ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Binary Quantitative Structure−Activity Relationship (QSAR) Analysis of Estrogen Receptor Ligands

View Author Information
Computational Chemistry and Informatics, MDS Panlabs, 11804 North Creek Parkway South, Bothell, Washington 98011, Chemical Computing Group Inc., 1255 University Street, Suite 1600, Montreal, Quebec, Canada H3B 3X3, and Department of Biological Structure, University of Washington, Seattle, Washington 98195
Cite this: J. Chem. Inf. Comput. Sci. 1999, 39, 1, 164–168
Publication Date (Web):December 16, 1998
https://doi.org/10.1021/ci980140g
Copyright © 1999 American Chemical Society

    Article Views

    871

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The use of high throughput screening (HTS) to identify lead compounds has greatly challenged conventional quantitative structure−activity relationship (QSAR) techniques that typically correlate structural variations in similar compounds with continuous changes in biological activity. A new QSAR-like methodology that can correlate less quantitative assay data (i.e., “active” versus “inactive”), as initially generated by HTS, has been introduced. In the present study, we have, for the first time, applied this approach to a drug discovery problem; that is, the study of estrogen receptor ligands. The binding affinities of 463 estrogen analogues were transformed into a binary data format, and a predictive binary QSAR model was derived using 410 estrogen analogues as a training set. The model was applied to predict the activity of 53 estrogen analogues not included in the training set. An overall accuracy of 94% was obtained.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     This manuscript is dedicated to Professor Corwin Hansch on the occasion of his 80th birthday.

    *

     Corresponding author. Telephone:  (425)487-8200 ext. 390. Fax:  (425)487-3787. E-mail:  [email protected].

     Computational Chemistry and Informatics.

    §

     Chemical Computing Group Inc.

     Department of Biological Structure.

    Cited By

    This article is cited by 94 publications.

    1. Nezrina Mihović, Nevena Tomašević, Sanja Matić, Marina M. Mitrović, Danijela A. Kostić, Manuela Sabatino, Lorenzo Antonini, Rino Ragno, Milan Mladenović. Human Estrogen Receptor α Antagonists. Part 1: 3-D QSAR-Driven Rational Design of Innovative Coumarin-Related Antiestrogens as Breast Cancer Suppressants through Structure-Based and Ligand-Based Studies. Journal of Chemical Information and Modeling 2021, 61 (10) , 5028-5053. https://doi.org/10.1021/acs.jcim.1c00530
    2. Rino Ragno, Valeria Esposito, Martina Di Mario, Stefano Masiello, Marco Viscovo, Richard D. Cramer. Teaching and Learning Computational Drug Design: Student Investigations of 3D Quantitative Structure–Activity Relationships through Web Applications. Journal of Chemical Education 2020, 97 (7) , 1922-1930. https://doi.org/10.1021/acs.jchemed.0c00117
    3. Sergio Manzetti, E. Roos van der Spoel, and David van der Spoel . Chemical Properties, Environmental Fate, and Degradation of Seven Classes of Pollutants. Chemical Research in Toxicology 2014, 27 (5) , 713-737. https://doi.org/10.1021/tx500014w
    4. Dong-Sheng Cao, Yi-Zeng Liang, Jun Yan, Gui-Shan Tan, Qing-Song Xu, and Shao Liu . PyDPI: Freely Available Python Package for Chemoinformatics, Bioinformatics, and Chemogenomics Studies. Journal of Chemical Information and Modeling 2013, 53 (11) , 3086-3096. https://doi.org/10.1021/ci400127q
    5. Mutasem O. Taha, Maha Habash, Zeina Al-Hadidi, Amal Al-Bakri, Khaled Younis, and Suhaib Sisan . Docking-Based Comparative Intermolecular Contacts Analysis as New 3-D QSAR Concept for Validating Docking Studies and in Silico Screening: NMT and GP Inhibitors as Case Studies. Journal of Chemical Information and Modeling 2011, 51 (3) , 647-669. https://doi.org/10.1021/ci100368t
    6. Mahmoud A. Al-Sha’er and Mutasem O. Taha . Elaborate Ligand-Based Modeling Reveals New Nanomolar Heat Shock Protein 90α Inhibitors. Journal of Chemical Information and Modeling 2010, 50 (9) , 1706-1723. https://doi.org/10.1021/ci100222k
    7. Philip Prathipati and, Anil K. Saxena. Evaluation of Binary QSAR Models Derived from LUDI and MOE Scoring Functions for Structure Based Virtual Screening. Journal of Chemical Information and Modeling 2006, 46 (1) , 39-51. https://doi.org/10.1021/ci050120w
    8. Shengqiao Li,, Adam Fedorowicz,, Harshinder Singh, and, Sidney C. Soderholm. Application of the Random Forest Method in Studies of Local Lymph Node Assay Based Skin Sensitization Data. Journal of Chemical Information and Modeling 2005, 45 (4) , 952-964. https://doi.org/10.1021/ci050049u
    9. Adam Fedorowicz,, Harshinder Singh,, Sidney Soderholm, and, Eugene Demchuk. Structure−Activity Models for Contact Sensitization. Chemical Research in Toxicology 2005, 18 (6) , 954-969. https://doi.org/10.1021/tx0497806
    10. Suzanne K. Schreyer,, Christian N. Parker, and, Gerald M. Maggiora. Data Shaving:  A Focused Screening Approach. Journal of Chemical Information and Computer Sciences 2004, 44 (2) , 470-479. https://doi.org/10.1021/ci030025s
    11. Andreas Teckentrup,, Hans Briem, and, Johann Gasteiger. Mining High-Throughput Screening Data of Combinatorial Libraries:  Development of a Filter to Distinguish Hits from Nonhits. Journal of Chemical Information and Computer Sciences 2004, 44 (2) , 626-634. https://doi.org/10.1021/ci034223v
    12. Vladimir V. Zernov,, Konstantin V. Balakin,, Andrey A. Ivaschenko,, Nikolay P. Savchuk, and, Igor V. Pletnev. Drug Discovery Using Support Vector Machines. The Case Studies of Drug-likeness, Agrochemical-likeness, and Enzyme Inhibition Predictions. Journal of Chemical Information and Computer Sciences 2003, 43 (6) , 2048-2056. https://doi.org/10.1021/ci0340916
    13. Jeffrey J. Sutherland,, Lee A. O'Brien, and, Donald F. Weaver. Spline-Fitting with a Genetic Algorithm:  A Method for Developing Classification Structure−Activity Relationships. Journal of Chemical Information and Computer Sciences 2003, 43 (6) , 1906-1915. https://doi.org/10.1021/ci034143r
    14. Ana Gallegos Saliner,, Lluís Amat,, Ramon Carbó-Dorca,, T. Wayne Schultz, and, Mark T. D. Cronin. Molecular Quantum Similarity Analysis of Estrogenic Activity. Journal of Chemical Information and Computer Sciences 2003, 43 (4) , 1166-1176. https://doi.org/10.1021/ci034014a
    15. David W. Miller. A Chemical Class-Based Approach to Predictive Model Generation. Journal of Chemical Information and Computer Sciences 2003, 43 (2) , 568-578. https://doi.org/10.1021/ci025606g
    16. C. A. Nicolaou,, S. Y. Tamura,, B. P. Kelley,, S. I. Bassett, and, R. F. Nutt. Analysis of Large Screening Data Sets via Adaptively Grown Phylogenetic-Like Trees. Journal of Chemical Information and Computer Sciences 2002, 42 (5) , 1069-1079. https://doi.org/10.1021/ci010244i
    17. Susan Y. Tamura,, Patricia A. Bacha,, Heather S. Gruver, and, Ruth F. Nutt. Data Analysis of High-Throughput Screening Results:  Application of Multidomain Clustering to the NCI Anti-HIV Data Set. Journal of Medicinal Chemistry 2002, 45 (14) , 3082-3093. https://doi.org/10.1021/jm010535i
    18. Florence L. Stahura,, Jeffrey W. Godden, and, Jürgen Bajorath. Differential Shannon Entropy Analysis Identifies Molecular Property Descriptors that Predict Aqueous Solubility of Synthetic Compounds with High Accuracy in Binary QSAR Calculations. Journal of Chemical Information and Computer Sciences 2002, 42 (3) , 550-558. https://doi.org/10.1021/ci010243q
    19. Gavin Harper,, John Bradshaw,, John C. Gittins,, Darren V. S. Green, and, Andrew R. Leach. Prediction of Biological Activity for High-Throughput Screening Using Binary Kernel Discrimination. Journal of Chemical Information and Computer Sciences 2001, 41 (5) , 1295-1300. https://doi.org/10.1021/ci000397q
    20. Takahiro Suzuki,, Kunihito Ide,, Masaru Ishida, and, S. Shapiro. Classification of Environmental Estrogens by Physicochemical Properties Using Principal Component Analysis and Hierarchical Cluster Analysis. Journal of Chemical Information and Computer Sciences 2001, 41 (3) , 718-726. https://doi.org/10.1021/ci000333f
    21. Jürgen Bajorath. Selected Concepts and Investigations in Compound Classification, Molecular Descriptor Analysis, and Virtual Screening. Journal of Chemical Information and Computer Sciences 2001, 41 (2) , 233-245. https://doi.org/10.1021/ci0001482
    22. Rama K. Mishra, , R. Garcia-Domenech and, J. Galvez. Getting Discriminant Functions of Antibacterial Activity from Physicochemical and Topological Parameters. Journal of Chemical Information and Computer Sciences 2001, 41 (2) , 387-393. https://doi.org/10.1021/ci000303c
    23. Hua Gao. Application of BCUT Metrics and Genetic Algorithm in Binary QSAR Analysis. Journal of Chemical Information and Computer Sciences 2001, 41 (2) , 402-407. https://doi.org/10.1021/ci000306p
    24. Florence L. Stahura,, Jeffrey W. Godden,, Ling Xue, and, Jürgen Bajorath. Distinguishing between Natural Products and Synthetic Molecules by Descriptor Shannon Entropy Analysis and Binary QSAR Calculations. Journal of Chemical Information and Computer Sciences 2000, 40 (5) , 1245-1252. https://doi.org/10.1021/ci0003303
    25. Sung Jin Cho,, C. Frank Shen, and, Mark A. Hermsmeier. Binary Formal Inference-Based Recursive Modeling Using Multiple Atom and Physicochemical Property Class Pair and Torsion Descriptors as Decision Criteria. Journal of Chemical Information and Computer Sciences 2000, 40 (3) , 668-680. https://doi.org/10.1021/ci9908190
    26. Ling Xue,, Jeffrey W. Godden, and, Jürgen Bajorath. Database Searching for Compounds with Similar Biological Activity Using Short Binary Bit String Representations of Molecules. Journal of Chemical Information and Computer Sciences 1999, 39 (5) , 881-886. https://doi.org/10.1021/ci990308d
    27. Ling Xue,, Jeff Godden,, Hua Gao, and, Jürgen Bajorath. Identification of a Preferred Set of Molecular Descriptors for Compound Classification Based on Principal Component Analysis. Journal of Chemical Information and Computer Sciences 1999, 39 (4) , 699-704. https://doi.org/10.1021/ci980231d
    28. Dharmraj V. Pathak, Abha Vyas, Sneha R. Sagar, Hardik G. Bhatt, Paresh K. Patel. Pharmacophore Mapping: An Important Tool in Modern Drug Design and Discovery. 2023, 57-115. https://doi.org/10.2174/9789815179934123010005
    29. Iqbal Azad, Tahmeena Khan, Naseem Ahmad, Abdul Rahman Khan, Yusuf Akhter. Updates on Drug Designing Approach Through Computational Strategies: a Review. Future Science OA 2023, 9 (5) https://doi.org/10.2144/fsoa-2022-0085
    30. Jayaprakash Venkatesan, Prabha Thangavelu, Selvaraj Jubie, Sudeepan Jayapalan, Thangavel Sivakumar. A Machine Learning Language to Build a QSAR Model of Pyrazoline Derivative Inhibitors Targeting Mycobacterium tuberculosis Strain H37Rv. Letters in Drug Design & Discovery 2023, 20 (2) , 167-180. https://doi.org/10.2174/1570180819666220420092723
    31. Venkatesan Jayaprakash, Thangavelu Saravanan, Karuppaiyan Ravindran, Thangavelu Prabha, Jubie Selvaraj, Sudeepan Jayapalan, M.V.N.L. Chaitanya, Thangavel Sivakumar. Relevance of Machine Learning to Predict the Inhibitory Activity of Small Thiazole Chemicals on Estrogen Receptor. Current Computer-Aided Drug Design 2023, 19 (1) , 37-50. https://doi.org/10.2174/1573409919666221121141646
    32. Purvashi Pasrija, Prakash Jha, Pruthvi Upadhyaya, Mohd. Shoaib Khan, Madhu Chopra. Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery. Current Topics in Medicinal Chemistry 2022, 22 (20) , 1692-1727. https://doi.org/10.2174/1568026622666220701091339
    33. Vivek Srivastava, Chandrabose Selvaraj, Sanjeev Kumar Singh. Chemoinformatics and QSAR. 2021, 183-212. https://doi.org/10.1007/978-981-33-6191-1_10
    34. Gabrielle P. Black, Tarun Anumol, Thomas M. Young. Analyzing a broader spectrum of endocrine active organic contaminants in sewage sludge with high resolution LC-QTOF-MS suspect screening and QSAR toxicity prediction. Environmental Science: Processes & Impacts 2019, 21 (7) , 1099-1114. https://doi.org/10.1039/C9EM00144A
    35. Sugunadevi Sakkiah, Wenjing Guo, Bohu Pan, Rebecca Kusko, Weida Tong, Huixiao Hong. Computational prediction models for assessing endocrine disrupting potential of chemicals. Journal of Environmental Science and Health, Part C 2018, 36 (4) , 192-218. https://doi.org/10.1080/10590501.2018.1537132
    36. Lu Yan, Quan Zhang, Feng Huang, Wen-Wen Nie, Chun-Qi Hu, Hua-Zhou Ying, Xiao-Wu Dong, Mei-Rong Zhao. Ternary classification models for predicting hormonal activities of chemicals via nuclear receptors. Chemical Physics Letters 2018, 706 , 360-366. https://doi.org/10.1016/j.cplett.2018.06.022
    37. Yu-Chen Lo, Stefano E. Rensi, Wen Torng, Russ B. Altman. Machine learning in chemoinformatics and drug discovery. Drug Discovery Today 2018, 23 (8) , 1538-1546. https://doi.org/10.1016/j.drudis.2018.05.010
    38. Naravut Suvannang, Likit Preeyanon, Aijaz Ahmad Malik, Nalini Schaduangrat, Watshara Shoombuatong, Apilak Worachartcheewan, Tanawut Tantimongcolwat, Chanin Nantasenamat. Probing the origin of estrogen receptor alpha inhibition via large-scale QSAR study. RSC Advances 2018, 8 (21) , 11344-11356. https://doi.org/10.1039/C7RA10979B
    39. Jennifer C. Brennan, Arzoo Bassal, Guochun He, Michael S. Denison. Development of a recombinant human ovarian (BG1) cell line containing estrogen receptor α and β for improved detection of estrogenic/antiestrogenic chemicals. Environmental Toxicology and Chemistry 2016, 35 (1) , 91-100. https://doi.org/10.1002/etc.3146
    40. Kunal Roy, Supratik Kar, Rudra Narayan Das. Newer Directions in QSAR/QSPR. 2015, 105-121. https://doi.org/10.1007/978-3-319-17281-1_4
    41. Kunal Roy, Supratik Kar, Rudra Narayan Das. Newer QSAR Techniques. 2015, 319-356. https://doi.org/10.1016/B978-0-12-801505-6.00009-0
    42. Afaf Al-Nadaf, Mutasem O. Taha. Ligand-based pharmacophore exploration and QSAR analysis of transition state analogues followed by in silico screening guide the discovery of new sub-micromolar β-secreatase inhibitors. Medicinal Chemistry Research 2013, 22 (4) , 1979-1997. https://doi.org/10.1007/s00044-012-0204-x
    43. Irene Luque Ruiz, Gonzalo Cerruela García, Miguel Ángel Gómez‐Nieto. Structural‐Similarity‐Based Approaches for the Development of Clustering and QSPR/QSAR Models in Chemical Databases. 2012, 201-228. https://doi.org/10.1002/9783527645121.ch7
    44. Mutasem O. Taha, Amjad M. Qandil, Tariq Al‐Haraznah, Reema Abu Khalaf, Hiba Zalloum, Amal G. Al‐Bakri. Discovery of New Antifungal Leads via Pharmacophore Modeling and QSAR Analysis of Fungal N ‐Myristoyl Transferase Inhibitors Followed by In Silico Screening. Chemical Biology & Drug Design 2011, 78 (3) , 391-407. https://doi.org/10.1111/j.1747-0285.2011.01160.x
    45. Maha Habash, Mutasem O. Taha. Ligand-based modelling followed by synthetic exploration unveil novel glycogen phosphorylase inhibitory leads. Bioorganic & Medicinal Chemistry 2011, 19 (16) , 4746-4771. https://doi.org/10.1016/j.bmc.2011.06.086
    46. Belal O. Al-Najjar, Habibah A. Wahab, Tengku Sifzizul Tengku Muhammad, Alexander Chong Shu-Chien, Nur Adelina Ahmad Noruddin, Mutasem O. Taha. Discovery of new nanomolar peroxisome proliferator-activated receptor γ activators via elaborate ligand-based modeling. European Journal of Medicinal Chemistry 2011, 46 (6) , 2513-2529. https://doi.org/10.1016/j.ejmech.2011.03.040
    47. Afaf H. Al-Nadaf, Mutasem O. Taha. Discovery of new renin inhibitory leads via sequential pharmacophore modeling, QSAR analysis, in silico screening and in vitro evaluation. Journal of Molecular Graphics and Modelling 2011, 29 (6) , 843-864. https://doi.org/10.1016/j.jmgm.2011.02.001
    48. Reema Abu Khalaf, Ahmed Mutanabbi Abdula, Mohammad S. Mubarak, Mutasem O. Taha. Discovery of new β-d-glucosidase inhibitors via pharmacophore modeling and QSAR analysis followed by in silico screening. Journal of Molecular Modeling 2011, 17 (3) , 443-464. https://doi.org/10.1007/s00894-010-0737-1
    49. Ahmed Mutanabbi Abdula, Reema Abu Khalaf, Mohammad S. Mubarak, Mutasem O. Taha. Discovery of new β‐ D ‐galactosidase inhibitors via pharmacophore modeling and QSAR analysis followed by in silico screening. Journal of Computational Chemistry 2011, 32 (3) , 463-482. https://doi.org/10.1002/jcc.21635
    50. Patrick Markt, Daniela Schuster, Thierry Langer. Pharmacophore Models for Virtual Screening. 2011, 115-152. https://doi.org/10.1002/9783527633326.ch5
    51. Zhigang Zhou, Yanli Wang, Stephen H. Bryant. QSAR models for predicting cathepsin B inhibition by small molecules—Continuous and binary QSAR models to classify cathepsin B inhibition activities of small molecules. Journal of Molecular Graphics and Modelling 2010, 28 (8) , 714-727. https://doi.org/10.1016/j.jmgm.2010.01.009
    52. Afaf Al-Nadaf, Ghassan Abu Sheikha, Mutasem O. Taha. Elaborate ligand-based pharmacophore exploration and QSAR analysis guide the synthesis of novel pyridinium-based potent β-secretase inhibitory leads. Bioorganic & Medicinal Chemistry 2010, 18 (9) , 3088-3115. https://doi.org/10.1016/j.bmc.2010.03.043
    53. Andreas Bender. Bayesian Methods in Virtual Screening and Chemical Biology. 2010, 175-196. https://doi.org/10.1007/978-1-60761-839-3_7
    54. Mutasem O. Taha, Mai Tarairah, Hiba Zalloum, Ghassan Abu-Sheikha. Pharmacophore and QSAR modeling of estrogen receptor β ligands and subsequent validation and in silico search for new hits. Journal of Molecular Graphics and Modelling 2010, 28 (5) , 383-400. https://doi.org/10.1016/j.jmgm.2009.09.005
    55. . Bibliography. 2009, 1-241. https://doi.org/10.1002/9783527628766.biblio
    56. Ramon Carbó‐Dorca, Ana Gallegos, Ángel J. Sánchez. Notes on quantitative structure‐properties relationships (QSPR) (1): A discussion on a QSPR dimensionality paradox (QSPR DP) and its quantum resolution. Journal of Computational Chemistry 2009, 30 (7) , 1146-1159. https://doi.org/10.1002/jcc.21145
    57. Poongavanam Vasanthanathan, Olivier Taboureau, Chris Oostenbrink, Nico P. E. Vermeulen, Lars Olsen, Flemming Steen Jørgensen. Classification of Cytochrome P450 1A2 Inhibitors and Noninhibitors by Machine Learning Techniques. Drug Metabolism and Disposition 2009, 37 (3) , 658-664. https://doi.org/10.1124/dmd.108.023507
    58. Hua Gao, Lili Yao, Heather W. Mathieu, Ying Zhang, Tristan S. Maurer, Matthew D. Troutman, Dennis O. Scott, Roger B. Ruggeri, Jing Lin. In Silico Modeling of Nonspecific Binding to Human Liver Microsomes. Drug Metabolism and Disposition 2008, 36 (10) , 2130-2135. https://doi.org/10.1124/dmd.107.020131
    59. Viney Lather, Rajendra Kristam, Jagmohan Singh Saini, Rajendra Kristam, Narasingapuram Arumugam Karthikeyan, Vitukudi Narayana Balaji. QSAR Models for Prediction of Glycogen Synthase Kinase‐3β Inhibitory Activity of Indirubin Derivatives. QSAR & Combinatorial Science 2008, 27 (6) , 718-728. https://doi.org/10.1002/qsar.200730052
    60. Johannes Kirchmair, Patrick Markt, Simona Distinto, Gerhard Wolber, Thierry Langer. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—What can we learn from earlier mistakes?. Journal of Computer-Aided Molecular Design 2008, 22 (3-4) , 213-228. https://doi.org/10.1007/s10822-007-9163-6
    61. Ismail Ijjaali, François Petitet, Elodie Dubus, Olivier Barberan, André Michel. Assessing potency of c-Jun N-terminal kinase 3 (JNK3) inhibitors using 2D molecular descriptors and binary QSAR methodology. Bioorganic & Medicinal Chemistry 2007, 15 (12) , 4256-4264. https://doi.org/10.1016/j.bmc.2007.03.062
    62. Laszlo Prokai, James W. Simpkins. Structure–nongenomic neuroprotection relationship of estrogens and estrogen-derived compounds. Pharmacology & Therapeutics 2007, 114 (1) , 1-12. https://doi.org/10.1016/j.pharmthera.2007.01.006
    63. Kai Hilpert, Melissa R. Elliott, Rudolf Volkmer-Engert, Peter Henklein, Oreola Donini, Qun Zhou, Dirk F.H. Winkler, Robert E.W. Hancock. Sequence Requirements and an Optimization Strategy for Short Antimicrobial Peptides. Chemistry & Biology 2006, 13 (10) , 1101-1107. https://doi.org/10.1016/j.chembiol.2006.08.014
    64. J. Devillers, N. Marchand-Geneste, A. Carpy, J. M. Porcher. SAR and QSAR modeling of endocrine disruptors. SAR and QSAR in Environmental Research 2006, 17 (4) , 393-412. https://doi.org/10.1080/10629360600884397
    65. Irwin R.A. Menezes, Andrei Leitão, Carlos A. Montanari. Three-dimensional models of non-steroidal ligands: A comparative molecular field analysis. Steroids 2006, 71 (6) , 417-428. https://doi.org/10.1016/j.steroids.2006.01.001
    66. Quoc-Tuan Do, Philippe Bernard. Reverse pharmacognosy: a new concept for accelerating natural drug discovery. 2006, 1-20. https://doi.org/10.1016/S1572-557X(05)02001-5
    67. Arja Asikainen, Mikko Kolehmainen, Juhani Ruuskanen, Kari Tuppurainen. Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods. Chemosphere 2006, 62 (4) , 658-673. https://doi.org/10.1016/j.chemosphere.2005.04.115
    68. Anton F Fliri, William T Loging, Peter F Thadeio, Robert A Volkmann. Analysis of drug-induced effect patterns to link structure and side effects of medicines. Nature Chemical Biology 2005, 1 (7) , 389-397. https://doi.org/10.1038/nchembio747
    69. J. Gálvez, J.V. de Julián-Ortiz, R. García-Domenech. Application of molecular topology to the prediction of potency and selection of novel insecticides active against malaria vectors. Journal of Molecular Structure: THEOCHEM 2005, 727 (1-3) , 107-113. https://doi.org/10.1016/j.theochem.2005.02.022
    70. M. Deshpande, M. Kuramochi, N. Wale, G. Karypis. Frequent substructure-based approaches for classifying chemical compounds. IEEE Transactions on Knowledge and Data Engineering 2005, 17 (8) , 1036-1050. https://doi.org/10.1109/TKDE.2005.127
    71. T. Ghafourian, M.T.D. Cronin. The Impact of variable selection on the modelling of oestrogenicity. SAR and QSAR in Environmental Research 2005, 16 (1-2) , 171-190. https://doi.org/10.1080/10629360412331319808
    72. Alexander Böcker, Gisbert Schneider, Andreas Teckentrup. Status of HTS Data Mining Approaches. QSAR & Combinatorial Science 2004, 23 (4) , 207-213. https://doi.org/10.1002/qsar.200330860
    73. C. Calabuig, G.M. Antón-Fos, J. Gálvez, R. Garcı́a-Doménech. New hypoglycaemic agents selected by molecular topology. International Journal of Pharmaceutics 2004, 278 (1) , 111-118. https://doi.org/10.1016/j.ijpharm.2004.03.012
    74. Hugo Kubinyi. 2D QSAR Models. 2003https://doi.org/10.1201/9780203913390.ch21
    75. Emilio Xavier Esposito, Anton J. Hopfinger, Jeffry D. Madura. 3D‐ and n D‐QSAR Methods. 2003, 1576-1603. https://doi.org/10.1002/9783527618279.ch44e
    76. Alireza Givehchi, Axel Dietrich, Paul Wrede, Gisbert Schneider. ChemSpaceShuttle: A tool for data mining in drug discovery by classification, projection, and 3D visualization. QSAR & Combinatorial Science 2003, 22 (5) , 549-559. https://doi.org/10.1002/qsar.200310007
    77. R Garcı́a-Domenech, I Rios-Santamarina, A Catalá, C Calabuig, L del Castillo, J Gálvez. Application of molecular topology to the prediction of antifungal activity for a set of dication-substituted carbazoles, furans and benzimidazoles. Journal of Molecular Structure: THEOCHEM 2003, 624 (1-3) , 97-107. https://doi.org/10.1016/S0166-1280(02)00740-6
    78. Kelly P. Coleman, William A. Toscano, Thomas E. Wiese. QSAR Models of the in vitro Estrogen Activity of Bisphenol A Analogs. QSAR & Combinatorial Science 2003, 22 (1) , 78-88. https://doi.org/10.1002/qsar.200390008
    79. C. D. Selassie. History of Quantitative Structure‐Activity Relationships. 2003, 1-48. https://doi.org/10.1002/0471266949.bmc001
    80. Jeremy L. Jenkins, Richard Y. T. Kao, Robert Shapiro. Virtual screening to enrich hit lists from high‐throughput screening: A case study on small‐molecule inhibitors of angiogenin. Proteins: Structure, Function, and Bioinformatics 2003, 50 (1) , 81-93. https://doi.org/10.1002/prot.10270
    81. Jürgen Bajorath. Integration of virtual and high-throughput screening. Nature Reviews Drug Discovery 2002, 1 (11) , 882-894. https://doi.org/10.1038/nrd941
    82. Michael F.M. Engels, Luc Wouters, Rudi Verbeeck, Greet Vanhoof. Outlier Mining in High Throughput Screening Experiments. SLAS Discovery 2002, 7 (4) , 341-351. https://doi.org/10.1177/108705710200700406
    83. Rebecca L. Rich, Lise R. Hoth, Kieran F. Geoghegan, Thomas A. Brown, Peter K. LeMotte, Samuel P. Simons, Preston Hensley, David G. Myszka. Kinetic analysis of estrogen receptor/ligand interactions. Proceedings of the National Academy of Sciences 2002, 99 (13) , 8562-8567. https://doi.org/10.1073/pnas.142288199
    84. Hua Gao, Michael S. Lajiness, John Van Drie. Enhancement of binary QSAR analysis by a GA-based variable selection method. Journal of Molecular Graphics and Modelling 2002, 20 (4) , 259-268. https://doi.org/10.1016/S1093-3263(01)00122-X
    85. Peter Gedeck, Peter Willett. Visual and computational analysis of structure–activity relationships in high-throughput screening data. Current Opinion in Chemical Biology 2001, 5 (4) , 389-395. https://doi.org/10.1016/S1367-5931(00)00219-2
    86. Paul D. Kirchhoff, Rob Brown, Scott Kahn, Marvin Waldman, C. M. Venkatachalam. Application of structure‐based focusing to the estrogen receptor. Journal of Computational Chemistry 2001, 22 (10) , 993-1003. https://doi.org/10.1002/jcc.1060
    87. J. C. Gittins, G. Harper. Bounds on the Performance of a Greedy Algorithm for Probabilities. Mathematics of Operations Research 2001, 26 (2) , 313-323. https://doi.org/10.1287/moor.26.2.313.10550
    88. A Ganesan. New tools for parallel automated chemistry. Drug Discovery Today 2001, 6 (5) , 238-241. https://doi.org/10.1016/S1359-6446(01)01699-3
    89. Gianpaolo Bravi, Emanuela Gancia, Darren V.S. Green, Mike M. Hann. Modelling Structure‐Activity Relationships. 2000, 81-116. https://doi.org/10.1002/9783527613083.ch5
    90. . Bibliography. 2000, 524-667. https://doi.org/10.1002/9783527613106.biblio
    91. Richard A. Lewis, Stephen D. Pickett, David E. Clark. Computer‐Aided Molecular Diversity Analysis and Combinatorial Library Design. 2000, 1-51. https://doi.org/10.1002/9780470125939.ch1
    92. Hua Gao, Chris Williams, Paul Labute, Juergen Bajorath. ChemInform Abstract: Binary Quantitative Structure—Activity Relationship (QSAR) Analysis of Estrogen Receptor Ligands.. ChemInform 1999, 30 (21) https://doi.org/10.1002/chin.199921263
    93. Mukund Deshpande, Michihiro Kuramochi, George Karypis. Data Mining Algorithms for Virtual Screening of Bioactive Compounds. , 59-90. https://doi.org/10.1007/978-0-387-69319-4_5
    94. Edgar H. de Graaf, Walter A. Kosters, Joost N. Kok, Jeroen Kazius. Visualization and Grouping of Graph Patterns in Molecular Databases. , 267-280. https://doi.org/10.1007/978-1-84800-094-0_20

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect