ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Alumina-Promoted Sulfated Zirconia System:  Structure and Microstructure Characterization

View Author Information
Dipartimenti di Chimica Fisica and Chimica, Università Ca'Foscari di Venezia, 30123 Venezia, Italy, Dipartimento di Chimica Fisica, Università di Padova, 35122 Padova, Italy, and Dipartimento di Chimica IMF, Università di Torino, 10125 Torino, Italy
Cite this: Chem. Mater. 2001, 13, 5, 1634–1641
Publication Date (Web):April 5, 2001
https://doi.org/10.1021/cm001101z
Copyright © 2001 American Chemical Society

    Article Views

    535

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The Al2O3 promotion of ZrO2/SO4 has been shown to influence n-butane isomerization activity. In this paper we report a study of the influence of a small addition of Al2O3 (0.6−10.3 wt %) onto the ZrO2 structure and microstructure. The addition of alumina is related to an increase of the surface area. A detailed X-ray diffraction analysis by the use of the modified Rietveld method allowed us to follow the changes in the crystalline phases and to quantify the amount of amorphous phase. When the Al2O3 content is increased, a decrease of the ZrO2 particle sizes is observed, paralleled by an increase of the amorphous phase. When the Al2O3 content is larger than 3.7 wt %, only amorphous phase can be detected. No crystalline peaks of Al2O3 were ever observed. These data were supported also by TEM and Raman measurements.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Dipartimento Chimica Fisica, Università Ca'Foscari di Venezia.

     Dipartimento di Chimica, Università Ca'Foscari di Venezia.

    *

     To whom correspondence should be addressed:  Dipartimento di Chimica, Università Ca'Foscari di Venezia, Dorsoduro 2137, 30123 Venezia, Italy. E-mail:  [email protected]. Fax:  +39-041 257 8517.

    §

     Università di Padova.

     Università di Torino.

    Cited By

    This article is cited by 48 publications.

