ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Discovery of a Novel Selective Kappa-Opioid Receptor Agonist Using Crystal Structure-Based Virtual Screening

View Author Information
Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
‡ § Departments of Psychiatry and §Pharmacology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, United States
Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, 10032, United States
*Mailing Address: Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1677, New York, NY 10029. Tel.: 212-659-8690. Fax: 212-849-2456. E-mail: [email protected]
Cite this: J. Chem. Inf. Model. 2013, 53, 3, 521–526
Publication Date (Web):March 5, 2013
https://doi.org/10.1021/ci400019t
Copyright © 2013 American Chemical Society

    Article Views

    1953

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Kappa-opioid (KOP) receptor agonists exhibit analgesic effects without activating reward pathways. In the search for nonaddictive opioid therapeutics and novel chemical tools to study physiological functions regulated by the KOP receptor, we screened in silico its recently released inactive crystal structure. A selective novel KOP receptor agonist emerged as a notable result and is proposed as a new chemotype for the study of the KOP receptor in the etiology of drug addiction, depression, and/or pain.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    General procedures for the synthesis of MCKK-17S and MCKK-17R. Table S1: List of the 22 tested compounds. Table S2: Details of the 500 top-scoring docked compounds from virtual screening at the KOP receptor. Figure S1: Plot of competitive inhibition of 3H-diprenorphine binding at the KOP receptor. Figure S2 Synthetic scheme used to obtain MCKK-17R and MCKK-17S stereoisomers. Figure S3 shows the cAMP accumulation inhibition curves at DOP and MOP receptors. This information is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 54 publications.

    1. Srilatha Sakamuru, Jinghua Zhao, Menghang Xia, Huixiao Hong, Anton Simeonov, Iosif Vaisman, Ruili Huang. Predictive Models to Identify Small Molecule Activators and Inhibitors of Opioid Receptors. Journal of Chemical Information and Modeling 2021, 61 (6) , 2675-2685. https://doi.org/10.1021/acs.jcim.1c00439
    2. André Fischer, Martin Smieško, Manuel Sellner, Markus A. Lill. Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking Results. Journal of Medicinal Chemistry 2021, 64 (5) , 2489-2500. https://doi.org/10.1021/acs.jmedchem.0c02227
    3. Dahlia R. Weiss, Joel Karpiak, Xi-Ping Huang, Maria F. Sassano, Jiankun Lyu, Bryan L. Roth, Brian K. Shoichet. Selectivity Challenges in Docking Screens for GPCR Targets and Antitargets. Journal of Medicinal Chemistry 2018, 61 (15) , 6830-6845. https://doi.org/10.1021/acs.jmedchem.8b00718
    4. Yoonji Lee, Shaherin Basith, and Sun Choi . Recent Advances in Structure-Based Drug Design Targeting Class A G Protein-Coupled Receptors Utilizing Crystal Structures and Computational Simulations. Journal of Medicinal Chemistry 2018, 61 (1) , 1-46. https://doi.org/10.1021/acs.jmedchem.6b01453
    5. Zhong Zheng, Xi-Ping Huang, Thomas J. Mangano, Rodger Zou, Xin Chen, Saheem A. Zaidi, Bryan L. Roth, Raymond C. Stevens, and Vsevolod Katritch . Structure-Based Discovery of New Antagonist and Biased Agonist Chemotypes for the Kappa Opioid Receptor. Journal of Medicinal Chemistry 2017, 60 (7) , 3070-3081. https://doi.org/10.1021/acs.jmedchem.7b00109
    6. Michael Soeberdt, Peter Molenveld, Roy P. M. Storcken, Renaud Bouzanne des Mazery, Geert Jan Sterk, Reshma Autar, Marjon G. Bolster, Clemens Wagner, Sebastianus N. H. Aerts, Frank R. van Holst, Anita Wegert, Giovanni Tangherlini, Bastian Frehland, Dirk Schepmann, Dieter Metze, Tobias Lotts, Ulrich Knie, Kun-Yuan Lin, Tai-Yu Huang, Chih-Ching Lai, Sonja Ständer, Bernhard Wünsch, and Christoph Abels . Design and Synthesis of Enantiomerically Pure Decahydroquinoxalines as Potent and Selective κ-Opioid Receptor Agonists with Anti-Inflammatory Activity in Vivo. Journal of Medicinal Chemistry 2017, 60 (6) , 2526-2551. https://doi.org/10.1021/acs.jmedchem.6b01868
    7. Anirudh Ranganathan, Philipp Heine, Axel Rudling, Andreas Plückthun, Lutz Kummer, and Jens Carlsson . Ligand Discovery for a Peptide-Binding GPCR by Structure-Based Screening of Fragment- and Lead-Like Chemical Libraries. ACS Chemical Biology 2017, 12 (3) , 735-745. https://doi.org/10.1021/acschembio.6b00646
    8. Naomi R. Latorraca, A. J. Venkatakrishnan, and Ron O. Dror . GPCR Dynamics: Structures in Motion. Chemical Reviews 2017, 117 (1) , 139-155. https://doi.org/10.1021/acs.chemrev.6b00177
    9. Yi Shang, Holly R. Yeatman, Davide Provasi, Andrew Alt, Arthur Christopoulos, Meritxell Canals, and Marta Filizola . Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors. ACS Chemical Biology 2016, 11 (5) , 1220-1229. https://doi.org/10.1021/acschembio.5b00712
    10. David Rodríguez, Zhang-Guo Gao, Steven M. Moss, Kenneth A. Jacobson, and Jens Carlsson . Molecular Docking Screening Using Agonist-Bound GPCR Structures: Probing the A2A Adenosine Receptor. Journal of Chemical Information and Modeling 2015, 55 (3) , 550-563. https://doi.org/10.1021/ci500639g
    11. Elena Guerrieri, Jayapal Reddy Mallareddy, Géza Tóth, Helmut Schmidhammer, and Mariana Spetea . Synthesis and Pharmacological Evaluation of [3H]HS665, a Novel, Highly Selective Radioligand for the Kappa Opioid Receptor. ACS Chemical Neuroscience 2015, 6 (3) , 456-463. https://doi.org/10.1021/cn5002792
    12. Dahlia A. Goldfeld, Robert Murphy, Byungchan Kim, Lingle Wang, Thijs Beuming, Robert Abel, and Richard A. Friesner . Docking and Free Energy Perturbation Studies of Ligand Binding in the Kappa Opioid Receptor. The Journal of Physical Chemistry B 2015, 119 (3) , 824-835. https://doi.org/10.1021/jp5053612
    13. Pankaj R. Daga, Willma E. Polgar, and Nurulain T. Zaveri . Structure-Based Virtual Screening of the Nociceptin Receptor: Hybrid Docking and Shape-Based Approaches for Improved Hit Identification. Journal of Chemical Information and Modeling 2014, 54 (10) , 2732-2743. https://doi.org/10.1021/ci500291a
    14. Edin Muratspahić, Kristine Deibler, Jianming Han, Nataša Tomašević, Kirtikumar B. Jadhav, Aina-Leonor Olivé-Marti, Nadine Hochrainer, Roland Hellinger, Johannes Koehbach, Jonathan F. Fay, Mohammad Homaidur Rahman, Lamees Hegazy, Timothy W. Craven, Balazs R. Varga, Gaurav Bhardwaj, Kevin Appourchaux, Susruta Majumdar, Markus Muttenthaler, Parisa Hosseinzadeh, David J. Craik, Mariana Spetea, Tao Che, David Baker, Christian W. Gruber. Design and structural validation of peptide–drug conjugate ligands of the kappa-opioid receptor. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43718-w
    15. Jacqueline Kuan, Mariia Radaeva, Adeline Avenido, Artem Cherkasov, Francesco Gentile. Keeping pace with the explosive growth of chemical libraries with structure‐based virtual screening. WIREs Computational Molecular Science 2023, 13 (6) https://doi.org/10.1002/wcms.1678
    16. Flavio Ballante, Albert J Kooistra, Stefanie Kampen, Chris de Graaf, Jens Carlsson, . Structure-Based Virtual Screening for Ligands of G Protein–Coupled Receptors: What Can Molecular Docking Do for You?. Pharmacological Reviews 2021, 73 (4) , 1698-1736. https://doi.org/10.1124/pharmrev.120.000246
    17. Joseph B O'Brien, David L Roman. Novel treatments for chronic pain: moving beyond opioids. Translational Research 2021, 234 , 1-19. https://doi.org/10.1016/j.trsl.2021.03.008
    18. Tao Che, Bryan L. Roth. Structural Insights Accelerate the Discovery of Opioid Alternatives. Annual Review of Biochemistry 2021, 90 (1) , 739-761. https://doi.org/10.1146/annurev-biochem-061620-044044
    19. Mariana Spetea, Helmut Schmidhammer. Kappa Opioid Receptor Ligands and Pharmacology: Diphenethylamines, a Class of Structurally Distinct, Selective Kappa Opioid Ligands. 2021, 163-195. https://doi.org/10.1007/164_2020_431
    20. Saheem A. Zaidi, Vsevolod Katritch. Structural Characterization of KOR Inactive and Active States for 3D Pharmacology and Drug Discovery. 2021, 41-64. https://doi.org/10.1007/164_2021_461
    21. Bangyi Zhao, Wei Li, Lijie Sun, Wei Fu. The Use of Computational Approaches in the Discovery and Mechanism Study of Opioid Analgesics. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00335
    22. Jinan Wang, Apurba Bhattarai, Waseem Imtiaz Ahmad, Treyton S. Farnan, Karen Priyadarshini John, Yinglong Miao. Computer-aided GPCR drug discovery. 2020, 283-293. https://doi.org/10.1016/B978-0-12-816228-6.00015-5
    23. Aashish Manglik. Molecular Basis of Opioid Action: From Structures to New Leads. Biological Psychiatry 2020, 87 (1) , 6-14. https://doi.org/10.1016/j.biopsych.2019.08.028
    24. Bryan L. Roth. Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nature Structural & Molecular Biology 2019, 26 (7) , 535-544. https://doi.org/10.1038/s41594-019-0252-8
    25. Jiankun Lyu, Sheng Wang, Trent E. Balius, Isha Singh, Anat Levit, Yurii S. Moroz, Matthew J. O’Meara, Tao Che, Enkhjargal Algaa, Kateryna Tolmachova, Andrey A. Tolmachev, Brian K. Shoichet, Bryan L. Roth, John J. Irwin. Ultra-large library docking for discovering new chemotypes. Nature 2019, 566 (7743) , 224-229. https://doi.org/10.1038/s41586-019-0917-9
    26. Xi Cheng, Hualiang Jiang. Allostery in Drug Development. 2019, 1-23. https://doi.org/10.1007/978-981-13-8719-7_1
    27. Guillaume Ferré, Georges Czaplicki, Pascal Demange, Alain Milon. Structure and dynamics of dynorphin peptide and its receptor. 2019, 17-47. https://doi.org/10.1016/bs.vh.2019.05.006
    28. Pavan V. Payghan, Indrani Bera, Dhananjay Bhattacharyya, Nanda Ghoshal. Computational Studies for Structure-Based Drug Designing Against Transmembrane Receptors: pLGICs and Class A GPCRs. Frontiers in Physics 2018, 6 https://doi.org/10.3389/fphy.2018.00052
    29. Magdalena Korczynska, Mary J. Clark, Celine Valant, Jun Xu, Ee Von Moo, Sabine Albold, Dahlia R. Weiss, Hayarpi Torosyan, Weijiao Huang, Andrew C. Kruse, Brent R. Lyda, Lauren T. May, Jo-Anne Baltos, Patrick M. Sexton, Brian K. Kobilka, Arthur Christopoulos, Brian K. Shoichet, Roger K. Sunahara. Structure-based discovery of selective positive allosteric modulators of antagonists for the M 2 muscarinic acetylcholine receptor. Proceedings of the National Academy of Sciences 2018, 115 (10) https://doi.org/10.1073/pnas.1718037115
    30. Naushad Velgy, George Hedger, Philip C. Biggin. GPCRs: What Can We Learn from Molecular Dynamics Simulations?. 2018, 133-158. https://doi.org/10.1007/978-1-4939-7465-8_6
    31. Bryan L Roth, John J Irwin, Brian K Shoichet. Discovery of new GPCR ligands to illuminate new biology. Nature Chemical Biology 2017, 13 (11) , 1143-1151. https://doi.org/10.1038/nchembio.2490
    32. Sheng Wang, Daniel Wacker, Anat Levit, Tao Che, Robin M. Betz, John D. McCorvy, A. J. Venkatakrishnan, Xi-Ping Huang, Ron O. Dror, Brian K. Shoichet, Bryan L. Roth. D 4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 2017, 358 (6361) , 381-386. https://doi.org/10.1126/science.aan5468
    33. Benjamin Adam Samuels, Katherine M Nautiyal, Andrew C Kruegel, Marjorie R Levinstein, Valerie M Magalong, Madalee M Gassaway, Steven G Grinnell, Jaena Han, Michael A Ansonoff, John E Pintar, Jonathan A Javitch, Dalibor Sames, René Hen. The Behavioral Effects of the Antidepressant Tianeptine Require the Mu-Opioid Receptor. Neuropsychopharmacology 2017, 42 (10) , 2052-2063. https://doi.org/10.1038/npp.2017.60
    34. Brian Reed, Eduardo R Butelman, Mary Jeanne Kreek. Endogenous opioid system in addiction and addiction-related behaviors. Current Opinion in Behavioral Sciences 2017, 13 , 196-202. https://doi.org/10.1016/j.cobeha.2016.12.002
    35. Anirudh Ranganathan, David Rodríguez, Jens Carlsson. Structure-Based Discovery of GPCR Ligands from Crystal Structures and Homology Models. 2017, 65-99. https://doi.org/10.1007/7355_2016_25
    36. M. Congreve, A. Bortolato, G. Brown, R.M. Cooke. Modeling and Design for Membrane Protein Targets. 2017, 145-188. https://doi.org/10.1016/B978-0-12-409547-2.12358-3
    37. Tony Ngo, Irina Kufareva, James LJ Coleman, Robert M Graham, Ruben Abagyan, Nicola J Smith. Identifying ligands at orphan GPCRs: current status using structure‐based approaches. British Journal of Pharmacology 2016, 173 (20) , 2934-2951. https://doi.org/10.1111/bph.13452
    38. Aashish Manglik, Henry Lin, Dipendra K. Aryal, John D. McCorvy, Daniela Dengler, Gregory Corder, Anat Levit, Ralf C. Kling, Viachaslau Bernat, Harald Hübner, Xi-Ping Huang, Maria F. Sassano, Patrick M. Giguère, Stefan Löber, Da Duan, Grégory Scherrer, Brian K. Kobilka, Peter Gmeiner, Bryan L. Roth, Brian K. Shoichet. Structure-based discovery of opioid analgesics with reduced side effects. Nature 2016, 537 (7619) , 185-190. https://doi.org/10.1038/nature19112
    39. Maria Martí-Solano, Denis Schmidt, Peter Kolb, Jana Selent. Drugging specific conformational states of GPCRs: challenges and opportunities for computational chemistry. Drug Discovery Today 2016, 21 (4) , 625-631. https://doi.org/10.1016/j.drudis.2016.01.009
    40. Michael R. Bruchas, Bryan L. Roth. New Technologies for Elucidating Opioid Receptor Function. Trends in Pharmacological Sciences 2016, 37 (4) , 279-289. https://doi.org/10.1016/j.tips.2016.01.001
    41. Agnieszka A. Kaczor, Ewelina Rutkowska, Damian Bartuzi, Katarzyna M. Targowska-Duda, Dariusz Matosiuk, Jana Selent. Computational methods for studying G protein-coupled receptors (GPCRs). 2016, 359-399. https://doi.org/10.1016/bs.mcb.2015.11.002
    42. Peter Molenveld, Renaud Bouzanne des Mazery, Geert Jan Sterk, Roy P.M. Storcken, Reshma Autar, Bram van Oss, Richard N.S. van der Haas, Roland Fröhlich, Dirk Schepmann, Bernhard Wünsch, Michael Soeberdt. Conformationally restricted κ-opioid receptor agonists: Synthesis and pharmacological evaluation of diastereoisomeric and enantiomeric decahydroquinoxalines. Bioorganic & Medicinal Chemistry Letters 2015, 25 (22) , 5326-5330. https://doi.org/10.1016/j.bmcl.2015.09.040
    43. Punita Kumari, Eshan Ghosh, Arun K. Shukla. Emerging Approaches to GPCR Ligand Screening for Drug Discovery. Trends in Molecular Medicine 2015, 21 (11) , 687-701. https://doi.org/10.1016/j.molmed.2015.09.002
    44. Yi Shang, Marta Filizola. Opioid receptors: Structural and mechanistic insights into pharmacology and signaling. European Journal of Pharmacology 2015, 763 , 206-213. https://doi.org/10.1016/j.ejphar.2015.05.012
    45. Thijs Beuming, Bart Lenselink, Daniele Pala, Fiona McRobb, Matt Repasky, Woody Sherman. Docking and Virtual Screening Strategies for GPCR Drug Discovery. 2015, 251-276. https://doi.org/10.1007/978-1-4939-2914-6_17
    46. Simone Brogi, Andrea Tafi, Laurent Désaubry, Canan G. Nebigil. Discovery of GPCR ligands for probing signal transduction pathways. Frontiers in Pharmacology 2014, 5 https://doi.org/10.3389/fphar.2014.00255
    47. Catherine M. Cahill, Anna M. W. Taylor, Christopher Cook, Edmund Ong, Jose A. Morón, Christopher J. Evans. Does the kappa opioid receptor system contribute to pain aversion?. Frontiers in Pharmacology 2014, 5 https://doi.org/10.3389/fphar.2014.00253
    48. Minghao Zheng, Zhihong Liu, Xin Yan, Qianzhi Ding, Qiong Gu, Jun Xu. LBVS: an online platform for ligand-based virtual screening using publicly accessible databases. Molecular Diversity 2014, 18 (4) , 829-840. https://doi.org/10.1007/s11030-014-9545-3
    49. Prabhakar R. Polepally, Krzysztof Huben, Eyal Vardy, Vincent Setola, Philip D. Mosier, Bryan L. Roth, Jordan K. Zjawiony. Michael acceptor approach to the design of new salvinorin A-based high affinity ligands for the kappa-opioid receptor. European Journal of Medicinal Chemistry 2014, 85 , 818-829. https://doi.org/10.1016/j.ejmech.2014.07.077
    50. David Rodríguez, José Brea, María Isabel Loza, Jens Carlsson. Structure-Based Discovery of Selective Serotonin 5-HT 1B Receptor Ligands. Structure 2014, 22 (8) , 1140-1151. https://doi.org/10.1016/j.str.2014.05.017
    51. M M Gassaway, M-L Rives, A C Kruegel, J A Javitch, D Sames. The atypical antidepressant and neurorestorative agent tianeptine is a μ-opioid receptor agonist. Translational Psychiatry 2014, 4 (7) , e411-e411. https://doi.org/10.1038/tp.2014.30
    52. Eyal Vardy, Philip D. Mosier, Kevin J. Frankowski, Huixian Wu, Vsevolod Katritch, Richard B. Westkaemper, Jeffrey Aubé, Raymond C. Stevens, Bryan L. Roth. Chemotype-selective Modes of Action of κ-Opioid Receptor Agonists. Journal of Biological Chemistry 2013, 288 (48) , 34470-34483. https://doi.org/10.1074/jbc.M113.515668
    53. Andrew C. Kruse, Dahlia R. Weiss, Mario Rossi, Jianxin Hu, Kelly Hu, Katrin Eitel, Peter Gmeiner, Jürgen Wess, Brian K. Kobilka, Brian K. Shoichet. Muscarinic Receptors as Model Targets and Antitargets for Structure-Based Ligand Discovery. Molecular Pharmacology 2013, 84 (4) , 528-540. https://doi.org/10.1124/mol.113.087551
    54. Cullen L. Schmid, John M. Streicher, Chad E. Groer, Thomas A. Munro, Lei Zhou, Laura M. Bohn. Functional Selectivity of 6′-Guanidinonaltrindole (6′-GNTI) at κ-Opioid Receptors in Striatal Neurons. Journal of Biological Chemistry 2013, 288 (31) , 22387-22398. https://doi.org/10.1074/jbc.M113.476234

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect