ACS Publications. Most Trusted. Most Cited. Most Read
Stereo Signature Molecular Descriptor
My Activity

Figure 1Loading Img
    Article

    Stereo Signature Molecular Descriptor
    Click to copy article linkArticle link copied!

    View Author Information
    University of Evry, CNRS, Institute of Systems and Synthetic Biology, Évry, France
    AstraZeneca Research and Development, SE-431 83 Mölndal, Sweden
    Other Access OptionsSupporting Information (1)

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2013, 53, 4, 887–897
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ci300584r
    Published March 25, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We present an algorithm to compute molecular graph descriptors considering the stereochemistry of the molecular structure based on our previously introduced signature molecular descriptor. The algorithm can generate two types of descriptors, one which is compliant with the Cahn–Ingold–Prelog priority rules, including complex stereochemistry structures such as fullerenes, and a computationally efficient one based on our previous definition of a directed acyclic graph that is augmented to a chiral molecular graph. The performance of the algorithm in terms of speed as a canonicalizer as well as in modeling and predicting bioactivity is evaluated, showing an overall better performance than other molecular descriptors, which is particularly relevant in modeling stereoselective biochemical reactions. The complete source code of the stereo signature molecular descriptor is available for download under an open-source license at http://molsig.sourceforge.net.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Assignment of stereochemistry by the algorithm for the DRUGBANK dataset; datasets used for prediction of enantioselectivity, ecdysteroids, antimalarial activity, and enzymatic reactions; predicted values for enantioselectivity, ecdysteroids, antimalarial activity; and obtained accuracies for enzymatic reactions. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 47 publications.

    1. Guillaume Gricourt, Philippe Meyer, Thomas Duigou, Jean-Loup Faulon. Artificial Intelligence Methods and Models for Retro-Biosynthesis: A Scoping Review. ACS Synthetic Biology 2024, 13 (8) , 2276-2294. https://doi.org/10.1021/acssynbio.4c00091
    2. Feng Gao, Yike Shen, Jonathan Brett Sallach, Hui Li, Cun Liu, Yuanbo Li. Direct Prediction of Bioaccumulation of Organic Contaminants in Plant Roots from Soils with Machine Learning Models Based on Molecular Structures. Environmental Science & Technology 2021, 55 (24) , 16358-16368. https://doi.org/10.1021/acs.est.1c02376
    3. Andrew F. Zahrt, Soumitra V. Athavale, Scott E. Denmark. Quantitative Structure–Selectivity Relationships in Enantioselective Catalysis: Past, Present, and Future. Chemical Reviews 2020, 120 (3) , 1620-1689. https://doi.org/10.1021/acs.chemrev.9b00425
    4. Jiangming Sun, Lars Carlsson, Ernst Ahlberg, Ulf Norinder, Ola Engkvist, and Hongming Chen . Applying Mondrian Cross-Conformal Prediction To Estimate Prediction Confidence on Large Imbalanced Bioactivity Data Sets. Journal of Chemical Information and Modeling 2017, 57 (7) , 1591-1598. https://doi.org/10.1021/acs.jcim.7b00159
    5. Joseph Mellor, Ioana Grigoras, Pablo Carbonell, and Jean-Loup Faulon . Semisupervised Gaussian Process for Automated Enzyme Search. ACS Synthetic Biology 2016, 5 (6) , 518-528. https://doi.org/10.1021/acssynbio.5b00294
    6. Nadine Schneider, Roger A. Sayle, and Gregory A. Landrum . Get Your Atoms in Order—An Open-Source Implementation of a Novel and Robust Molecular Canonicalization Algorithm. Journal of Chemical Information and Modeling 2015, 55 (10) , 2111-2120. https://doi.org/10.1021/acs.jcim.5b00543
    7. Pablo Carbonell, Pierre Parutto, Claire Baudier, Christophe Junot, and Jean-Loup Faulon . Retropath: Automated Pipeline for Embedded Metabolic Circuits. ACS Synthetic Biology 2014, 3 (8) , 565-577. https://doi.org/10.1021/sb4001273
    8. Jinming Fan, Chao Qian, Shaodong Zhou. A Universal Framework for General Prediction of Physicochemical Properties: the Natural Growth Model. Research 2024, https://doi.org/10.34133/research.0510
    9. Rizvi Syed Aal E Ali, Jiaolong Meng, Muhammad Ehtisham Ibraheem Khan, Xuefeng Jiang. Machine learning advancements in organic synthesis: A focused exploration of artificial intelligence applications in chemistry. Artificial Intelligence Chemistry 2024, 2 (1) , 100049. https://doi.org/10.1016/j.aichem.2024.100049
    10. Jinming Fan, Chao Qian, Shaodong Zhou. Reproducing the color with reformulated recipe. Artificial Intelligence Chemistry 2023, 1 (1) , 100003. https://doi.org/10.1016/j.aichem.2023.100003
    11. Jinming Fan, Chao Qian, Shaodong Zhou. Machine Learning Spectroscopy Using a 2-Stage, Generalized Constituent Contribution Protocol. Research 2023, 6 https://doi.org/10.34133/research.0115
    12. Benjamin Owen, Katherine Wheelhouse, Grazziela Figueredo, Ender Özcan, Simon Woodward. Machine learnt patterns in rhodium-catalysed asymmetric Michael addition using chiral diene ligands. Results in Chemistry 2022, 4 , 100379. https://doi.org/10.1016/j.rechem.2022.100379
    13. William Finnigan. Computer-Aided Synthesis Planning for Biocatalysis. 2022https://doi.org/10.1016/B978-0-32-390644-9.00084-6
    14. Bernard Nguyen, Leanne S. Whitmore, Anthe George, Corey M. Hudson. Evaluating causal‐based feature selection for fuel property prediction models. Statistical Analysis and Data Mining: The ASA Data Science Journal 2021, 14 (6) , 624-635. https://doi.org/10.1002/sam.11511
    15. Aleksandra Nikonenko, Dmitry Zankov, Igor Baskin, Timur Madzhidov, Pavel Polishchuk. Multiple Conformer Descriptors for QSAR Modeling. Molecular Informatics 2021, 40 (11) https://doi.org/10.1002/minf.202060030
    16. Nastaran Meftahi, Mykhailo Klymenko, Andrew J. Christofferson, Udo Bach, David A. Winkler, Salvy P. Russo. Machine learning property prediction for organic photovoltaic devices. npj Computational Materials 2020, 6 (1) https://doi.org/10.1038/s41524-020-00429-w
    17. Cindy Vallieres, Andrew L. Hook, Yinfeng He, Valentina Cuzzucoli Crucitti, Grazziela Figueredo, Catheryn R. Davies, Laurence Burroughs, David A. Winkler, Ricky D. Wildman, Derek J. Irvine, Morgan R. Alexander, Simon V. Avery. Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration. Science Advances 2020, 6 (23) https://doi.org/10.1126/sciadv.aba6574
    18. Rudy J. Richardson, John K. Fink, Paul Glynn, Robert B. Hufnagel, Galina F. Makhaeva, Sanjeeva J. Wijeyesakere. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). 2020, 1-78. https://doi.org/10.1016/bs.ant.2020.01.001
    19. Chengcai Luo, Guixiang Hu, Meilan Huang, Jianwei Zou, Yongjun Jiang. Prediction on separation factor of chiral arylhydantoin compounds and recognition mechanism between chiral stationary phase and the enantiomers. Journal of Molecular Graphics and Modelling 2020, 94 , 107479. https://doi.org/10.1016/j.jmgm.2019.107479
    20. Maria Sorokina, Christoph Steinbeck. NaPLeS: a natural products likeness scorer—web application and database. Journal of Cheminformatics 2019, 11 (1) https://doi.org/10.1186/s13321-019-0378-z
    21. Paulius Mikulskis, Morgan R. Alexander, David Alan Winkler. Toward Interpretable Machine Learning Models for Materials Discovery. Advanced Intelligent Systems 2019, 1 (8) https://doi.org/10.1002/aisy.201900045
    22. Gavin Kurgan, Logan Kurgan, Aidan Schneider, Moses Onyeabor, Yesenia Rodriguez-Sanchez, Eric Taylor, Rodrigo Martinez, Pablo Carbonell, Xiaojian Shi, Haiwei Gu, Xuan Wang. Identification of major malate export systems in an engineered malate-producing Escherichia coli aided by substrate similarity search. Applied Microbiology and Biotechnology 2019, 103 (21-22) , 9001-9011. https://doi.org/10.1007/s00253-019-10164-y
    23. Thomas Duigou, Melchior du Lac, Pablo Carbonell, Jean-Loup Faulon. RetroRules: a database of reaction rules for engineering biology. Nucleic Acids Research 2019, 47 (D1) , D1229-D1235. https://doi.org/10.1093/nar/gky940
    24. Michael Machas, Gavin Kurgan, Amit K Jha, Andrew Flores, Aidan Schneider, Sean Coyle, Arul M Varman, Xuan Wang, David R Nielsen. Emerging tools, enabling technologies, and future opportunities for the bioproduction of aromatic chemicals. Journal of Chemical Technology & Biotechnology 2019, 94 (1) , 38-52. https://doi.org/10.1002/jctb.5762
    25. Tadi Venkata Sivakumar, Anirban Bhaduri, Rajasekhara Reddy Duvvuru Muni, Jin Hwan Park, Tae Yong Kim. SimCAL: a flexible tool to compute biochemical reaction similarity. BMC Bioinformatics 2018, 19 (1) https://doi.org/10.1186/s12859-018-2248-5
    26. Fan Feng, Luhua Lai, Jianfeng Pei. Computational Chemical Synthesis Analysis and Pathway Design. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00199
    27. Pablo Carbonell, Baudoin Delépine, Jean-Loup Faulon. Extended Metabolic Space Modeling. 2018, 83-96. https://doi.org/10.1007/978-1-4939-7295-1_6
    28. Baudoin Delépine, Thomas Duigou, Pablo Carbonell, Jean-Loup Faulon. RetroPath2.0: A retrosynthesis workflow for metabolic engineers. Metabolic Engineering 2018, 45 , 158-170. https://doi.org/10.1016/j.ymben.2017.12.002
    29. Jiangming Sun, Nina Jeliazkova, Vladimir Chupakhin, Jose-Felipe Golib-Dzib, Ola Engkvist, Lars Carlsson, Jörg Wegner, Hugo Ceulemans, Ivan Georgiev, Vedrin Jeliazkov, Nikolay Kochev, Thomas J. Ashby, Hongming Chen. ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis in chemogenomics. Journal of Cheminformatics 2017, 9 (1) https://doi.org/10.1186/s13321-017-0203-5
    30. Marwin H. S. Segler, Mark P. Waller. Neural‐Symbolic Machine Learning for Retrosynthesis and Reaction Prediction. Chemistry – A European Journal 2017, 23 (25) , 5966-5971. https://doi.org/10.1002/chem.201605499
    31. Jaroslaw Polanski, Johann Gasteiger. Computer Representation of Chemical Compounds. 2017, 1997-2039. https://doi.org/10.1007/978-3-319-27282-5_50
    32. P. Polishchuk, E. Mokshyna, A. Kosinskaya, A. Muats, M. Kulinsky, O. Tinkov, L. Ognichenko, T. Khristova, A. Artemenko, V. Kuz’min. Structural, Physicochemical and Stereochemical Interpretation of QSAR Models Based on Simplex Representation of Molecular Structure. 2017, 107-147. https://doi.org/10.1007/978-3-319-56850-8_4
    33. Jennifer De León, Ana M. Velásquez, Bibian A. Hoyos. A stochastic method for asphaltene structure formulation from experimental data: avoidance of implausible structures. Physical Chemistry Chemical Physics 2017, 19 (15) , 9934-9944. https://doi.org/10.1039/C6CP06380B
    34. Somayeh Pirhadi, Jocelyn Sunseri, David Ryan Koes. Open source molecular modeling. Journal of Molecular Graphics and Modelling 2016, 69 , 127-143. https://doi.org/10.1016/j.jmgm.2016.07.008
    35. Baudoin Delépine, Vincent Libis, Pablo Carbonell, Jean-Loup Faulon. SensiPath: computer-aided design of sensing-enabling metabolic pathways. Nucleic Acids Research 2016, 44 (W1) , W226-W231. https://doi.org/10.1093/nar/gkw305
    36. S. Sagar, J. Sidorova. Sequence Retriever for Known, Discovered, and User-Specified Molecular Fragments. 2016, 51-58. https://doi.org/10.1007/978-3-319-40126-3_6
    37. D.P. Visco, J.J. Chen. The Signature Molecular Descriptor in Molecular Design. 2016, 315-343. https://doi.org/10.1016/B978-0-444-63683-6.00011-3
    38. Virginie Y. Martiny, Pablo Carbonell, Florent Chevillard, Gautier Moroy, Arnaud B. Nicot, Philippe Vayer, Bruno O. Villoutreix, Maria A. Miteva. Integrated structure- and ligand-based in silico approach to predict inhibition of cytochrome P450 2D6. Bioinformatics 2015, 31 (24) , 3930-3937. https://doi.org/10.1093/bioinformatics/btv486
    39. Maria Sorokina, Claudine Medigue, David Vallenet. A new network representation of the metabolism to detect chemical transformation modules. BMC Bioinformatics 2015, 16 (1) https://doi.org/10.1186/s12859-015-0809-4
    40. Wendy A. Warr. Many InChIs and quite some feat. Journal of Computer-Aided Molecular Design 2015, 29 (8) , 681-694. https://doi.org/10.1007/s10822-015-9854-3
    41. Fangfang Zheng, Qingyou Zhang, Jingya Li, Jingjie Suo, Chengcheng Wu, Yanmei Zhou, Xiaoqiang Liu, Lu Xu. Machine learning induction of chemically intuitive rules for the prediction of enantioselectivity in the asymmetric syntheses of alcohols. Chemometrics and Intelligent Laboratory Systems 2015, 145 , 39-47. https://doi.org/10.1016/j.chemolab.2015.03.016
    42. Pablo Carbonell, Jean-Yves Trosset. Computational Protein Design Methods for Synthetic Biology. 2015, 3-21. https://doi.org/10.1007/978-1-4939-1878-2_1
    43. Jaroslaw Polanski, Johann Gasteiger. Computer Representation of Chemical Compounds. 2015, 1-43. https://doi.org/10.1007/978-94-007-6169-8_50-1
    44. Alfred Fernández-Castané, Tamás Fehér, Pablo Carbonell, Cyrille Pauthenier, Jean-Loup Faulon. Computer-aided design for metabolic engineering. Journal of Biotechnology 2014, 192 , 302-313. https://doi.org/10.1016/j.jbiotec.2014.03.029
    45. Hang Li, Donald P. Visco, Nic D. Leipzig. Confirmation of predicted activity for factor XIa inhibitors from a virtual screening approach. AIChE Journal 2014, 60 (8) , 2741-2746. https://doi.org/10.1002/aic.14508
    46. Pablo Carbonell, Pierre Parutto, Joan Herisson, Shashi Bhushan Pandit, Jean-Loup Faulon. XTMS: pathway design in an eXTended metabolic space. Nucleic Acids Research 2014, 42 (W1) , W389-W394. https://doi.org/10.1093/nar/gku362
    47. John G. Cumming, Andrew M. Davis, Sorel Muresan, Markus Haeberlein, Hongming Chen. Chemical predictive modelling to improve compound quality. Nature Reviews Drug Discovery 2013, 12 (12) , 948-962. https://doi.org/10.1038/nrd4128

    Journal of Chemical Information and Modeling

    Cite this: J. Chem. Inf. Model. 2013, 53, 4, 887–897
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ci300584r
    Published March 25, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    1378

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.