Analysis of HIV Wild-Type and Mutant Structures via in Silico Docking against Diverse Ligand Libraries
Abstract

The FightAIDS@Home distributed computing project uses AutoDock for an initial virtual screen of HIV protease structures against a broad range of 1771 ligands including both known protease inhibitors and a diverse library of other ligands. The volume of results allows novel large-scale analyses of binding energy “profiles” for HIV structures. Beyond identifying potential lead compounds, these characterizations provide methods for choosing representative wild-type and mutant protein structures from the larger set. From the binding energy profiles of the PDB structures, a principal component analysis based analysis identifies seven “spanning” proteases. A complementary analysis finds that the wild-type protease structure 2BPZ best captures the central tendency of the protease set. Using a comparison of known protease inhibitors against the diverse ligand set yields an AutoDock binding energy “significance” threshold of −7.0 kcal/mol between significant, strongly binding ligands and other weak/nonspecific binding energies. This threshold captures nearly 98% of known inhibitor interactions while rejecting more than 95% of suspected noninhibitor interactions. These methods should be of general use in virtual screening projects and will be used to improve further FightAIDS@Home experiments.
*
Corresponding author e-mail: [email protected].
†
Bioinformatics Program, University of CaliforniaSan Diego.
‡
The Scripps Research Institute.
§
Cognitive Science, University of CaliforniaSan Diego.
Introduction
Table 1. Overview of FAAH Ligands and Protease Structures
proteases | wild-type | mutant | HIV-2 |
number of structures | 26 | 33 | 12 |
unique (by sequence) | ∼1 | 10 | 2 |
ligands | known inhibitors | NCI Diversity Set | |
number of compounds | 11 | 1760 |
Methods
Results

Figure 1 (a) Comparison of the distribution of binding energies for known inhibitors and NCI Diversity Set compounds. (b) ROC curve showing a sensitivity/specificity tradeoff for threshold values from −8 to −6 kcal/mol.

Figure 2 Specific energy interaction map. Each energy value indicates the level of binding beyond −7.0 kcal/mol. Ligands are sorted by ascending average binding energy.
Table 2. Representative Protease Structuresa
PDB ID | description |
1HII* | HIV-2 |
1GNM | HIV-1 with V82D mutation |
1BDL* | HIV-1 with heavily mutated 30-loop |
2BPZ* | HIV-1 wild-type |
7UPJ | HIV-1 wild-type |
1AJX | HIV-1 wild-type |
5UPJ | HIV-2 |
1HVI | HIV-1 wild-type |
1HVJ | HIV-1 wild-type |
1HVK | HIV-1 wild-type |
1HSI* | HIV-2 apo (no ligand bound in crystal structure) |
1AID* | HIV-1 with minor drug resistance mutations |
3AID | HIV-1 with minor drug resistance mutations |
1BDQ* | HIV-1 with heavily mutated 30-loop and drug |
1MEU* | HIV-1 with major drug resistance mutations |
a The coefficient for each structure is at least 2 standard deviations from the mean for at least one principal component. An asterisk (*) indicates proteases that are maximally loaded across at least one principal component.


Figure 3 Representative protease structures plotted using (a) the first two principal components and (b) multidimensional scaling with Sammon mapping. Maximally loaded structures are labeled using circles; other highly loaded structures are labeled using squares. The consensus protease structure, 2BPW, is represented with a diamond.
Discussion
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgment
This work was supported by NIH grant PO1 GM48870. The FightAIDS@Home project is made possible by the World Community Grid, with technical and financial support by the IBM corporation. The authors would like to thank the members of the Molecular Graphics Laboratory for helpful discussions, especially David Goodsell, Garrett Morris, and Ruth Huey. The contributions from all members of WCG/FAAH are greatly appreciated.
References
This article references 14 other publications.
- 1Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem.1999, 19, 1639−1662.Google ScholarThere is no corresponding record for this reference.
- 2Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Res.2000, 28, 235−242.
- 3Lee, T.; Laco, G. S.; Torbett, B. E.; Fox, H. S.; Lerner, D. L.; Elder, J. H.; Wong, C. H. Analysis of the S3 and S3‘ Subsite Specificities of Feline Immunodeficiency Virus (FIV) Protease: Development of a Broad-Based Protease Inhibitor Efficacious against FIV, SIV, and HIV in Vitro and ex Vivo. Proc. Natl. Acad. Sci. U.S.A.1998, 95, 939−944.
- 4Kutilek, V. D.; Sheeter, D. A.; Elder, J. H.; Torbett, B. E. Is Resistance Futile? Curr. Drug Targets: Infect. Disord. 2003, 3, 295−309.Google ScholarThere is no corresponding record for this reference.
- 5Knegtel, R. M.; Kuntz, I. D.; Oshiro, C. M. Molecular Docking to Ensembles of Protein Structures. J. Mol. Biol. 1997, 266, 424−440.
- 6Carlson, H. A.; McCammon, J. A. Accommodating Protein Flexibility in Computational Drug Design. Mol. Pharmacol. 2000, 57, 213−218.Google ScholarThere is no corresponding record for this reference.
- 7Fernandes, M. X.; Kairys, V.; Gilson, M. K. Comparing Ligand Interactions with Multiple Receptors via Serial Docking. J. Chem. Inf. Comput. Sci. 2004, 44, 1961−1970.
- 8Hayashi, Y.; Sakaguchi, K.; Kobayashi, M.; Kobayashi, M.; Kikuchi, Y.; Ichiishi, E. Molecular Evaluation Using in Silico Protein Interaction Profiles. Bioinformatics2003, 19, 1514−1523.
- 9Vinkers, H. M.; de Jonge, M. R.; Daeyaert, E. D.; Heeres, J.; Koymans, L. M.; van Lenthe, J. H.; Lewi, P. J.; Timmerman, H.; Janssen, P. A. Inhibition and Substrate RecognitionA Computational Approach Applied to HIV Protease. J. Comput.-Aided Mol. Des. 2003, 17, 567−581.
- 10Leitner, T.; Foley, B.; Hahn, B.; Marx, P.; McCutchan, F.; Mellors, J.; Wolinsky, S.; Korber, B. HIV Sequence Compendium 2005; Theoretical Biology and Biophysics Group, Los Alamos National Laboratory: Los Alamos, NM, 2005.Google ScholarThere is no corresponding record for this reference.
- 11Wlodawer, A. Rational Approach to Aids Drug Design through Structural Biology. Annu. Rev. Med. 2002, 53, 595−614.
- 12Sammon, J. W. A Nonlinear Mapping for Data Structure Analysis. IEEE Trans. Comput.1969, C-18, 401−409.
- 13Lerner, B.; Guterman, H.; Aladjem, M.; Dinstein, I.; Romem, Y. On Pattern Classification with Sammon's Nonlinear Mapping − An Experimental Study. Pattern Recognit. 1998, 31, 371−381.
- 14Sanner, M. F. Python: A Programming Language for Software Integration and Development. J. Mol. Graphics Modell.1999, 17, 57−61.Google ScholarThere is no corresponding record for this reference.
Cited By
This article is cited by 52 publications.
- Joana Ferreira da Costa, David Silva, Olga Caamaño, José M. Brea, Maria Isabel Loza, Cristian R. Munteanu, Alejandro Pazos, Xerardo García-Mera, Humbert González-Díaz. Perturbation Theory/Machine Learning Model of ChEMBL Data for Dopamine Targets: Docking, Synthesis, and Assay of New l-Prolyl-l-leucyl-glycinamide Peptidomimetics. ACS Chemical Neuroscience 2018, 9 (11) , 2572-2587. https://doi.org/10.1021/acschemneuro.8b00083
- Richard K. Belew, Stefano Forli, David S. Goodsell, T. J. O’Donnell, and Arthur J. Olson . Fragment-Based Analysis of Ligand Dockings Improves Classification of Actives. Journal of Chemical Information and Modeling 2016, 56 (8) , 1597-1607. https://doi.org/10.1021/acs.jcim.6b00248
- Michael Podvinec, Siew Pheng Lim, Tobias Schmidt, Marco Scarsi, Daying Wen, Louis-Sebastian Sonntag, Paul Sanschagrin, Peter S. Shenkin and Torsten Schwede . Novel Inhibitors of Dengue Virus Methyltransferase: Discovery by in Vitro-Driven Virtual Screening on a Desktop Computer Grid. Journal of Medicinal Chemistry 2010, 53 (4) , 1483-1495. https://doi.org/10.1021/jm900776m
- Abdul Rashid Issahaku, Mahmoud A. A. Ibrahim, Namutula Mukelabai, Mahmoud E. S. Soliman. Intermolecular And Dynamic Investigation of The Mechanism of Action of Reldesemtiv on Fast Skeletal Muscle Troponin Complex Toward the Treatment of Impaired Muscle Function. The Protein Journal 2023, 42 (4) , 263-275. https://doi.org/10.1007/s10930-023-10091-y
- Julia Schäfer, Vincent Julius Klösgen, Ejlal A. Omer, Onat Kadioglu, Armelle T. Mbaveng, Victor Kuete, Andreas Hildebrandt, Thomas Efferth. In Silico and In Vitro Identification of P-Glycoprotein Inhibitors from a Library of 375 Phytochemicals. International Journal of Molecular Sciences 2023, 24 (12) , 10240. https://doi.org/10.3390/ijms241210240
- Latif Adams, Michael Afiadenyo, Samuel Kojo Kwofie, Michael D. Wilson, Kwadow Asamoah Kusi, Dorcas Obiri-Yeboah, Siobhan Moane, Michelle McKeon-Bennett. In silico screening of phytochemicals from Dissotis rotundifolia against Plasmodium falciparum Dihydrofolate Reductase. Phytomedicine Plus 2023, 3 (2) , 100447. https://doi.org/10.1016/j.phyplu.2023.100447
- Emmanuel Broni, Andrew Striegel, Carolyn Ashley, Patrick O. Sakyi, Saqib Peracha, Miriam Velazquez, Kristeen Bebla, Monsheel Sodhi, Samuel K. Kwofie, Adesanya Ademokunwa, Sufia Khan, Whelton A. Miller. Molecular Docking and Dynamics Simulation Studies Predict Potential Anti-ADAR2 Inhibitors: Implications for the Treatment of Cancer, Neurological, Immunological and Infectious Diseases. International Journal of Molecular Sciences 2023, 24 (7) , 6795. https://doi.org/10.3390/ijms24076795
- Abdul Rashid Issahaku, Samukelisiwe Minenhle Mncube, Clement Agoni, Samuel K. Kwofie, Mohamed Issa Alahmdi, Nader E. Abo-Dya, Peter A. Sidhom, Ahmed M. Tawfeek, Mahmoud A. A. Ibrahim, Namutula Mukelabai, Opeyemi Soremekun, Mahmoud E. S. Soliman. Multi-dimensional structural footprint identification for the design of potential scaffolds targeting METTL3 in cancer treatment from natural compounds. Journal of Molecular Modeling 2023, 29 (4) https://doi.org/10.1007/s00894-023-05516-5
- Selina A. Saah, Patrick O. Sakyi, David Adu-Poku, Nathaniel O. Boadi, Gideon Djan, Desmond Amponsah, Robert N. O. A. Devine, Kojo Ayittey, . Docking and Molecular Dynamics Identify Leads against 5 Alpha Reductase 2 for Benign Prostate Hyperplasia Treatment. Journal of Chemistry 2023, 2023 , 1-20. https://doi.org/10.1155/2023/8880213
- Florencia Cancela, Santiago Rendon-Marin, Carolina Quintero-Gil, Douglas R. Houston, Gediminas Gumbis, Yanina Panzera, Ruben Pérez, Juan Arbiza, Santiago Mirazo. Modelling of Hepatitis E virus RNA-dependent RNA polymerase genotype 3 from a chronic patient and in silico interaction analysis by molecular docking with Ribavirin. Journal of Biomolecular Structure and Dynamics 2023, 41 (2) , 705-721. https://doi.org/10.1080/07391102.2021.2011416
- Debjani Mandal, Raktim Mukherjee, Shrabana Ghosh, Tamanna Bachhawat, Sneha Dutta, Urmisha Das, Abhishek Basu. Small Molecular Antimicrobial Ligands of YspD are Potential Therapeutic Agents Against Yersinia enterocolitica Infection. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 2022, 9 https://doi.org/10.1007/s40011-022-01443-2
- Bismark Dankwa, Emmanuel Broni, Kweku S. Enninful, Samuel K. Kwofie, Michael D. Wilson. Consensus docking and MM-PBSA computations identify putative furin protease inhibitors for developing potential therapeutics against COVID-19. Structural Chemistry 2022, 33 (6) , 2221-2241. https://doi.org/10.1007/s11224-022-02056-1
- James D. Stamos, Lee H. Lee, Calvin Taylor, Tony Elias, Sandra D. Adams. In Vitro and In Silico Analysis of the Inhibitory Activity of EGCG-Stearate against Herpes Simplex Virus-2. Microorganisms 2022, 10 (7) , 1462. https://doi.org/10.3390/microorganisms10071462
- Patrick O. Sakyi, Emmanuel Broni, Richard K. Amewu, Whelton A. Miller, Michael D. Wilson, Samuel Kojo Kwofie. Homology Modeling, de Novo Design of Ligands, and Molecular Docking Identify Potential Inhibitors of Leishmania donovani 24-Sterol Methyltransferase. Frontiers in Cellular and Infection Microbiology 2022, 12 https://doi.org/10.3389/fcimb.2022.859981
- Maral Aminpour, Marco Cannariato, Jordane Preto, M. Ehsan Safaeeardebili, Alexia Moracchiato, Domiziano Doria, Francesca Donato, Eric Adriano Zizzi, Marco Agostino Deriu, David E. Scheim, Alessandro D. Santin, Jack Adam Tuszynski. In Silico Analysis of the Multi-Targeted Mode of Action of Ivermectin and Related Compounds. Computation 2022, 10 (4) , 51. https://doi.org/10.3390/computation10040051
- David E. Scheim. A Deadly Embrace: Hemagglutination Mediated by SARS-CoV-2 Spike Protein at Its 22 N-Glycosylation Sites, Red Blood Cell Surface Sialoglycoproteins, and Antibody. International Journal of Molecular Sciences 2022, 23 (5) , 2558. https://doi.org/10.3390/ijms23052558
- Ayuni Yussof, Brian Cammalleri, Oluwanifemi Fayemiwo, Sabrina Lopez, Tinchun Chu. Antibacterial and Sporicidal Activity Evaluation of Theaflavin-3,3′-digallate. International Journal of Molecular Sciences 2022, 23 (4) , 2153. https://doi.org/10.3390/ijms23042153
- Zackary Falls, Jonathan Fine, Gaurav Chopra, Ram Samudrala. Accurate Prediction of Inhibitor Binding to HIV-1 Protease Using CANDOCK. Frontiers in Chemistry 2022, 9 https://doi.org/10.3389/fchem.2021.775513
- Xingxing Zhou, Ming Ling, Qingde Lin, Shidi Tang, Jiansheng Wu, Haifeng Hu. Effectiveness Analysis of Multiple Initial States Simulated Annealing Algorithm, a Case Study on the Molecular Docking Tool Autodock Vina. SSRN Electronic Journal 2022, 220 https://doi.org/10.2139/ssrn.4120348
- Samuel Kwofie, Emmanuel Broni, Faruk Yunus, John Nsoh, Dela Adoboe, Whelton Miller, Michael Wilson. Molecular Docking Simulation Studies Identifies Potential Natural Product Derived-Antiwolbachial Compounds as Filaricides against Onchocerciasis. Biomedicines 2021, 9 (11) , 1682. https://doi.org/10.3390/biomedicines9111682
- Deyani Nocedo-Mena, Sonia Arrasate, Elvira Garza-González, Verónica M. Rivas-Galindo, Antonio Romo-Mancillas, Cristian R. Munteanu, Nuria Sotomayor, Esther Lete, Iratxe Barbolla, César A. Martín, María del Rayo Camacho-Corona. Molecular docking, SAR analysis and biophysical approaches in the study of the antibacterial activity of ceramides isolated from Cissus incisa. Bioorganic Chemistry 2021, 109 , 104745. https://doi.org/10.1016/j.bioorg.2021.104745
- Emmanuel Broni, Samuel K. Kwofie, Seth O. Asiedu, Whelton A. Miller, Michael D. Wilson. A Molecular Modeling Approach to Identify Potential Antileishmanial Compounds Against the Cell Division Cycle (cdc)-2-Related Kinase 12 (CRK12) Receptor of Leishmania donovani. Biomolecules 2021, 11 (3) , 458. https://doi.org/10.3390/biom11030458
- Tofael Ahmed Sumon, Md. Ashraf Hussain, Md. Tawheed Hasan, Mahmudul Hasan, Won Je Jang, Eleus Hussain Bhuiya, Abdullah Al Mamun Chowdhury, S. M. Sharifuzzaman, Christopher Lyon Brown, Hyun-Ju Kwon, Eun-Woo Lee. A Revisit to the Research Updates of Drugs, Vaccines, and Bioinformatics Approaches in Combating COVID-19 Pandemic. Frontiers in Molecular Biosciences 2021, 7 https://doi.org/10.3389/fmolb.2020.585899
- Samuel K. Kwofie, Emmanuel Broni, Seth O. Asiedu, Gabriel B. Kwarko, Bismark Dankwa, Kweku S. Enninful, Elvis K. Tiburu, Michael D. Wilson. Cheminformatics-Based Identification of Potential Novel Anti-SARS-CoV-2 Natural Compounds of African Origin. Molecules 2021, 26 (2) , 406. https://doi.org/10.3390/molecules26020406
- Jose Liñares-Blanco, Cristian R. Munteanu, Alejandro Pazos, Carlos Fernandez-Lozano. Molecular docking and machine learning analysis of Abemaciclib in colon cancer. BMC Molecular and Cell Biology 2020, 21 (1) https://doi.org/10.1186/s12860-020-00295-w
- Justice Afrifa Crentsil, Lauve Rachel Tchokouaha Yamthe, Barbara Zenabu Anibea, Emmanuel Broni, Samuel Kojo Kwofie, John Kweku Amissah Tetteh, Dorcas Osei-Safo. Leishmanicidal Potential of Hardwickiic Acid Isolated From Croton sylvaticus. Frontiers in Pharmacology 2020, 11 https://doi.org/10.3389/fphar.2020.00753
- Samuel K. Kwofie, Emmanuel Broni, Joshua Teye, Erasmus Quansah, Ibrahim Issah, Michael D. Wilson, Whelton A. Miller, Elvis K. Tiburu, Joseph H.K. Bonney. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Computers in Biology and Medicine 2019, 113 , 103414. https://doi.org/10.1016/j.compbiomed.2019.103414
- Guangyao Li, Yuan Zhou, Daniel Man-Yuen Sze, Chao Liu, Qianru Zhang, Zihao Wang, Hua Yu, Ging Chan, Zhongdao Wu, Shibing Su, Yuanjia Hu. Active Ingredients and Action Mechanisms of Yi Guan Jian Decoction in Chronic Hepatitis B Patients with Liver Fibrosis. Evidence-Based Complementary and Alternative Medicine 2019, 2019 , 1-13. https://doi.org/10.1155/2019/2408126
- Pallavi Mohanty, Sonika Bhatnagar. In Silico Screening to Identify Inhibitors of Growth Factor Receptor 2–Focal Adhesion Kinase Interaction for Therapeutic Treatment of Pathological Cardiac Hypertrophy. ASSAY and Drug Development Technologies 2019, 17 (2) , 58-67. https://doi.org/10.1089/adt.2018.887
- Abdurrahman Olğaç, Aslı Türe, Simla Olğaç, Steffen Möller. Cloud-Based High Throughput Virtual Screening in Novel Drug Discovery. 2019, 250-278. https://doi.org/10.1007/978-3-030-16272-6_9
- Teresa Wargasetia, Sofy Permana, Nashi Widodo. Potential use of compounds from sea cucumbers as MDM2 and CXCR4 inhibitors to control cancer cell growth. Experimental and Therapeutic Medicine 2018, https://doi.org/10.3892/etm.2018.6588
- Carolina Quintero-Gil, Jaime Parra-Suescún, Albeiro Lopez-Herrera, Sergio Orduz. In-silico design and molecular docking evaluation of peptides derivatives from bacteriocins and porcine beta defensin-2 as inhibitors of Hepatitis E virus capsid protein. VirusDisease 2017, 28 (3) , 281-288. https://doi.org/10.1007/s13337-017-0383-7
- Richard E. Trager, Paul Giblock, Sherwin Soltani, Amit A. Upadhyay, Bhanu Rekapalli, Yuri K. Peterson. Docking optimization, variance and promiscuity for large-scale drug-like chemical space using high performance computing architectures. Drug Discovery Today 2016, 21 (10) , 1672-1680. https://doi.org/10.1016/j.drudis.2016.06.023
- M.G. Holyavka, M.S. Kondratyev, A.A. Samchenko, A.V. Kabanov, V.M. Komarov, V.G. Artyukhov. In silico design of high-affinity ligands for the immobilization of inulinase. Computers in Biology and Medicine 2016, 71 , 198-204. https://doi.org/10.1016/j.compbiomed.2016.02.015
- Saeed KHALILI, Hemn MOHAMMADPOUR, Mahideh SHOKROLLAHI BAROUGH, Parviz KOKHAEI. ILP-2 modeling and virtual screening of an FDA-approved library:a possible anticancer therapy. TURKISH JOURNAL OF MEDICAL SCIENCES 2016, 46 , 1135-1143. https://doi.org/10.3906/sag-1503-2
- Andrea Defant, Ines Mancini, Rossella Tomazzolli, Jan Balzarini. Design, Synthesis, and Biological Evaluation of Novel 2 H -Pyran-2-one Derivatives as Potential HIV-1 Reverse Transcriptase Inhibitors. Archiv der Pharmazie 2015, 348 (1) , 23-33. https://doi.org/10.1002/ardp.201400235
- Stefano Forli, Arthur J. Olson. Computational Challenges of Structure-Based Approaches Applied to HIV. 2015, 31-51. https://doi.org/10.1007/82_2015_432
- Stephane Redon. Molecular Geometry Optimization: Algorithms. 2015, 957-961. https://doi.org/10.1007/978-3-540-70529-1_274
- Sally R. Ellingson, Jerome Baudry. High‐throughput virtual molecular docking with AutoDockCloud. Concurrency and Computation: Practice and Experience 2014, 26 (4) , 907-916. https://doi.org/10.1002/cpe.2926
- Yohko Nakamura, Akiko Suganami, Mayu Fukuda, Md. Kamrul Hasan, Tomoki Yokochi, Atsushi Takatori, Shunpei Satoh, Tyuji Hoshino, Yutaka Tamura, Akira Nakagawara. Identification of novel candidate compounds targeting TrkB to induce apoptosis in neuroblastoma. Cancer Medicine 2014, 3 (1) , 25-35. https://doi.org/10.1002/cam4.175
- Jimmy Franco, Margaret A.L. Blackie, David Toth, Peter J. Smith, Joseph Capuano, Kurt Fastnacht, Charlotte Berkes. A structural comparative approach to identifying novel antimalarial inhibitors. Computational Biology and Chemistry 2013, 45 , 42-47. https://doi.org/10.1016/j.compbiolchem.2013.04.002
- Mette Gamst, David Pisinger. Integrated job scheduling and network routing. Networks 2013, 61 (3) , 248-262. https://doi.org/10.1002/net.21479
- Ankur Dhanik, John S. McMurray, Lydia E. Kavraki, . Binding Modes of Peptidomimetics Designed to Inhibit STAT3. PLoS ONE 2012, 7 (12) , e51603. https://doi.org/10.1371/journal.pone.0051603
- See Ven Lim, Mohd Basyaruddin A Rahman, Bimo A Tejo. Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus. BMC Bioinformatics 2011, 12 (S13) https://doi.org/10.1186/1471-2105-12-S13-S24
- Max W. Chang, Christian Ayeni, Sebastian Breuer, Bruce E. Torbett, . Virtual Screening for HIV Protease Inhibitors: A Comparison of AutoDock 4 and Vina. PLoS ONE 2010, 5 (8) , e11955. https://doi.org/10.1371/journal.pone.0011955
- Jose Ignacio Garzon, Eduardo Huedo, Ruben Santiago Montero, Ignacio Martin Llorente, Pablo Chacon. End-To-End Cache System for Grid Computing: Design and Efficiency Analysis of a High-Throughput Bioinformatic Docking Application. The International Journal of High Performance Computing Applications 2010, 24 (3) , 243-264. https://doi.org/10.1177/1094342009350469
- Sandro Cosconati, Stefano Forli, Alex L Perryman, Rodney Harris, David S Goodsell, Arthur J Olson. Virtual screening with AutoDock: theory and practice. Expert Opinion on Drug Discovery 2010, 5 (6) , 597-607. https://doi.org/10.1517/17460441.2010.484460
- Guillaume Bouvier, Nathalie Evrard-Todeschi, Jean-Pierre Girault, Gildas Bertho. Automatic clustering of docking poses in virtual screening process using self-organizing map. Bioinformatics 2010, 26 (1) , 53-60. https://doi.org/10.1093/bioinformatics/btp623
- Andrea Rinaldi. Science wikinomics. EMBO reports 2009, 10 (5) , 439-443. https://doi.org/10.1038/embor.2009.79
- Arneh Babakhani, Todd T. Talley, Palmer Taylor, J.A. McCammon. A virtual screening study of the acetylcholine binding protein using a relaxed–complex approach. Computational Biology and Chemistry 2009, 33 (2) , 160-170. https://doi.org/10.1016/j.compbiolchem.2008.12.002
- Oleg Trott, Arthur J. Olson. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 2009, 65 , NA-NA. https://doi.org/10.1002/jcc.21334
- Max W. Chang, William Lindstrom, Arthur J. Olson, Richard K. Belew. Analysis of HIV Wild-Type and Mutant Structures via in silico Docking Against Diverse Ligand Libraries.. ChemInform 2007, 38 (34) https://doi.org/10.1002/chin.200734218
Abstract
Figure 1 (a) Comparison of the distribution of binding energies for known inhibitors and NCI Diversity Set compounds. (b) ROC curve showing a sensitivity/specificity tradeoff for threshold values from −8 to −6 kcal/mol.
Figure 2 Specific energy interaction map. Each energy value indicates the level of binding beyond −7.0 kcal/mol. Ligands are sorted by ascending average binding energy.
Figure 3 Representative protease structures plotted using (a) the first two principal components and (b) multidimensional scaling with Sammon mapping. Maximally loaded structures are labeled using circles; other highly loaded structures are labeled using squares. The consensus protease structure, 2BPW, is represented with a diamond.
References
ARTICLE SECTIONSThis article references 14 other publications.
- 1Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem.1999, 19, 1639−1662.Google ScholarThere is no corresponding record for this reference.
- 2Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Res.2000, 28, 235−242.
- 3Lee, T.; Laco, G. S.; Torbett, B. E.; Fox, H. S.; Lerner, D. L.; Elder, J. H.; Wong, C. H. Analysis of the S3 and S3‘ Subsite Specificities of Feline Immunodeficiency Virus (FIV) Protease: Development of a Broad-Based Protease Inhibitor Efficacious against FIV, SIV, and HIV in Vitro and ex Vivo. Proc. Natl. Acad. Sci. U.S.A.1998, 95, 939−944.
- 4Kutilek, V. D.; Sheeter, D. A.; Elder, J. H.; Torbett, B. E. Is Resistance Futile? Curr. Drug Targets: Infect. Disord. 2003, 3, 295−309.Google ScholarThere is no corresponding record for this reference.
- 5Knegtel, R. M.; Kuntz, I. D.; Oshiro, C. M. Molecular Docking to Ensembles of Protein Structures. J. Mol. Biol. 1997, 266, 424−440.
- 6Carlson, H. A.; McCammon, J. A. Accommodating Protein Flexibility in Computational Drug Design. Mol. Pharmacol. 2000, 57, 213−218.Google ScholarThere is no corresponding record for this reference.
- 7Fernandes, M. X.; Kairys, V.; Gilson, M. K. Comparing Ligand Interactions with Multiple Receptors via Serial Docking. J. Chem. Inf. Comput. Sci. 2004, 44, 1961−1970.
- 8Hayashi, Y.; Sakaguchi, K.; Kobayashi, M.; Kobayashi, M.; Kikuchi, Y.; Ichiishi, E. Molecular Evaluation Using in Silico Protein Interaction Profiles. Bioinformatics2003, 19, 1514−1523.
- 9Vinkers, H. M.; de Jonge, M. R.; Daeyaert, E. D.; Heeres, J.; Koymans, L. M.; van Lenthe, J. H.; Lewi, P. J.; Timmerman, H.; Janssen, P. A. Inhibition and Substrate RecognitionA Computational Approach Applied to HIV Protease. J. Comput.-Aided Mol. Des. 2003, 17, 567−581.
- 10Leitner, T.; Foley, B.; Hahn, B.; Marx, P.; McCutchan, F.; Mellors, J.; Wolinsky, S.; Korber, B. HIV Sequence Compendium 2005; Theoretical Biology and Biophysics Group, Los Alamos National Laboratory: Los Alamos, NM, 2005.Google ScholarThere is no corresponding record for this reference.
- 11Wlodawer, A. Rational Approach to Aids Drug Design through Structural Biology. Annu. Rev. Med. 2002, 53, 595−614.
- 12Sammon, J. W. A Nonlinear Mapping for Data Structure Analysis. IEEE Trans. Comput.1969, C-18, 401−409.
- 13Lerner, B.; Guterman, H.; Aladjem, M.; Dinstein, I.; Romem, Y. On Pattern Classification with Sammon's Nonlinear Mapping − An Experimental Study. Pattern Recognit. 1998, 31, 371−381.
- 14Sanner, M. F. Python: A Programming Language for Software Integration and Development. J. Mol. Graphics Modell.1999, 17, 57−61.Google ScholarThere is no corresponding record for this reference.
Supporting Information
Supporting Information Available
ARTICLE SECTIONSA table of inhibitors and their PDB codes and PDB codes for HIV-1 wild-type proteases, HIV-1 mutant proteases, and HIV-2 proteases. This material is available free of charge via the Internet at http://pubs.acs.org.Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.