. Trends in Pharmacological Sciences 2015, 36 (12) , 878-890. https://doi.org/10.1016/j.tips.2015.08.006
    51. Jan Jakubík, Esam E. El-Fakahany, Vladimír Doležal. Towards predictive docking at aminergic G-protein coupled receptors. Journal of Molecular Modeling 2015, 21 (11) https://doi.org/10.1007/s00894-015-2824-9
    52. Karl‐Heinz Baringhaus, Gerhard Hessler. Virtual Screening. 2015, 251-280. https://doi.org/10.1002/9781118771723.ch9
    53. Sid Topiol, Michael Sabio. The role of experimental and computational structural approaches in 7TM drug discovery. Expert Opinion on Drug Discovery 2015, 10 (10) , 1071-1084. https://doi.org/10.1517/17460441.2015.1072166
    54. Francesca Spyrakis, Claudio N. Cavasotto. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description. Archives of Biochemistry and Biophysics 2015, 583 , 105-119. https://doi.org/10.1016/j.abb.2015.08.002
    55. Bryan D. Cox, Anil K. Mehta, John O. DiRaddo, Dennis C. Liotta, Lawrence J. Wilson, James P. Snyder. Structural analysis of CXCR4 – Antagonist interactions using saturation-transfer double-difference NMR. Biochemical and Biophysical Research Communications 2015, 466 (1) , 28-32. https://doi.org/10.1016/j.bbrc.2015.08.084
    56. Elizabeth Yuriev, Jessica Holien, Paul A. Ramsland. Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. Journal of Molecular Recognition 2015, 28 (10) , 581-604. https://doi.org/10.1002/jmr.2471
    57. Mikitaka Kinoshita, Tetsuji Okada. Structural conservation among the rhodopsin-like and other G protein-coupled receptors. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep09176
    58. Edit Szőllősi, Amrita Bobok, László Kiss, Márton Vass, Dalma Kurkó, Sándor Kolok, András Visegrády, György M. Keserű. Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Bioorganic & Medicinal Chemistry 2015, 23 (14) , 3991-3999. https://doi.org/10.1016/j.bmc.2015.01.013
    59. Gengyang Yuan, Nicholas G Gedeon, Tanner C Jankins, Graham B Jones. Novel approaches for targeting the adenosine A 2A receptor. Expert Opinion on Drug Discovery 2015, 10 (1) , 63-80. https://doi.org/10.1517/17460441.2015.971006
    60. Marie-Annick Persuy, Guenhaël Sanz, Anne Tromelin, Thierry Thomas-Danguin, Jean-François Gibrat, Edith Pajot-Augy. Mammalian Olfactory Receptors. 2015, 1-36. https://doi.org/10.1016/bs.pmbts.2014.11.001
    61. Mayako Michino, Thijs Beuming, Prashant Donthamsetti, Amy Hauck Newman, Jonathan A. Javitch, Lei Shi, . What Can Crystal Structures of Aminergic Receptors Tell Us about Designing Subtype-Selective Ligands?. Pharmacological Reviews 2015, 67 (1) , 198-213. https://doi.org/10.1124/pr.114.009944
    62. Mayako Michino, Lei Shi. Computational Approaches in the Structure–Function Studies of Dopamine Receptors. 2015, 31-42. https://doi.org/10.1007/978-1-4939-2196-6_3
    63. Thijs Beuming, Bart Lenselink, Daniele Pala, Fiona McRobb, Matt Repasky, Woody Sherman. Docking and Virtual Screening Strategies for GPCR Drug Discovery. 2015, 251-276. https://doi.org/10.1007/978-1-4939-2914-6_17
    64. Kavita Kumari Kakarala, Kaiser Jamil, Vinod Devaraji. Structure and putative signaling mechanism of Protease activated receptor 2 (PAR2) – A promising target for breast cancer. Journal of Molecular Graphics and Modelling 2014, 53 , 179-199. https://doi.org/10.1016/j.jmgm.2014.07.012
    65. Bryan D. Cox, Anthony R. Prosser, Brooke M. Katzman, Ana A. Alcaraz, Dennis C. Liotta, Lawrence J. Wilson, James P. Snyder. Anti‐HIV Small‐Molecule Binding in the Peptide Subpocket of the CXCR4:CVX15 Crystal Structure. ChemBioChem 2014, 15 (11) , 1614-1620. https://doi.org/10.1002/cbic.201402056
    66. Tobias Schmidt, Andreas Bergner, Torsten Schwede. Modelling three-dimensional protein structures for applications in drug design. Drug Discovery Today 2014, 19 (7) , 890-897. https://doi.org/10.1016/j.drudis.2013.10.027
    67. Krzysztof Rataj, Jagna Witek, Stefan Mordalski, Tomasz Kosciolek, Andrzej J. Bojarski. Impact of Template Choice on Homology Model Efficiency in Virtual Screening. Journal of Chemical Information and Modeling 2014, 54 (6) , 1661-1668. https://doi.org/10.1021/ci500001f
    68. Subha Kalyaanamoorthy, Yi-Ping Phoebe Chen. Modelling and enhanced molecular dynamics to steer structure-based drug discovery. Progress in Biophysics and Molecular Biology 2014, 114 (3) , 123-136. https://doi.org/10.1016/j.pbiomolbio.2013.06.004
    69. Nikos S. Hatzakis. Single molecule insights on conformational selection and induced fit mechanism. Biophysical Chemistry 2014, 186 , 46-54. https://doi.org/10.1016/j.bpc.2013.11.003
    70. Raymond J. Terryn, Helen W. German, Theresa M. Kummerer, Richard R. Sinden, J. Clayton Baum, Mark J. Novak. Novel computational study on π -stacking to understand mechanistic interactions of Tryptanthrin analogues with DNA. Toxicology Mechanisms and Methods 2014, 24 (1) , 73-79. https://doi.org/10.3109/15376516.2013.859194
    71. Guenhaël Sanz, Jean-François Gibrat, Edith Pajot-Augy. Olfactory Receptor Proteins. 2014, 47-68. https://doi.org/10.1007/978-94-017-8613-3_3
    72. Sid Topiol. X-ray structural information of GPCRs in drug design: what are the limitations and where do we go?. Expert Opinion on Drug Discovery 2013, 8 (6) , 607-620. https://doi.org/10.1517/17460441.2013.783815
    73. Yohsuke Hagiwara, Kazuki Ohno, Masazumi Kamohara, Jun Takasaki, Toshihiro Watanabe, Yoshifumi Fukunishi, Haruki Nakamura, Masaya Orita. Molecular modeling of vasopressin receptor and in silico screening of V1b receptor antagonists. Expert Opinion on Drug Discovery 2013, 8 (8) , 951-964. https://doi.org/10.1517/17460441.2013.799134
    74. Elisabet Gregori-Puigjané. Computational methods based on molecular shape. 2013, 120-132. https://doi.org/10.4155/ebo.13.183
    75. Elizabeth Dong Nguyen, Christoffer Norn, Thomas M. Frimurer, Jens Meiler, . Assessment and Challenges of Ligand Docking into Comparative Models of G-Protein Coupled Receptors. PLoS ONE 2013, 8 (7) , e67302. https://doi.org/10.1371/journal.pone.0067302
    76. Miquel Duran-Frigola, Roberto Mosca, Patrick Aloy. Structural Systems Pharmacology: The Role of 3D Structures in Next-Generation Drug Development. Chemistry & Biology 2013, 20 (5) , 674-684. https://doi.org/10.1016/j.chembiol.2013.03.004
    77. Stefano Costanzi. Modeling G protein-coupled receptors and their interactions with ligands. Current Opinion in Structural Biology 2013, 23 (2) , 185-190. https://doi.org/10.1016/j.sbi.2013.01.008
    78. Daniele Pala, Alessio Lodola, Annalida Bedini, Gilberto Spadoni, Silvia Rivara. Homology Models of Melatonin Receptors: Challenges and Recent Advances. International Journal of Molecular Sciences 2013, 14 (4) , 8093-8121. https://doi.org/10.3390/ijms14048093
    79. G. Madhavi Sastry, Matvey Adzhigirey, Tyler Day, Ramakrishna Annabhimoju, Woody Sherman. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design 2013, 27 (3) , 221-234. https://doi.org/10.1007/s10822-013-9644-8

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2012, 52, 12, 3263–3277
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ci300411b
    Published November 3, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    3155

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.