    1. Sinong Zhou, Yueqin Song, Jigang Zhao, Xiaolong Zhou. Impacts of Alumina Introduction on a Pt–SO4/ZrO2 Catalyst in Light Naphtha Isomerization. Industrial & Engineering Chemistry Research 2022, 61 (3) , 1285-1293. https://doi.org/10.1021/acs.iecr.1c03040
    2. Zhiming Ma, Xuan Meng, Naiwang Liu, Chao Yang, Li Shi. Preparation, Characterization, and Isomerization Catalytic Performance of Palladium Loaded Zirconium Hydroxide/Sulfated Zirconia. Industrial & Engineering Chemistry Research 2018, 57 (43) , 14377-14385. https://doi.org/10.1021/acs.iecr.8b02413
    3. Zhiming Ma, Xuan Meng, Chao Yang, Naiwang Liu, Yuting Zhang, and Li Shi . Study of High-Aluminum-Content Sulfated Zirconia: Influence of Aluminum Content and Washing. Industrial & Engineering Chemistry Research 2017, 56 (19) , 5598-5606. https://doi.org/10.1021/acs.iecr.7b00832
    4. Sitan Wang, Xuan Meng, Naiwang Liu, Li Shi. Alkylation for removing trace olefins from reforming aromatics over novel Al2O3@SO42-/ZrO2 catalysts derived from the ZrO2-coated γ-Al2O3 strategy. Separation and Purification Technology 2023, 308 , 122731. https://doi.org/10.1016/j.seppur.2022.122731
    5. Sitan Wang, Tao Yin, Xuan Meng, Naiwang Liu, Li Shi. Synthesis of Al-incorporated sulfated zirconia with improved and stabilized surface sulfur species for removal of trace olefins from aromatics. Catalysis Science & Technology 2022, 12 (1) , 212-225. https://doi.org/10.1039/D1CY01443A
    6. Su Yang, Xiaoxuan Guo, Xiaomei Pan, Liuyu Gu, Xueping Liu, Lijing Gao, Guomin Xiao. Synthesis of Brominated Alkanes via Heterogeneous Catalytic Distillation over Al2O3/SO42−/ZrO2. Catalysts 2021, 11 (12) , 1464. https://doi.org/10.3390/catal11121464
    7. S.R. Pratap, S.Z. Mohamed Shamshuddin, K. Shyamprasad. Microwave assisted synthesis of propyl esters over modified versions of zirconia: Kinetic study. Chemical Data Collections 2020, 30 , 100579. https://doi.org/10.1016/j.cdc.2020.100579
    8. Abdallah I.M. Rabee, Lee J. Durndell, Nasr E. Fouad, Lucia Frattini, Mark A. Isaacs, Adam F. Lee, Gamal A.H. Mekhemer, Vannia C. dos Santos, Karen Wilson, Mohamed I. Zaki. Citrate-mediated sol–gel synthesis of Al-substituted sulfated zirconia catalysts for α-pinene isomerization. Molecular Catalysis 2018, 458 , 206-212. https://doi.org/10.1016/j.mcat.2017.10.029
    9. Yi Zhang, Tong Chen, Gang Zhang, Gongying Wang, Hua Zhang. Mesoporous Al-promoted sulfated zirconia as an efficient heterogeneous catalyst to synthesize isosorbide from sorbitol. Applied Catalysis A: General 2018, 562 , 258-266. https://doi.org/10.1016/j.apcata.2018.06.024
    10. Sreshtha Sinha Majumdar, Gokhan Celik, Anne-Marie Alexander, Preshit Gawade, Umit S. Ozkan. In-situ incorporation of binder during sol-gel preparation of Pd-based sulfated zirconia for reduction of nitrogen oxides under lean-burn conditions: Effect on activity and wash-coating characteristics. Applied Catalysis B: Environmental 2017, 202 , 134-146. https://doi.org/10.1016/j.apcatb.2016.08.062
    11. Peyman Khajavi, Ali Akbar Babaluo. Preparation of non-permselective sulfated zirconia catalytic membrane for use in a catalytic membrane reactor. Chemical Engineering Research and Design 2015, 104 , 472-478. https://doi.org/10.1016/j.cherd.2015.09.006
    12. O.V. Dzhikiya, M.D. Smolikov, E.V. Zatolokina, K.V. Kazantsev, A.S. Belyi. Investigation of Palladium Catalysts in n-hexane Isomerization Reaction. Procedia Engineering 2015, 113 , 98-102. https://doi.org/10.1016/j.proeng.2015.07.299
    13. Erming Liu, Ashley J. Locke, Ray L. Frost, Wayde N. Martens. Sulfated fibrous ZrO2/Al2O3 core and shell nanocomposites: A novel strong acid catalyst with hierarchically macro–mesoporous nanostructure. Journal of Molecular Catalysis A: Chemical 2012, 353-354 , 95-105. https://doi.org/10.1016/j.molcata.2011.11.010
    14. G.X. Yu, D.L. Lin, Y. Hu, X.L. Zhou, C.L. Li, L.F. Chen, J.A. Wang. RE2O3-promoted Pt–SO42−/ZrO2–Al2O3 catalyst in n-hexane hydroisomerization. Catalysis Today 2011, 166 (1) , 84-90. https://doi.org/10.1016/j.cattod.2010.06.005
    15. Xuejun Shi, Yulong Wu, Panpan Li, Huaifeng Yi, Mingde Yang, Gehua Wang. Catalytic conversion of xylose to furfural over the solid acid /ZrO2–Al2O3/SBA-15 catalysts. Carbohydrate Research 2011, 346 (4) , 480-487. https://doi.org/10.1016/j.carres.2011.01.001
    16. A.B. Gambhire, M.K. Lande, B.R. Arbad, S.B. Rathod, R.S. Gholap, K.R. Patil. Degradation of methylene blue via photocatalysis of transition metal-loaded sulfated TiO2. Materials Chemistry and Physics 2011, 125 (3) , 807-812. https://doi.org/10.1016/j.matchemphys.2010.09.053
    17. Guo Xian Yu, Yang Hu, Da Ni Lin, Xiao Long Zhou, Cheng Lie Li, Li Fang Chen, Jin An Wang. Yb2O3 Promoted Pt-SO42-/ZrO2-Al2O3 Catalyst in N-Hexane Hydroisomerization. Advanced Materials Research 2010, 132 , 174-182. https://doi.org/10.4028/www.scientific.net/AMR.132.174
    18. E. A. El-Sharkawy, Shar S. Al-Shihry. Friedel–Crafts acylation of toluene using superacid catalysts in a solvent-free medium. Monatshefte für Chemie - Chemical Monthly 2010, 141 (3) , 259-267. https://doi.org/10.1007/s00706-010-0250-3
    19. Jie Zhao, Yinghong Yue, Dewei Zhai, Changxi Miao, Jianyi Shen, Heyong He, Weiming Hua, Zi Gao. Characterization and Catalytic Activities of Al2O3-Promoted Sulfated Tin Oxides. Catalysis Letters 2009, 133 (1-2) , 119-124. https://doi.org/10.1007/s10562-009-0164-z
    20. M. Pérez-Luna, A. Cosultchi, J. A. Toledo-Antonio, M. A. Cortés-Jácome. n-Pentane Isomerization Over Pt- and Ni–Pt-Promoted Sulfated Zirconia Catalysts Supported on Alumina. Catalysis Letters 2009, 131 (1-2) , 285-293. https://doi.org/10.1007/s10562-009-0054-4
    21. Benjaram M. Reddy, Gunugunuri K. Reddy, Komateedi N. Rao, Lakshmi Katta. Influence of alumina and titania on the structure and catalytic properties of sulfated zirconia: Beckmann rearrangement. Journal of Molecular Catalysis A: Chemical 2009, 306 (1-2) , 62-68. https://doi.org/10.1016/j.molcata.2009.02.021
    22. Ying-Chieh Yang, Hung-Shan Weng. The role of H2 in n-butane isomerization over Al-promoted sulfated zirconia catalyst. Journal of Molecular Catalysis A: Chemical 2009, 304 (1-2) , 65-70. https://doi.org/10.1016/j.molcata.2009.01.025
    23. Michela Signoretto, Antonella Torchiaro, Anna Breda, Francesco Pinna, Giuseppina Cerrato, Claudio Morterra. Study on reuse of metal oxide-promoted sulphated zirconia in acylation reactions. Applied Catalysis B: Environmental 2008, 84 (3-4) , 363-371. https://doi.org/10.1016/j.apcatb.2008.04.014
    24. Jung-Hui Wang, Chung-Yuan Mou. Characterizations of aluminum-promoted sulfated zirconia on mesoporous MCM-41 silica: Butane isomerization. Microporous and Mesoporous Materials 2008, 110 (2-3) , 260-270. https://doi.org/10.1016/j.micromeso.2007.06.030
    25. Daniel Herein. X-Ray Powder Diffraction. 2008https://doi.org/10.1002/9783527610044.hetcat0039
    26. Friederike C. Jentoft. Oxo‐Anion Modified Oxides. 2008, 262-278. https://doi.org/10.1002/9783527610044.hetcat0014
    27. Patrizia Canton, Pier Francesco Fazzini, Carlo Meneghini, Alvise Benedetti, Giulio Pozzi. Nanoscale Characterization of Metal Nanoclusters by Means of X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) Techniques. 2008, 129-147. https://doi.org/10.1016/B978-044453057-8.50008-8
    28. A. V. Lavrenov, I. A. Basova, M. O. Kazakov, V. P. Finevich, O. B. Belskaya, E. A. Buluchevskii, V. K. Duplyakin. Catalysts on the basis of anion-modified metal oxides for production of ecologically pure components of motor fuels. Russian Journal of General Chemistry 2007, 77 (12) , 2272-2283. https://doi.org/10.1134/S1070363207120328
    29. Yingkui Guo, Zuowei Dong. Well-dispersed Ceria-promoted Sulfated Zirconia Supported on Mesoporous Silica. Catalysis Letters 2007, 119 (1-2) , 120-125. https://doi.org/10.1007/s10562-007-9208-4
    30. Jie Zhao, Yinghong Yue, Weiming Hua, Zi Gao. Catalytic activities and properties of mesoporous sulfated Al2O3–ZrO2. Catalysis Letters 2007, 116 (1-2) , 27-34. https://doi.org/10.1007/s10562-007-9085-x
    31. Olga V. Manoilova, Roberta Olindo, Carlos Otero Areán, Johannes A. Lercher. Variable temperature FTIR study on the surface acidity of variously treated sulfated zirconias. Catalysis Communications 2007, 8 (6) , 865-870. https://doi.org/10.1016/j.catcom.2006.08.043
    32. Xuebing Li, Katsutoshi Nagaoka, Laurent J. Simon, Roberta Olindo, Johannes A. Lercher. Influence of calcination procedure on the catalytic property of sulfated zirconia. Catalysis Letters 2007, 113 (1-2) , 34-40. https://doi.org/10.1007/s10562-006-9005-5
    33. E. Ghedini, M. Signoretto, F. Pinna, G. Cerrato, C. Morterra. Gas and liquid phase reactions on MCM-41/SZ catalysts. Applied Catalysis B: Environmental 2006, 67 (1-2) , 24-33. https://doi.org/10.1016/j.apcatb.2006.04.010
    34. Wen-Hua Chen, Hui-Hsin Ko, Ayyamperumal Sakthivel, Shing-Jong Huang, Shou-Heng Liu, An-Ya Lo, Tseng-Chang Tsai, Shang-Bin Liu. A solid-state NMR, FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment. Catalysis Today 2006, 116 (2) , 111-120. https://doi.org/10.1016/j.cattod.2006.01.025
    35. A. Breda, M. Signoretto, E. Ghedini, F. Pinna, G. Cruciani. Acylation of veratrole over promoted SZ/MCM-41 catalysts: Influence of metal promotion. Applied Catalysis A: General 2006, 308 , 216-222. https://doi.org/10.1016/j.apcata.2006.04.039
    36. Soo Y. Kim, Nattaporn Lohitharn, James G. Goodwin, Roberta Olindo, Francesco Pinna, Patrizia Canton. The effect of Al2O3-promotion of sulfated zirconia on n-butane isomerization: An isotopic transient kinetic analysis. Catalysis Communications 2006, 7 (4) , 209-213. https://doi.org/10.1016/j.catcom.2005.11.005
    37. Xiaobo Yang, Rolf E. Jentoft, Friederike C. Jentoft. n-Butane Isomerization Catalyzed by Sulfated Zirconia Nanocrystals Supported on Silica or γ-Alumina. Catalysis Letters 2006, 106 (3-4) , 195-203. https://doi.org/10.1007/s10562-005-9629-x
    38. M. Pérez-Luna, A. Cosultchi, J. A. Toledo-Antonio, C. Angeles-Chavez, E. M. Arce-Estrada. Effect of Pt Incorporation into Ni/ZrO2–SO4=/Al2O3 Catalyst for n-Butane Isomerization. Catalysis Letters 2006, 107 (1-2) , 103-110. https://doi.org/10.1007/s10562-005-9737-7
    39. Francesco Zane, Stefano Melada, Michela Signoretto, Francesco Pinna. Active and recyclable sulphated zirconia catalysts for the acylation of aromatic compounds. Applied Catalysis A: General 2006, 299 , 137-144. https://doi.org/10.1016/j.apcata.2005.10.019
    40. Yinyong Sun, Stéphane Walspurger, Benoît Louis, Jean Sommer. Investigation of factors influencing catalytic activity for n-butane isomerization in the presence of hydrogen on Al-promoted sulfated zirconia. Applied Catalysis A: General 2005, 292 , 200-207. https://doi.org/10.1016/j.apcata.2005.06.021
    41. M. Pérez-Luna, A. Cosultchi, J. A. Toledo-Antonio, E. M. Aree-Estrada. Study of alumina-promoted SO2-4/NiO/ZrO2 catalyst performance. Catalysis Letters 2005, 102 (1-2) , 33-38. https://doi.org/10.1007/s10562-005-5199-1
    42. Michela Signoretto, Stefano Melada, Francesco Pinna, Stefano Polizzi, Giuseppina Cerrato, Claudio Morterra. Ga2O3-promoted sulfated zirconia systems: Morphological, structural and redox properties. Microporous and Mesoporous Materials 2005, 81 (1-3) , 19-29. https://doi.org/10.1016/j.micromeso.2005.01.009
    43. Guangshan Zhu, Ce Wang, Yahong Zhang, Na Guo, Yiyang Zhao, Runwei Wang, Shilun Qiu, Yen Wei, Ray H. Baughman. Highly Effective Sulfated Zirconia Nanocatalysts Grown out of Colloidal Silica at High Temperature. Chemistry – A European Journal 2004, 10 (19) , 4750-4754. https://doi.org/10.1002/chem.200400288
    44. Roberta Gavagnin, Luca Biasetto, Francesco Pinna, Giorgio Strukul. Nitrate removal in drinking waters: the effect of tin oxides in the catalytic hydrogenation of nitrate by Pd/SnO2 catalysts. Applied Catalysis B: Environmental 2002, 38 (2) , 91-99. https://doi.org/10.1016/S0926-3373(02)00032-2
    45. Hongsang Ahn, Christopher P. Nicholas, Tobin J. Marks. Surface Organozirconium Electrophiles Activated by Chemisorption on “Super Acidic” Sulfated Zirconia as Hydrogenation and Polymerization Catalysts. A Synthetic, Structural, and Mechanistic Catalytic Study. Organometallics 2002, 21 (9) , 1788-1806. https://doi.org/10.1021/om020056x
    46. Weiming Hua, Jean Sommer. Hydroisomerization of n-butane over sulfated zirconia catalysts promoted by alumina and platinum. Applied Catalysis A: General 2002, 227 (1-2) , 279-286. https://doi.org/10.1016/S0926-860X(01)00945-0
    47. J.A. Moreno, G. Poncelet. n-Butane isomerization over Al-promoted sulfated zirconias. Influence of the sulfate content. 2000, 1003-1010. https://doi.org/10.1016/S0167-2991(00)80745-4
    48. Guangshan Zhu, Ce Wang, Na Guo, Xiaohui Cai. Highly Effective Nanocatalysts Prepared Through Sol—Gel Technique. , 73-89. https://doi.org/10.1007/978-0-387-34688-5_6

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect