ACS Publications. Most Trusted. Most Cited. Most Read
Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties
My Activity
    Article

    Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
    Other Access Options

    Chemistry of Materials

    Cite this: Chem. Mater. 2001, 13, 12, 4624–4628
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm0103390
    Published November 30, 2001
    Copyright © 2001 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    BiVO4 powder with scheelite structure was obtained by hydrolyzing a nitric acid solution of Bi(NO3)3 and Na3VO4 with bases (Na2CO3 and NaHCO3) at room temperature. Tetragonal BiVO4 of a high-temperature form was obtained after 4.5 h of preparation time while monoclinic BiVO4 was done after 46 h. Although the structure and the band gap of tetragonal BiVO4 with scheelite structure were similar to those of monoclinic BiVO4, the photocatalytic activity of the tetragonal BiVO4 for O2 evolution from an aqueous AgNO3 solution under visible light irradiation was negligible. In contrast, the monoclinic BiVO4 showed high photocatalytic activity. Distortion of a Bi−O polyhedron by a 6s2 lone pair of Bi3+ plays an important role for high photocatalytic activity of the monoclinic BiVO4 under visible light irradiation.

    Copyright © 2001 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. Fax:  +81-33235-2214. E-mail:  [email protected].

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 989 publications.

    1. Daye Seo, Vrindaa Somjit, Dae Han Wi, Giulia Galli, Kyoung-Shin Choi. p-Type BiVO4 for Solar O2 Reduction to H2O2. Journal of the American Chemical Society 2025, 147 (4) , 3261-3273. https://doi.org/10.1021/jacs.4c13290
    2. Sankha Ghosh, John Garcia, Bhavadharini Selvakumar, Amanda Ndubuisi, Karthik Shankar, Venkataraman Thangadurai, Dennis R. Salahub. Substitutional Cu Doping at Ca and Nb Sites in Ba3CaNb2O9 Toward Improved Photoactivity–A First-Principles HSE06 Study. The Journal of Physical Chemistry C 2024, 128 (20) , 8169-8180. https://doi.org/10.1021/acs.jpcc.4c01524
    3. Shuai Chen, Ding-Chong Han, Le Ye, Wei-Xiong Zhang. Three-Step Ferroelastic Transitions from Hexagonal to Triclinic Phases in a Hybrid Perovskite: (1-Fluoromethyl-1-methylpyrrolidine)[CdCl3]. Inorganic Chemistry 2024, 63 (17) , 7966-7972. https://doi.org/10.1021/acs.inorgchem.4c00986
    4. Nivedita Singh, Uttam Kumar, Neha Jatav, Indrajit Sinha. Photocatalytic Degradation of Crystal Violet on Cu, Zn Doped BiVO4 Particles. Langmuir 2024, 40 (16) , 8450-8462. https://doi.org/10.1021/acs.langmuir.3c04039
    5. SocMan Ho-Kimura. Experimental Evidence for Photoactivated BiVO4 Anodes with Enhanced Photoelectrochemical Water Oxidation. ACS Applied Energy Materials 2024, 7 (5) , 1902-1913. https://doi.org/10.1021/acsaem.3c02981
    6. Wenjian Fang, Yang Yang, Qihong Lu, Yihao Meng, Wenfeng Shangguan. Unlock the Visible-Light Photocatalytic OWS by Surface Disorder-Engineered Bi-Based Composite Oxides through Phosphorization. Inorganic Chemistry 2023, 62 (49) , 20306-20313. https://doi.org/10.1021/acs.inorgchem.3c03306
    7. Sangeeta Ghosh, Paramita Hajra, Sukumar Kundu, Swarnendu Baduri, Debasish Ray, Chinmoy Bhattacharya. Associative Role of g-C3N4 to BiVO4 via Favorable Crystallinity and Rapid Charge-Carrier Transport for an Improved Photoelectrochemical Water Oxidation Process: An In Situ Composite Explored through Different Carbon Nitride Precursors. ACS Applied Engineering Materials 2023, 1 (11) , 2892-2902. https://doi.org/10.1021/acsaenm.3c00414
    8. Zhu Meng, Ernest Pastor, Shababa Selim, Haoqing Ning, Marios Maimaris, Andreas Kafizas, James R. Durrant, Artem A. Bakulin. Operando IR Optical Control of Localized Charge Carriers in BiVO4 Photoanodes. Journal of the American Chemical Society 2023, 145 (32) , 17700-17709. https://doi.org/10.1021/jacs.3c04287
    9. Jyoti Pandey, Neetu Yadav, Priyanka Yadav, Shivangi Rao, Kashmira Malla, Poojan Koirala, Madhav Prasad Ghimire, Rajamani Nagarajan. Hole and Electron Doping Outcomes in Bi2YO4Cl. Inorganic Chemistry 2023, 62 (24) , 9471-9483. https://doi.org/10.1021/acs.inorgchem.3c00716
    10. Ruixin Song, Shifei Kang, Liangtao Yao, Lulu Zheng, Dechao Yu, Dawei Zhang. Construction of an La-BiVO4/O-Doped g-C3N4 Heterojunction Photocatalyst Embedded in Electrospinning Nanofibers. Langmuir 2023, 39 (19) , 6647-6656. https://doi.org/10.1021/acs.langmuir.2c03356
    11. Martha Pylarinou, Elias Sakellis, Polychronis Tsipas, George Em. Romanos, Spiros Gardelis, Athanasios Dimoulas, Vlassis Likodimos. Mo-BiVO4/Ca-BiVO4 Homojunction Nanostructure-Based Inverse Opals for Photoelectrocatalytic Pharmaceutical Degradation under Visible Light. ACS Applied Nano Materials 2023, 6 (8) , 6759-6771. https://doi.org/10.1021/acsanm.3c00469
    12. Yangqin Gao, Wenyue Zhao, Zhijie Tian, Liyang Zhang, Ziyu Teng, Ning Li, Lei Ge. Cobalt-Modified Amorphous Nickel–Iron–Molybdate Cocatalysts to Enhance the Photoelectrochemical Water Splitting Performance of BiVO4 Photoanodes. ACS Applied Energy Materials 2023, 6 (8) , 4342-4353. https://doi.org/10.1021/acsaem.3c00326
    13. Matilde Saura-Múzquiz, Frederick P. Marlton, Bryce G. Mullens, Jiatu Liu, Thomas Vogt, Helen E. Maynard-Casely, Maxim Avdeev, Douglas A. Blom, Brendan J. Kennedy. Cation and Lone Pair Order–Disorder in the Polymorphic Mixed Metal Bismuth Scheelite Bi3FeMo2O12. Chemistry of Materials 2023, 35 (1) , 123-135. https://doi.org/10.1021/acs.chemmater.2c02740
    14. Haiwen Shi, Hu Guo, Suwei Wang, Guangpu Zhang, Yubing Hu, Wei Jiang, Guigao Liu. Visible Light Photoanode Material for Photoelectrochemical Water Splitting: A Review of Bismuth Vanadate. Energy & Fuels 2022, 36 (19) , 11404-11427. https://doi.org/10.1021/acs.energyfuels.2c00994
    15. Shan Wang, Dandan Cui, Weichang Hao, Yi Du. Roles of Cocatalysts on BiVO4 Photoanodes for Photoelectrochemical Water Oxidation: A Minireview. Energy & Fuels 2022, 36 (19) , 11394-11403. https://doi.org/10.1021/acs.energyfuels.2c01391
    16. Frederick P. Marlton, Bryce G. Mullens, Philip A. Chater, Brendan J. Kennedy. Tetrahedral Displacive Disorder in the Scheelite-Type Oxide RbReO4. Inorganic Chemistry 2022, 61 (38) , 15130-15137. https://doi.org/10.1021/acs.inorgchem.2c02282
    17. Balasubramanian Sriram, Jeena N. Baby, Yung-Fu Hsu, Sea-Fue Wang, Mary George. In Situ Synthesis of a Bismuth Vanadate/Molybdenum Disulfide Composite: An Electrochemical Tool for 3-Nitro-l-Tyrosine Analysis. Inorganic Chemistry 2022, 61 (35) , 14046-14057. https://doi.org/10.1021/acs.inorgchem.2c02037
    18. Mariam Barawi, Miguel Gomez-Mendoza, Freddy E. Oropeza, Giulio Gorni, Ignacio J. Villar-Garcia, Sixto Giménez, Victor A. de la Peña O’Shea, Miguel García-Tecedor. Laser-Reduced BiVO4 for Enhanced Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2022, 14 (29) , 33200-33210. https://doi.org/10.1021/acsami.2c07451
    19. Yiqiang He, Yuxin Liu, Chunguang Li, Xiao-Bo Chen, Zhan Shi, Shouhua Feng. Origin of the Photocatalytic Activity of Crystalline Phase Structures. ACS Applied Energy Materials 2022, 5 (7) , 8923-8929. https://doi.org/10.1021/acsaem.2c01409
    20. Małgorzata Nadolska, Mariusz Szkoda, Konrad Trzciński, Paweł Niedziałkowski, Jacek Ryl, Aleksandra Mielewczyk-Gryń, Karolina Górnicka, Marta Prześniak-Welenc. Insight into Potassium Vanadates as Visible-Light-Driven Photocatalysts: Synthesis of V(IV)-Rich Nano/Microstructures for the Photodegradation of Methylene Blue. Inorganic Chemistry 2022, 61 (25) , 9433-9444. https://doi.org/10.1021/acs.inorgchem.2c00136
    21. Jia Shi, Wenyu Zhang, Qiang Gu. Ab Initio Calculation of Surface-Controlled Photocatalysis in Multiple-Phase BiVO4. The Journal of Physical Chemistry C 2022, 126 (22) , 9541-9550. https://doi.org/10.1021/acs.jpcc.2c01936
    22. Masashi Nakamura, Hirofumi Akamatsu, Kotaro Fujii, Yusuke Nambu, Yoichi Ikeda, Tomoki Kanazawa, Shunsuke Nozawa, Masatomo Yashima, Katsuro Hayashi, Kazuhiko Maeda. Synthesis of Hydride-Doped Perovskite Stannate with Visible Light Absorption Capability. Inorganic Chemistry 2022, 61 (17) , 6584-6593. https://doi.org/10.1021/acs.inorgchem.2c00398
    23. Tae Hwa Jeon, Seungmok Han, Bupmo Kim, Cheolwoo Park, Wooyul Kim, Hyunwoong Park, Wonyong Choi. High-Valent Iron Redox-Mediated Photoelectrochemical Water Oxidation. ACS Energy Letters 2022, 7 (1) , 59-66. https://doi.org/10.1021/acsenergylett.1c02430
    24. Xingbang Dong, Zhanbiao Huangfu, Yongfu Liang, Chaosheng Yuan, Sen Li, Xiang Zhu, Liying Jiang, Kun Yang, Yanlong Wang, Xuerui Cheng, Lei Su, Guoqiang Yang. Increasing Doping Solubility of RE3+ Ions in Fergusonite BiVO4 via Pressure-Induced Phase Transition. The Journal of Physical Chemistry C 2021, 125 (40) , 22388-22395. https://doi.org/10.1021/acs.jpcc.1c07746
    25. Yukihiro Nakabayashi, Norihiro Suzuki, Chiaki Terashima, Akira Fujishima. In Situ Infrared Analysis for the Process of Water Photo-oxidation on Monoclinic Bismuth Vanadate. The Journal of Physical Chemistry C 2021, 125 (34) , 18579-18587. https://doi.org/10.1021/acs.jpcc.1c01755
    26. Zhi-Xu Zhang, Chang-Yuan Su, Jie Li, Xian-Jiang Song, Da-Wei Fu, Yi Zhang. Ferroelastic Hybrid Bismuth Bromides with Dual Dielectric Switches. Chemistry of Materials 2021, 33 (14) , 5790-5799. https://doi.org/10.1021/acs.chemmater.1c01699
    27. Zhilin Wu, Xia Sun, Xuezheng Guo, Yanqiao Ding, Yi Ou, Han Yang, Yanhong Chen, Yanting Hu, Deilin Kuang, Chengjiu Zhao, Yong He. Development of a rGO-BiVO4 Heterojunction Humidity Sensor with Boosted Performance. ACS Applied Materials & Interfaces 2021, 13 (23) , 27188-27199. https://doi.org/10.1021/acsami.1c05753
    28. Thanh Tran-Phu, Zelio Fusco, Iolanda Di Bernardo, Josh Lipton-Duffin, Cui Ying Toe, Rahman Daiyan, Thomas Gengenbach, Chun-Ho Lin, Renheng Bo, Hieu T. Nguyen, Giuseppe M. J. Barca, Tom Wu, Hongjun Chen, Rose Amal, Antonio Tricoli. Understanding the Role of Vanadium Vacancies in BiVO4 for Efficient Photoelectrochemical Water Oxidation. Chemistry of Materials 2021, 33 (10) , 3553-3565. https://doi.org/10.1021/acs.chemmater.0c04866
    29. Pao-Wen Shao, Yi-Syuan Siao, Yu-Hong Lai, Ping-Yen Hsieh, Chun-Wen Tsao, Yu-Jung Lu, Yi-Chun Chen, Yung-Jung Hsu, Ying-Hao Chu. Flexible BiVO4/WO3/ITO/Muscovite Heterostructure for Visible-Light Photoelectrochemical Photoelectrode. ACS Applied Materials & Interfaces 2021, 13 (18) , 21186-21193. https://doi.org/10.1021/acsami.1c00671
    30. Mary O. Olagunju, Elsayed M. Zahran, Jacqueline M. Reed, Elnaz Zeynaloo, Dharmendra Shukla, Joshua L. Cohn, Bapurao Surnar, Shanta Dhar, Leonidas G. Bachas, Marc R. Knecht. Halide Effects in BiVO4/BiOX Heterostructures Decorated with Pd Nanoparticles for Photocatalytic Degradation of Rhodamine B as a Model Organic Pollutant. ACS Applied Nano Materials 2021, 4 (3) , 3262-3272. https://doi.org/10.1021/acsanm.1c00481
    31. Nicklas Österbacka, Julia Wiktor. Influence of Oxygen Vacancies on the Structure of BiVO4. The Journal of Physical Chemistry C 2021, 125 (2) , 1200-1207. https://doi.org/10.1021/acs.jpcc.0c08751
    32. Hye Rin Choe, Sung Su Han, Yong-Il Kim, Changhyun Hong, Eun Jin Cho, Ki Min Nam. Understanding and Improving Photocatalytic Activity of Pd-Loaded BiVO4 Microspheres: Application to Visible Light-Induced Suzuki–Miyaura Coupling Reaction. ACS Applied Materials & Interfaces 2021, 13 (1) , 1714-1722. https://doi.org/10.1021/acsami.0c15488
    33. Sandra Heckel, Jens Grauer, Maria Semmler, Thomas Gemming, Hartmut Löwen, Benno Liebchen, Juliane Simmchen. Active Assembly of Spheroidal Photocatalytic BiVO4 Microswimmers. Langmuir 2020, 36 (42) , 12473-12480. https://doi.org/10.1021/acs.langmuir.0c01568
    34. Zhi-Bo Liu, Lei He, Ping-Ping Shi, Qiong Ye, Da-Wei Fu. A Three-Dimensional Molecular Perovskite Ferroelastic with Two-Step Switching of Quadratic Nonlinear Optical Properties Tuned by Molecular Chiral Design. The Journal of Physical Chemistry Letters 2020, 11 (19) , 7960-7965. https://doi.org/10.1021/acs.jpclett.0c02235
    35. Thang Duc Pham, N. Aaron Deskins. Efficient Method for Modeling Polarons Using Electronic Structure Methods. Journal of Chemical Theory and Computation 2020, 16 (8) , 5264-5278. https://doi.org/10.1021/acs.jctc.0c00374
    36. Bárbara Scola Rodrigues, Carolyne Martins Branco, Paola Corio, Juliana S. Souza. Controlling Bismuth Vanadate Morphology and Crystalline Structure through Optimization of Microwave-Assisted Synthesis Conditions. Crystal Growth & Design 2020, 20 (6) , 3673-3685. https://doi.org/10.1021/acs.cgd.9b01517
    37. Qing Han, Yinjuan Dong, Chunjiang Xu, Qiyu Hu, Congzhao Dong, Xiangming Liang, Yong Ding. Immobilization of Metal–Organic Framework MIL-100(Fe) on the Surface of BiVO4: A New Platform for Enhanced Visible-Light-Driven Water Oxidation. ACS Applied Materials & Interfaces 2020, 12 (9) , 10410-10419. https://doi.org/10.1021/acsami.9b21507
    38. Apinya Ngoipala, Lappawat Ngamwongwan, Ittipon Fongkaew, Sirichok Jungthawan, Pussana Hirunsit, Sukit Limpijumnong, Suwit Suthirakun. On the Enhanced Reducibility and Charge Transport Properties of Phosphorus-Doped BiVO4 as Photocatalysts: A Computational Study. The Journal of Physical Chemistry C 2020, 124 (8) , 4352-4362. https://doi.org/10.1021/acs.jpcc.9b09909
    39. Imane Abdellaoui, Muhammad M. Islam, Mikas Remeika, Yui Higuchi, Takato Kawaguchi, Takashi Harada, Christian Budich, Tsuyoshi Maeda, Takahiro Wada, Shigeru Ikeda, Takeaki Sakurai. Photocarrier Recombination Dynamics in BiVO4 for Visible Light-Driven Water Oxidation. The Journal of Physical Chemistry C 2020, 124 (7) , 3962-3972. https://doi.org/10.1021/acs.jpcc.9b10621
    40. Sha Chen, Danlian Huang, Piao Xu, Xiaomin Gong, Wenjing Xue, Lei Lei, Rui Deng, Jing Li, Zhihao Li. Facet-Engineered Surface and Interface Design of Monoclinic Scheelite Bismuth Vanadate for Enhanced Photocatalytic Performance. ACS Catalysis 2020, 10 (2) , 1024-1059. https://doi.org/10.1021/acscatal.9b03411
    41. Mahsa Barzgar Vishlaghi, Abdullah Kahraman, Sarp Kaya. Increasing Charge Separation Property and Water Oxidation Activity of BiVO4 Photoanodes via a Postsynthetic Treatment. The Journal of Physical Chemistry C 2020, 124 (2) , 1337-1345. https://doi.org/10.1021/acs.jpcc.9b08099
    42. Umesh Prasad . BiVO4-Based Photoanodes for Photoelectrochemical Water Splitting. 2020, 137-167. https://doi.org/10.1021/bk-2020-1364.ch005
    43. Lei He, Lin Zhou, Ping-Ping Shi, Qiong Ye, Da-Wei Fu. One-Dimensional Cadmium Thiocyanate Perovskite Ferroelastics Tuned by Halogen Substitution. Chemistry of Materials 2019, 31 (24) , 10236-10242. https://doi.org/10.1021/acs.chemmater.9b04232
    44. Min Chen, Jianjun Zhao, Xubo Huang, Yaru Wang, Yiming Xu. Improved Performance of BiVO4 via Surface-Deposited Magnetic CuFe2O4 for Phenol Oxidation and O2 Reduction and Evolution under Visible Light. ACS Applied Materials & Interfaces 2019, 11 (49) , 45776-45784. https://doi.org/10.1021/acsami.9b16991
    45. Iflah Laraib, Marciano Alves Carneiro, Anderson Janotti. Effects of Doping on the Crystal Structure of BiVO4. The Journal of Physical Chemistry C 2019, 123 (44) , 26752-26757. https://doi.org/10.1021/acs.jpcc.9b05858
    46. Hye Rin Choe, Ji Hyeon Kim, Ahyeon Ma, Haeun Jung, Ha Young Kim, Ki Min Nam. Understanding Reaction Kinetics by Tailoring Metal Co-catalysts of the BiVO4 Photocatalyst. ACS Omega 2019, 4 (15) , 16597-16602. https://doi.org/10.1021/acsomega.9b02454
    47. Nienke J. Firet, Anirudh Venugopal, Marijn A. Blommaert, Chiara Cavallari, Christoph J. Sahle, Alessandro Longo, Wilson A. Smith. Chemisorption of Anionic Species from the Electrolyte Alters the Surface Electronic Structure and Composition of Photocharged BiVO4. Chemistry of Materials 2019, 31 (18) , 7453-7462. https://doi.org/10.1021/acs.chemmater.9b02121
    48. Sadaf Khoomortezaei, Hossein Abdizadeh, Mohammad Reza Golobostanfard. Triple Layer Heterojunction WO3/BiVO4/BiFeO3 Porous Photoanode for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials 2019, 2 (9) , 6428-6439. https://doi.org/10.1021/acsaem.9b01041
    49. Pradeepta Babu, Satyaranjan Mohanty, Brundabana Naik, Kulamani Parida. Serendipitous Assembly of Mixed Phase BiVO4 on B-Doped g-C3N4: An Appropriate p–n Heterojunction for Photocatalytic O2 evolution and Cr(VI) reduction. Inorganic Chemistry 2019, 58 (18) , 12480-12491. https://doi.org/10.1021/acs.inorgchem.9b02309
    50. Patompob Pakeetood, Pakpoom Reunchan, Adisak Boonchun, Sukit Limpijumnong, Ratiporn Munprom, Rajeev Ahuja, Jiraroj T-Thienprasert. Hybrid-Functional Study of Native Defects and W/Mo-Doped in Monoclinic-Bismuth Vanadate. The Journal of Physical Chemistry C 2019, 123 (23) , 14508-14516. https://doi.org/10.1021/acs.jpcc.9b02698
    51. Julia Wiktor, Alfredo Pasquarello. Electron and Hole Polarons at the BiVO4–Water Interface. ACS Applied Materials & Interfaces 2019, 11 (20) , 18423-18426. https://doi.org/10.1021/acsami.9b03566
    52. Ashley R. Bielinski, Sudarat Lee, James J. Brancho, Samuel L. Esarey, Andrew J. Gayle, Eric Kazyak, Kai Sun, Bart M. Bartlett, Neil P. Dasgupta. Atomic Layer Deposition of Bismuth Vanadate Core–Shell Nanowire Photoanodes. Chemistry of Materials 2019, 31 (9) , 3221-3227. https://doi.org/10.1021/acs.chemmater.9b00065
    53. Tulsi Satyavir Dabodiya, Praneetha Selvarasu, Arumugam Vadivel Murugan. Tetragonal to Monoclinic Crystalline Phases Change of BiVO4 via Microwave-Hydrothermal Reaction: In Correlation with Visible-Light-Driven Photocatalytic Performance. Inorganic Chemistry 2019, 58 (8) , 5096-5110. https://doi.org/10.1021/acs.inorgchem.9b00193
    54. Nurul Aida Mohamed, Habib Ullah, Javad Safaei, Aznan Fazli Ismail, Mohamad Firdaus Mohamad Noh, Mohd Fairuz Soh, Mohd Adib Ibrahim, Norasikin Ahmad Ludin, Mohd Asri Mat Teridi. Efficient Photoelectrochemical Performance of γ Irradiated g-C3N4 and Its g-C3N4@BiVO4 Heterojunction for Solar Water Splitting. The Journal of Physical Chemistry C 2019, 123 (14) , 9013-9026. https://doi.org/10.1021/acs.jpcc.9b00217
    55. Ji Hyun Baek, Thomas Mark Gill, Hadi Abroshan, Sangwook Park, Xinjian Shi, Jens Nørskov, Hyun Suk Jung, Samira Siahrostami, Xiaolin Zheng. Selective and Efficient Gd-Doped BiVO4 Photoanode for Two-Electron Water Oxidation to H2O2. ACS Energy Letters 2019, 4 (3) , 720-728. https://doi.org/10.1021/acsenergylett.9b00277
    56. Alexander Milbrat, Wouter Vijselaar, Yuxi Guo, Bastian Mei, Jurriaan Huskens, Guido Mul. Integration of Molybdenum-Doped, Hydrogen-Annealed BiVO4 with Silicon Microwires for Photoelectrochemical Applications. ACS Sustainable Chemistry & Engineering 2019, 7 (5) , 5034-5044. https://doi.org/10.1021/acssuschemeng.8b05756
    57. Haili Tong, Yi Jiang, Qian Zhang, Wenchao Jiang, Kaili Wang, Xiaoxi Luo, Ze Lin, Lixin Xia. Boosting Photoelectrochemical Water Oxidation with Cobalt Phosphide Nanosheets on Porous BiVO4. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 769-778. https://doi.org/10.1021/acssuschemeng.8b04405
    58. He Lin, Haitao Zhang, Xiang He, Wentao Xu, Youfu Zhou, Zhiguo Yi. Dynamic Mechanical and Electric Behaviors of La-Doped BiVO4. Crystal Growth & Design 2019, 19 (1) , 275-284. https://doi.org/10.1021/acs.cgd.8b01356
    59. Wenlei Zhu, Meikun Shen, Guozheng Fan, Alicia Yang, James R. Meyer, Yining Ou, Bo Yin, John Fortner, Marcus Foston, Zhaosheng Li, Zhigang Zou, Bryce Sadtler. Facet-Dependent Enhancement in the Activity of Bismuth Vanadate Microcrystals for the Photocatalytic Conversion of Methane to Methanol. ACS Applied Nano Materials 2018, 1 (12) , 6683-6691. https://doi.org/10.1021/acsanm.8b01490
    60. Minji Yang, Huichao He, Aizhen Liao, Ji Huang, Yi Tang, Jun Wang, Gaili Ke, Faqin Dong, Long Yang, Liang Bian, Yong Zhou. Boosted Water Oxidation Activity and Kinetics on BiVO4 Photoanodes with Multihigh-Index Crystal Facets. Inorganic Chemistry 2018, 57 (24) , 15280-15288. https://doi.org/10.1021/acs.inorgchem.8b02570
    61. Tatsuhiro Onishi, Musashi Fujishima, Hiroaki Tada. Solar-Driven One-Compartment Hydrogen Peroxide-Photofuel Cell Using Bismuth Vanadate Photoanode. ACS Omega 2018, 3 (9) , 12099-12105. https://doi.org/10.1021/acsomega.8b01333
    62. Yannick Hermans, Andreas Klein, Klaus Ellmer, Roel van de Krol, Thierry Toupance, Wolfram Jaegermann. Energy-Band Alignment of BiVO4 from Photoelectron Spectroscopy of Solid-State Interfaces. The Journal of Physical Chemistry C 2018, 122 (36) , 20861-20870. https://doi.org/10.1021/acs.jpcc.8b06241
    63. Sheikha Lardhi, Luigi Cavallo, Moussab Harb. Determination of the Intrinsic Defect at the Origin of Poor H2 Evolution Performance of the Monoclinic BiVO4 Photocatalyst Using Density Functional Theory. The Journal of Physical Chemistry C 2018, 122 (32) , 18204-18211. https://doi.org/10.1021/acs.jpcc.8b03044
    64. Shankar Subhash Kekade, Prashant Vijay Gaikwad, Suyog Asaram Raut, Ram Janay Choudhary, Vikas Laxman Mathe, Deodatta Phase, Anjali Kshirsagar, Shankar Ishwara Patil. Electronic Structure of Visible Light-Driven Photocatalyst δ-Bi11VO19 Nanoparticles Synthesized by Thermal Plasma. ACS Omega 2018, 3 (5) , 5853-5864. https://doi.org/10.1021/acsomega.8b00564
    65. Yiou Wang, Hajime Suzuki, Jijia Xie, Osamu Tomita, David James Martin, Masanobu Higashi, Dan Kong, Ryu Abe, Junwang Tang. Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems. Chemical Reviews 2018, 118 (10) , 5201-5241. https://doi.org/10.1021/acs.chemrev.7b00286
    66. Jacek K. Stolarczyk, Santanu Bhattacharyya, Lakshminarayana Polavarapu, Jochen Feldmann. Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures. ACS Catalysis 2018, 8 (4) , 3602-3635. https://doi.org/10.1021/acscatal.8b00791
    67. Rajini P. Antony, Mengyuan Zhang, Kaiqi Zhou, Say Chye Joachim Loo, James Barber, Lydia Helena Wong. Synergistic Effect of Porosity and Gradient Doping in Efficient Solar Water Oxidation of Catalyst-Free Gradient Mo:BiVO4. ACS Omega 2018, 3 (3) , 2724-2734. https://doi.org/10.1021/acsomega.7b01794
    68. Benjamin Lamm, Bartek J. Trześniewski, Henning Döscher, Wilson A. Smith, Morgan Stefik. Emerging Postsynthetic Improvements of BiVO4 Photoanodes for Solar Water Splitting. ACS Energy Letters 2018, 3 (1) , 112-124. https://doi.org/10.1021/acsenergylett.7b00834
    69. Yukihiro Nakabayashi, Masami Nishikawa, Nobuo Saito, Chiaki Terashima, and Akira Fujishima . Significance of Hydroxyl Radical in Photoinduced Oxygen Evolution in Water on Monoclinic Bismuth Vanadate. The Journal of Physical Chemistry C 2017, 121 (46) , 25624-25631. https://doi.org/10.1021/acs.jpcc.7b03641
    70. Mingyue Zhu, Qian Liu, Wei Chen, Yuanyuan Yin, Lan Ge, Henan Li, and Kun Wang . Boosting the Visible-Light Photoactivity of BiOCl/BiVO4/N-GQD Ternary Heterojunctions Based on Internal Z-Scheme Charge Transfer of N-GQDs: Simultaneous Band Gap Narrowing and Carrier Lifetime Prolonging. ACS Applied Materials & Interfaces 2017, 9 (44) , 38832-38841. https://doi.org/10.1021/acsami.7b14412
    71. Mitsunori Yabuta, Atsuhiro Takeda, Toshiki Sugimoto, Kazuya Watanabe, Akihiko Kudo, and Yoshiyasu Matsumoto . Particle Size Dependence of Carrier Dynamics and Reactivity of Photocatalyst BiVO4 Probed with Single-Particle Transient Absorption Microscopy. The Journal of Physical Chemistry C 2017, 121 (40) , 22060-22066. https://doi.org/10.1021/acs.jpcc.7b06230
    72. Yohichi Suzuki, Dharmapura H. K. Murthy, Hiroyuki Matsuzaki, Akihiro Furube, Qian Wang, Takashi Hisatomi, Kazunari Domen, and Kazuhiko Seki . Rational Interpretation of Correlated Kinetics of Mobile and Trapped Charge Carriers: Analysis of Ultrafast Carrier Dynamics in BiVO4. The Journal of Physical Chemistry C 2017, 121 (35) , 19044-19052. https://doi.org/10.1021/acs.jpcc.7b05574
    73. Weitao Qiu, Yongchao Huang, Songtao Tang, Hongbing Ji, and Yexiang Tong . Thin-Layer Indium Oxide and Cobalt Oxyhydroxide Cobalt-Modified BiVO4 Photoanode for Solar-Assisted Water Electrolysis. The Journal of Physical Chemistry C 2017, 121 (32) , 17150-17159. https://doi.org/10.1021/acs.jpcc.7b06407
    74. Yue Zhao, Rengui Li, Linchao Mu, and Can Li . Significance of Crystal Morphology Controlling in Semiconductor-Based Photocatalysis: A Case Study on BiVO4 Photocatalyst. Crystal Growth & Design 2017, 17 (6) , 2923-2928. https://doi.org/10.1021/acs.cgd.7b00291
    75. Sushant P. Sahu and Ezra L. Cates . X-ray Radiocatalytic Activity and Mechanisms of Bismuth Complex Oxides. The Journal of Physical Chemistry C 2017, 121 (19) , 10538-10545. https://doi.org/10.1021/acs.jpcc.7b00776
    76. Tilak Das, Xavier Rocquefelte, Robert Laskowski, Luc Lajaunie, Stéphane Jobic, Peter Blaha, and Karlheinz Schwarz . Investigation of the Optical and Excitonic Properties of the Visible Light-Driven Photocatalytic BiVO4 Material. Chemistry of Materials 2017, 29 (8) , 3380-3386. https://doi.org/10.1021/acs.chemmater.6b02261
    77. Siti Nur Farhana M. Nasir, Habib Ullah, Mehdi Ebadi, Asif A. Tahir, Jagdeep S. Sagu, and Mohd Asri Mat Teridi . New Insights into Se/BiVO4 Heterostructure for Photoelectrochemical Water Splitting: A Combined Experimental and DFT Study. The Journal of Physical Chemistry C 2017, 121 (11) , 6218-6228. https://doi.org/10.1021/acs.jpcc.7b01149
    78. Kasper Wenderich and Guido Mul . Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews 2016, 116 (23) , 14587-14619. https://doi.org/10.1021/acs.chemrev.6b00327
    79. Bryan M. Hunter, Harry B. Gray, and Astrid M. Müller . Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews 2016, 116 (22) , 14120-14136. https://doi.org/10.1021/acs.chemrev.6b00398
    80. Hui Ling Tan, Rose Amal, and Yun Hau Ng . Exploring the Different Roles of Particle Size in Photoelectrochemical and Photocatalytic Water Oxidation on BiVO4. ACS Applied Materials & Interfaces 2016, 8 (42) , 28607-28614. https://doi.org/10.1021/acsami.6b09076
    81. Satnam Singh Gujral, Alexandr N. Simonov, Masanobu Higashi, Xi-Ya Fang, Ryu Abe, and Leone Spiccia . Highly Dispersed Cobalt Oxide on TaON as Efficient Photoanodes for Long-Term Solar Water Splitting. ACS Catalysis 2016, 6 (5) , 3404-3417. https://doi.org/10.1021/acscatal.6b00629
    82. Hui Ling Tan, Xiaoming Wen, Rose Amal, and Yun Hau Ng . BiVO4 {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity. The Journal of Physical Chemistry Letters 2016, 7 (7) , 1400-1405. https://doi.org/10.1021/acs.jpclett.6b00428
    83. Jian Shu, Zhenli Qiu, Qian Zhou, Youxiu Lin, Minghua Lu, and Dianping Tang . Enzymatic Oxydate-Triggered Self-Illuminated Photoelectrochemical Sensing Platform for Portable Immunoassay Using Digital Multimeter. Analytical Chemistry 2016, 88 (5) , 2958-2966. https://doi.org/10.1021/acs.analchem.6b00262
    84. Brian Pattengale, John Ludwig, and Jier Huang . Atomic Insight into the W-Doping Effect on Carrier Dynamics and Photoelectrochemical Properties of BiVO4 Photoanodes. The Journal of Physical Chemistry C 2016, 120 (3) , 1421-1427. https://doi.org/10.1021/acs.jpcc.5b11451
    85. Huabing Liu, Huilin Hou, Fengmei Gao, Xiaohong Yao, and Weiyou Yang . Tailored Fabrication of Thoroughly Mesoporous BiVO4 Nanofibers and Their Visible-Light Photocatalytic Activities. ACS Applied Materials & Interfaces 2016, 8 (3) , 1929-1936. https://doi.org/10.1021/acsami.5b10086
    86. Hongwei Huang, Ying He, Xin Du, Paul K. Chu, and Yihe Zhang . A General and Facile Approach to Heterostructured Core/Shell BiVO4/BiOI p–n Junction: Room-Temperature in Situ Assembly and Highly Boosted Visible-Light Photocatalysis. ACS Sustainable Chemistry & Engineering 2015, 3 (12) , 3262-3273. https://doi.org/10.1021/acssuschemeng.5b01038
    87. Xiaoxia Chang, Tuo Wang, Peng Zhang, Jijie Zhang, Ang Li, and Jinlong Gong . Enhanced Surface Reaction Kinetics and Charge Separation of p–n Heterojunction Co3O4/BiVO4 Photoanodes. Journal of the American Chemical Society 2015, 137 (26) , 8356-8359. https://doi.org/10.1021/jacs.5b04186
    88. Tamar Saison, Nicolas Chemin, Corinne Chanéac, Olivier Durupthy, Laurence Mariey, Françoise Maugé, Vlasta Brezová, and Jean-Pierre Jolivet . New Insights Into BiVO4 Properties as Visible Light Photocatalyst. The Journal of Physical Chemistry C 2015, 119 (23) , 12967-12977. https://doi.org/10.1021/acs.jpcc.5b01468
    89. Marta D. Rossell, Piyush Agrawal, Andreas Borgschulte, Cécile Hébert, Daniele Passerone, and Rolf Erni . Direct Evidence of Surface Reduction in Monoclinic BiVO4. Chemistry of Materials 2015, 27 (10) , 3593-3600. https://doi.org/10.1021/cm504248d
    90. Jing Cheng, Jing Feng, and Wei Pan . Enhanced Photocatalytic Activity in Electrospun Bismuth Vanadate Nanofibers with Phase Junction. ACS Applied Materials & Interfaces 2015, 7 (18) , 9638-9644. https://doi.org/10.1021/acsami.5b01305
    91. Spencer H. Porter, Zhenguo Huang, Shixue Dou, Samantha Brown-Xu, A.T.M. Golam Sarwar, Roberto C. Myers, and Patrick M. Woodward . Electronic Structure and Photocatalytic Water Oxidation Activity of RTiNO2 (R = Ce, Pr, and Nd) Perovskite Nitride Oxides. Chemistry of Materials 2015, 27 (7) , 2414-2420. https://doi.org/10.1021/cm5044599
    92. Moreno de Respinis, Khurram S. Joya, Huub J. M. De Groot, Francis D’Souza, Wilson A. Smith, Roel van de Krol, and Bernard Dam . Solar Water Splitting Combining a BiVO4 Light Absorber with a Ru-Based Molecular Cocatalyst. The Journal of Physical Chemistry C 2015, 119 (13) , 7275-7281. https://doi.org/10.1021/acs.jpcc.5b00287
    93. Hyun Yoon, Mukund G. Mali, Jae Young Choi, Min-woo Kim, Sung Kyu Choi, Hyunwoong Park, Salem S. Al-Deyab, Mark T. Swihart, Alexander L. Yarin, and Sam S. Yoon . Nanotextured Pillars of Electrosprayed Bismuth Vanadate for Efficient Photoelectrochemical Water Splitting. Langmuir 2015, 31 (12) , 3727-3737. https://doi.org/10.1021/acs.langmuir.5b00486
    94. Wei Jiang, Xiaoyan Wang, Zhaomei Wu, Xiaoning Yue, Shaojun Yuan, Houfang Lu, and Bin Liang . Silver Oxide as Superb and Stable Photocatalyst under Visible and Near-Infrared Light Irradiation and Its Photocatalytic Mechanism. Industrial & Engineering Chemistry Research 2015, 54 (3) , 832-841. https://doi.org/10.1021/ie503241k
    95. Krishnan Rajeshwar, Abegayl Thomas, and Csaba Janáky . Photocatalytic Activity of Inorganic Semiconductor Surfaces: Myths, Hype, and Reality. The Journal of Physical Chemistry Letters 2015, 6 (1) , 139-147. https://doi.org/10.1021/jz502586p
    96. Gollapally Naresh and Tapas Kumar Mandal . Excellent Sun-Light-Driven Photocatalytic Activity by Aurivillius Layered Perovskites, Bi5–xLaxTi3FeO15 (x = 1, 2). ACS Applied Materials & Interfaces 2014, 6 (23) , 21000-21010. https://doi.org/10.1021/am505767c
    97. Alexander J. E. Rettie, Shirin Mozaffari, Martin D. McDaniel, Kristen N. Pearson, John G. Ekerdt, John T. Markert, and C. Buddie Mullins . Pulsed Laser Deposition of Epitaxial and Polycrystalline Bismuth Vanadate Thin Films. The Journal of Physical Chemistry C 2014, 118 (46) , 26543-26550. https://doi.org/10.1021/jp5082824
    98. Xuedong Fu, Mingzheng Xie, Peng Luan, and Liqiang Jing . Effective Visible-Excited Charge Separation in Silicate-Bridged ZnO/BiVO4 Nanocomposite and Its Contribution to Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces 2014, 6 (21) , 18550-18557. https://doi.org/10.1021/am505651d
    99. Ion Bulimestru, Sergiu Shova, Nelea Popa, Pascal Roussel, Frederic Capet, Rose-Noelle Vannier, Nora Djelal, Laurence Burylo, Jean-Pierre Wignacourt, Aurelian Gulea, and Kenton H. Whitmire . Aminopolycarboxylate Bismuth(III)-Based Heterometallic Compounds as Single-Source Molecular Precursors for Bi4V2O11 and Bi2CuO4 Mixed Oxides. Chemistry of Materials 2014, 26 (21) , 6092-6103. https://doi.org/10.1021/cm502009y
    100. J. P. Allen, N. M. Galea, and G. W. Watson , R. G. Palgrave , J. M. Kahk and D. J. Payne , M. D. M. Robinson, G. Field, A. Regoutz, and R. G. Egdell . Valence States in CeVO4 and Ce0.5Bi0.5VO4 Probed by Density Functional Theory Calculations and X-ray Photoemission Spectroscopy. The Journal of Physical Chemistry C 2014, 118 (44) , 25330-25339. https://doi.org/10.1021/jp508044d
    Load more citations

    Chemistry of Materials

    Cite this: Chem. Mater. 2001, 13, 12, 4624–4628
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm0103390
    Published November 30, 2001
    Copyright © 2001 American Chemical Society

    Article Views

    13k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.