ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Advanced Biological and Chemical Discovery (ABCD):  Centralizing Discovery Knowledge in an Inherently Decentralized World

View Author Information
Information Technology, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 665 Stockton Drive, Exton, Pennsylvania 19341, Information Technology, Johnson & Johnson Pharmaceutical Research & Development division of Janssen Pharmaceutica N.V., Turnhoutsweg 30, 2340 Beerse, Belgium, and Bioinformatics, Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, California 92121
Cite this: J. Chem. Inf. Model. 2007, 47, 6, 1999–2014
Publication Date (Web):November 1, 2007
https://doi.org/10.1021/ci700267w
Copyright © 2007 American Chemical Society

    Article Views

    1734

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    We present ABCD, an integrated drug discovery informatics platform developed at Johnson & Johnson Pharmaceutical Research & Development, L.L.C. ABCD is an attempt to bridge multiple continents, data systems, and cultures using modern information technology and to provide scientists with tools that allow them to analyze multifactorial SAR and make informed, data-driven decisions. The system consists of three major components:  (1) a data warehouse, which combines data from multiple chemical and pharmacological transactional databases, designed for supreme query performance; (2) a state-of-the-art application suite, which facilitates data upload, retrieval, mining, and reporting, and (3) a workspace, which facilitates collaboration and data sharing by allowing users to share queries, templates, results, and reports across project teams, campuses, and other organizational units. Chemical intelligence, performance, and analytical sophistication lie at the heart of the new system, which was developed entirely in-house. ABCD is used routinely by more than 1000 scientists around the world and is rapidly expanding into other functional areas within the J&J organization.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author phone:  (610) 458-6045; fax:  (610) 458-8249; e-mail:  [email protected].

     Exton, PA.

     La Jolla, CA.

    §

     Beerse, Belgium.

    Cited By

    This article is cited by 61 publications.

    1. Mark Seierstad, Mark S. Tichenor, Renee L. DesJarlais, Jim Na, Genesis M. Bacani, De Michael Chung, Eduardo V. Mercado-Marin, Helena C. Steffens, Taraneh Mirzadegan. Novel Reagent Space: Identifying Unorderable but Readily Synthesizable Building Blocks. ACS Medicinal Chemistry Letters 2021, 12 (11) , 1853-1860. https://doi.org/10.1021/acsmedchemlett.1c00340
    2. Martin Krallinger, Obdulia Rabal, Anália Lourenço, Julen Oyarzabal, and Alfonso Valencia . Information Retrieval and Text Mining Technologies for Chemistry. Chemical Reviews 2017, 117 (12) , 7673-7761. https://doi.org/10.1021/acs.chemrev.6b00851
    3. Nikolaus Stiefl, Peter Gedeck, Donovan Chin, Peter Hunt, Mika Lindvall, Katrin Spiegel, Clayton Springer, Scott Biller, Christoph Buenemann, Takanori Kanazawa, Mitsunori Kato, Richard Lewis, Eric Martin, Valery Polyakov, Ruben Tommasi, John van Drie, Brian Vash, Lewis Whitehead, Yongjin Xu, Ruben Abagyan, Eugene Raush, and Max Totrov . FOCUS — Development of a Global Communication and Modeling Platform for Applied and Computational Medicinal Chemists. Journal of Chemical Information and Modeling 2015, 55 (4) , 896-908. https://doi.org/10.1021/ci500598e
    4. Eric J. Baede, Ernest den Bekker, Jan-Willem Boiten, Deborah Cronin, Rob van Gammeren, and Jacob de Vlieg . Integrated Project Views: Decision Support Platform for Drug Discovery Project Teams. Journal of Chemical Information and Modeling 2012, 52 (6) , 1438-1449. https://doi.org/10.1021/ci200253g
    5. Man-Ling Lee, Ignacio Aliagas, Jennafer Dotson, Jianwen A. Feng, Alberto Gobbi, and Timothy Heffron . DEGAS: Sharing and Tracking Target Compound Ideas with External Collaborators. Journal of Chemical Information and Modeling 2012, 52 (2) , 278-284. https://doi.org/10.1021/ci2003297
    6. Dimitris K. Agrafiotis, Victor S. Lobanov, Maxim Shemanarev, Dmitrii N. Rassokhin, Sergei Izrailev, Edward P. Jaeger, Simson Alex, and Michael Farnum . Efficient Substructure Searching of Large Chemical Libraries: The ABCD Chemical Cartridge. Journal of Chemical Information and Modeling 2011, 51 (12) , 3113-3130. https://doi.org/10.1021/ci200413e
    7. Michael D. Hack, Dmitrii N. Rassokhin, Christophe Buyck, Mark Seierstad, Andrew Skalkin, Peter ten Holte, Todd K. Jones, Taraneh Mirzadegan, and Dimitris K. Agrafiotis . Library Enhancement through the Wisdom of Crowds. Journal of Chemical Information and Modeling 2011, 51 (12) , 3275-3286. https://doi.org/10.1021/ci200446y
    8. Pu Liu, Dimitris K. Agrafiotis, and Dmitrii N. Rassokhin . Power Keys: A Novel Class of Topological Descriptors Based on Exhaustive Subgraph Enumeration and their Application in Substructure Searching. Journal of Chemical Information and Modeling 2011, 51 (11) , 2843-2851. https://doi.org/10.1021/ci200282z
    9. Pu Liu, Dimitris K. Agrafiotis, Dmitrii N. Rassokhin, and Eric Yang . Accelerating Chemical Database Searching Using Graphics Processing Units. Journal of Chemical Information and Modeling 2011, 51 (8) , 1807-1816. https://doi.org/10.1021/ci200164g
    10. Dimitris K. Agrafiotis, John J. M. Wiener, Andrew Skalkin, and Jeremy Kolpak . Single R-Group Polymorphisms (SRPs) and R-Cliffs: An Intuitive Framework for Analyzing and Visualizing Activity Cliffs in a Single Analog Series. Journal of Chemical Information and Modeling 2011, 51 (5) , 1122-1131. https://doi.org/10.1021/ci200054u
    11. Dimitris K. Agrafiotis and John J. M. Wiener . Scaffold Explorer: An Interactive Tool for Organizing and Mining Structure−Activity Data Spanning Multiple Chemotypes. Journal of Medicinal Chemistry 2010, 53 (13) , 5002-5011. https://doi.org/10.1021/jm1004495
    12. Marian D. Brodney, Arthur D. Brosius, Tracy Gregory, Steven D. Heck, Jacquelyn L. Klug-McLeod and Christopher S. Poss. Project-Focused Activity and Knowledge Tracker: A Unified Data Analysis, Collaboration, and Workflow Tool for Medicinal Chemistry Project Teams. Journal of Chemical Information and Modeling 2009, 49 (12) , 2639-2649. https://doi.org/10.1021/ci9002443
    13. Pascal Bonnet, Dimitris K. Agrafiotis, Fangqiang Zhu and Eric Martin. Conformational Analysis of Macrocycles: Finding What Common Search Methods Miss. Journal of Chemical Information and Modeling 2009, 49 (10) , 2242-2259. https://doi.org/10.1021/ci900238a
    14. Jeremy Kolpak, Peter J. Connolly, Victor S. Lobanov and Dimitris K. Agrafiotis. Enhanced SAR Maps: Expanding the Data Rendering Capabilities of a Popular Medicinal Chemistry Tool. Journal of Chemical Information and Modeling 2009, 49 (10) , 2221-2230. https://doi.org/10.1021/ci900264n
    15. Thomas Sander, Joel Freyss, Modest von Korff, Jacqueline Renée Reich and Christian Rufener. OSIRIS, an Entirely in-House Developed Drug Discovery Informatics System. Journal of Chemical Information and Modeling 2009, 49 (2) , 232-246. https://doi.org/10.1021/ci800305f
    16. Marian D. Brodney, Gregory Bakken, Christopher R. Butler, Jacquelyn Klug‐McLeod, Robert Owen, Shao‐Tien Sng. Integrated design environment: A multi‐use platform for design idea capture, evaluation, and tracking in medicinal chemistry. Journal of Computational Chemistry 2023, 44 (6) , 788-800. https://doi.org/10.1002/jcc.27041
    17. Dimitris K. Agrafiotis, Eric Yang, Gary S. Littman, Geert Byttebier, Laura Dipietro, Allitia DiBernardo, Juan C. Chavez, Avrielle Rykman, Kate McArthur, Karim Hajjar, Kennedy R. Lees, Bruce T. Volpe, Michael Krams, Hermano I. Krebs, . Accurate prediction of clinical stroke scales and improved biomarkers of motor impairment from robotic measurements. PLOS ONE 2021, 16 (1) , e0245874. https://doi.org/10.1371/journal.pone.0245874
    18. Dmitrii Rassokhin. The C++ programming language in cheminformatics and computational chemistry. Journal of Cheminformatics 2020, 12 (1) https://doi.org/10.1186/s13321-020-0415-y
    19. Louis Norton, Joseph Ciervo, Victor S. Lobanov, Dimitris K. Agrafiotis. Xcellerate Investigator Portal: A New Web-Based Tool for Online Delivery of Central Laboratory Data, Reports, and Communications to Clinical Sites. SLAS Technology 2020, 25 (5) , 427-435. https://doi.org/10.1177/2472630320942200
    20. Laurianne David, Josep Arús-Pous, Johan Karlsson, Ola Engkvist, Esben Jannik Bjerrum, Thierry Kogej, Jan M. Kriegl, Bernd Beck, Hongming Chen. Applications of Deep-Learning in Exploiting Large-Scale and Heterogeneous Compound Data in Industrial Pharmaceutical Research. Frontiers in Pharmacology 2019, 10 https://doi.org/10.3389/fphar.2019.01303
    21. Joseph Ciervo, Shih Chuan Shen, Kristin Stallcup, Abraham Thomas, Michael A Farnum, Victor S Lobanov, Dimitris K Agrafiotis. A new risk and issue management system to improve productivity, quality, and compliance in clinical trials. JAMIA Open 2019, 2 (2) , 216-221. https://doi.org/10.1093/jamiaopen/ooz006
    22. Eric Yang, Jeremy D Scheff, Shih C Shen, Michael A Farnum, James Sefton, Victor S Lobanov, Dimitris K Agrafiotis. A late-binding, distributed, NoSQL warehouse for integrating patient data from clinical trials. Database 2019, 2019 https://doi.org/10.1093/database/baz032
    23. Michael A Farnum, Lalit Mohanty, Mathangi Ashok, Paul Konstant, Joseph Ciervo, Victor S Lobanov, Dimitris K Agrafiotis. A dimensional warehouse for integrating operational data from clinical trials. Database 2019, 2019 https://doi.org/10.1093/database/baz039
    24. Dimitris K. Agrafiotis, Victor S. Lobanov, Michael A. Farnum, Eric Yang, Joseph Ciervo, Michael Walega, Adam Baumgart, Aaron J. Mackey. Risk-based Monitoring of Clinical Trials: An Integrative Approach. Clinical Therapeutics 2018, 40 (7) , 1204-1212. https://doi.org/10.1016/j.clinthera.2018.04.020
    25. Oliver Gassmann, Alexander Schuhmacher, Max von Zedtwitz, Gerrit Reepmeyer. The Science and Technology Challenge: How to Find New Drugs. 2018, 41-61. https://doi.org/10.1007/978-3-319-66833-8_3
    26. Bence Bolgár, Péter Antal. VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization. BMC Bioinformatics 2017, 18 (1) https://doi.org/10.1186/s12859-017-1845-z
    27. Herman van Vlijmen, Renee L. Desjarlais, Tara Mirzadegan. Computational chemistry at Janssen. Journal of Computer-Aided Molecular Design 2017, 31 (3) , 267-273. https://doi.org/10.1007/s10822-016-9998-9
    28. Ingo Muegge, Jörg Bentzien, Prasenjit Mukherjee, Robert O Hughes. Automatically updating predictive modeling workflows support decision-making in drug design. Future Medicinal Chemistry 2016, 8 (14) , 1779-1796. https://doi.org/10.4155/fmc-2016-0070
    29. Evan Bolton. Reporting biological assay screening results for maximum impact. Drug Discovery Today: Technologies 2015, 14 , 31-36. https://doi.org/10.1016/j.ddtec.2015.03.004
    30. Edgar Jacoby, Gary Tresadern, Scott Bembenek, Berthold Wroblowski, Christophe Buyck, Jean-Marc Neefs, Dmitrii Rassokhin, Alain Poncelet, Jeremy Hunt, Herman van Vlijmen. Extending kinome coverage by analysis of kinase inhibitor broad profiling data. Drug Discovery Today 2015, 20 (6) , 652-658. https://doi.org/10.1016/j.drudis.2015.01.002
    31. Ariel Alonso, Elasma Milanzi, Geert Molenberghs, Christophe Buyck, Luc Bijnens. A new modeling approach for quantifying expert opinion in the drug discovery process. Statistics in Medicine 2015, 34 (9) , 1590-1604. https://doi.org/10.1002/sim.6459
    32. Ariel Alonso, Elasma Milanzi, Geert Molenberghs, Christophe Buyck, Luc Bijnens. Impact of selection bias on the evaluation of clusters of chemical compounds in the drug discovery process. Pharmaceutical Statistics 2015, 14 (2) , 129-138. https://doi.org/10.1002/pst.1665
    33. Elasma Milanzi, Ariel Alonso, Christophe Buyck, Geert Molenberghs, Luc Bijnens. A permutational-splitting sample procedure to quantify expert opinion on clusters of chemical compounds using high-dimensional data. The Annals of Applied Statistics 2014, 8 (4) https://doi.org/10.1214/14-AOAS772
    34. Gary Tresadern, José-Maria Cid, Andrés A. Trabanco. QSAR design of triazolopyridine mGlu2 receptor positive allosteric modulators. Journal of Molecular Graphics and Modelling 2014, 53 , 82-91. https://doi.org/10.1016/j.jmgm.2014.07.006
    35. Scott J. Lusher, Ross McGuire, René C. van Schaik, C. David Nicholson, Jacob de Vlieg. Data-driven medicinal chemistry in the era of big data. Drug Discovery Today 2014, 19 (7) , 859-868. https://doi.org/10.1016/j.drudis.2013.12.004
    36. Andrea de Souza, Joshua A. Bittker, David L. Lahr, Steve Brudz, Simon Chatwin, Tudor I. Oprea, Anna Waller, Jeremy J. Yang, Noel Southall, Rajarshi Guha, Stephan C. Schürer, Uma D. Vempati, Mark R. Southern, Eric S. Dawson, Paul A. Clemons, Thomas D.Y. Chung. An Overview of the Challenges in Designing, Integrating, and Delivering BARD: A Public Chemical-Biology Resource and Query Portal for Multiple Organizations, Locations, and Disciplines. SLAS Discovery 2014, 19 (5) , 614-627. https://doi.org/10.1177/1087057113517139
    37. Karsten Klein, Oliver Koch, Nils Kriege, Petra Mutzel, Till Schäfer. Visual Analysis of Biological Activity Data with Scaffold Hunter. Molecular Informatics 2013, 32 (11-12) , 964-975. https://doi.org/10.1002/minf.201300087
    38. Bernd Beck, Michael Bieler, Peter Haebel, Andreas Teckentrup, Alexander Weber, Nils Weskamp. APPLICATIONS OF CHEMINFORMATICS IN PHARMACEUTICAL RESEARCH. 2013, 291-320. https://doi.org/10.1002/9781118742785.ch13
    39. Michael S. Lajiness, Thomas R. Hagadone. LESSONS LEARNED FROM 30 YEARS OF DEVELOPING SUCCESSFUL INTEGRATED CHEMINFORMATIC SYSTEMS. 2013, 321-341. https://doi.org/10.1002/9781118742785.ch14
    40. Carol A. Mulrooney, David L. Lahr, Michael J. Quintin, Willmen Youngsaye, Dennis Moccia, Jacob K. Asiedu, Evan L. Mulligan, Lakshmi B. Akella, Lisa A. Marcaurelle, Philip Montgomery, Joshua A. Bittker, Paul A. Clemons, Stephen Brudz, Sivaraman Dandapani, Jeremy R. Duvall, Nicola J. Tolliday, Andrea De Souza. An informatic pipeline for managing high-throughput screening experiments and analyzing data from stereochemically diverse libraries. Journal of Computer-Aided Molecular Design 2013, 27 (5) , 455-468. https://doi.org/10.1007/s10822-013-9641-y
    41. Dimitris K. Agrafiotis, Deepak Bandyopadhyay, Eric Yang. Stochastic Proximity Embedding: A Simple, Fast and Scalable Algorithm for Solving the Distance Geometry Problem. 2013, 291-311. https://doi.org/10.1007/978-1-4614-5128-0_14
    42. Colin L. Bird, Jeremy G. Frey. Chemical information matters: an e-Research perspective on information and data sharing in the chemical sciences. Chemical Society Reviews 2013, 42 (16) , 6754. https://doi.org/10.1039/c3cs60050e
    43. Martin Gütlein, Andreas Karwath, Stefan Kramer. CheS-Mapper - Chemical Space Mapping and Visualization in 3D. Journal of Cheminformatics 2012, 4 (1) https://doi.org/10.1186/1758-2946-4-7
    44. Bryan C. Duffy, Lei Zhu, Hélène Decornez, Douglas B. Kitchen. Early phase drug discovery: Cheminformatics and computational techniques in identifying lead series. Bioorganic & Medicinal Chemistry 2012, 20 (18) , 5324-5342. https://doi.org/10.1016/j.bmc.2012.04.062
    45. John G. Cumming, Jon Winter, Andrew Poirrette. Better compounds faster: the development and exploitation of a desktop predictive chemistry toolkit. Drug Discovery Today 2012, 17 (17-18) , 923-927. https://doi.org/10.1016/j.drudis.2012.03.003
    46. Frans Cornelissen, Miroslav Cik, Emmanuel Gustin. Phaedra, a Protocol-Driven System for Analysis and Validation of High-Content Imaging and Flow Cytometry. SLAS Discovery 2012, 17 (4) , 496-508. https://doi.org/10.1177/1087057111432885
    47. Laurent Alquier. Semantic MediaWiki in applied life science and industry: building an Enterprise Encyclopaedia. 2012, 367-389. https://doi.org/10.1533/9781908818249.367
    48. Claus Stie Kallesøe. Building research data handling systems with open source tools. 2012, 9-34. https://doi.org/10.1533/9781908818249.9
    49. Jeremy L. Jenkins, Josef Scheiber, Dmitri Mikhailov, Andreas Bender, Ansgar Schuffenhauer, Ben Cornett, Vivien Chan, Jason Kondracki, Bernhard Rohde, John W. Davies. Bridging Chemical and Biological Data: Implications for Pharmaceutical Drug Discovery. 2011, 25-56. https://doi.org/10.1002/9781118131411.ch2
    50. Sorel Muresan, Plamen Petrov, Christopher Southan, Magnus J. Kjellberg, Thierry Kogej, Christian Tyrchan, Peter Varkonyi, Paul Hongxing Xie. Making every SAR point count: the development of Chemistry Connect for the large-scale integration of structure and bioactivity data. Drug Discovery Today 2011, 16 (23-24) , 1019-1030. https://doi.org/10.1016/j.drudis.2011.10.005
    51. Scott J. Lusher, Ross McGuire, Rita Azevedo, Jan-Willem Boiten, Rene C. van Schaik, Jacob de Vlieg. A molecular informatics view on best practice in multi-parameter compound optimization. Drug Discovery Today 2011, 16 (13-14) , 555-568. https://doi.org/10.1016/j.drudis.2011.05.005
    52. Gary Tresadern, Jose Manuel Bartolome, Gregor J. Macdonald, Xavier Langlois. Molecular properties affecting fast dissociation from the D2 receptor. Bioorganic & Medicinal Chemistry 2011, 19 (7) , 2231-2241. https://doi.org/10.1016/j.bmc.2011.02.033
    53. Josef Scheiber. How can we enable drug discovery informatics for personalized healthcare?. Expert Opinion on Drug Discovery 2011, 6 (3) , 219-224. https://doi.org/10.1517/17460441.2011.550279
    54. Robert C Glen. Connecting the virtual world of computers to the real world of medicinal chemistry. Future Medicinal Chemistry 2011, 3 (4) , 399-403. https://doi.org/10.4155/fmc.11.16
    55. Dimitris K. Agrafiotis, Huafeng Xu, Fangqiang Zhu, Deepak Bandyopadhyay, Pu Liu. Stochastic Proximity Embedding: Methods and Applications. Molecular Informatics 2010, 29 (11) , 758-770. https://doi.org/10.1002/minf.201000134
    56. M. Soledad Cepeda, Victor S. Lobanov, Michael Farnum, Rachel Weinstein, Peter Gates, Dimitris K. Agrafiotis, Paul Stang, Jesse A. Berlin. Broadening access to electronic healthcare databases. Nature Reviews Drug Discovery 2010, 9 (1) , 84-84. https://doi.org/10.1038/nrd2988-c1
    57. Pu Liu, Fangqiang Zhu, Dmitrii N. Rassokhin, Dimitris K. Agrafiotis, . A Self-Organizing Algorithm for Modeling Protein Loops. PLoS Computational Biology 2009, 5 (8) , e1000478. https://doi.org/10.1371/journal.pcbi.1000478
    58. Ernst R Dow, James B Hughes, Susie M Stephens, Vaibhav A Narayan, Richard W Bishop. Integrating scientific data for drug discovery and development using the Life Sciences Grid. Expert Opinion on Drug Discovery 2009, 4 (6) , 687-699. https://doi.org/10.1517/17460440902991500
    59. Ed Griffen. The rise of the intelligent machines in drug hunting?. Future Medicinal Chemistry 2009, 1 (3) , 405-408. https://doi.org/10.4155/fmc.09.43
    60. Bie M.P. Verbist, Michel A.J. De Cleyn, Michel Surkyn, Erwin Fraiponts, Jeroen Aerssens, Marjoleen J.M.A. Nijsen, Harrie J.M. Gijsen. 5-Sulfonyl-benzimidazoles as selective CB2 agonists. Bioorganic & Medicinal Chemistry Letters 2008, 18 (8) , 2574-2579. https://doi.org/10.1016/j.bmcl.2008.03.048
    61. Peter Kirkpatrick. The ABCD of data management. Nature Reviews Drug Discovery 2007, 6 (12) , 956-957. https://doi.org/10.1038/nrd2471

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect