ACS Publications. Most Trusted. Most Cited. Most Read
The PrAlO3−Pr2O3 Eutectic, its Microstructure, Instability, and Luminescent Properties
My Activity

    Article

    The PrAlO3−Pr2O3 Eutectic, its Microstructure, Instability, and Luminescent Properties
    Click to copy article linkArticle link copied!

    View Author Information
    Institute of Electronic Materials Technology, ul. Wolczynska 133, 01-919 Warsaw, Poland, Materials Science Department, Warsaw University of Technology, ul. Wołoska 141, 02-507 Warsaw, Poland, and Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
    Other Access Options

    Chemistry of Materials

    Cite this: Chem. Mater. 2007, 19, 9, 2195–2202
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm063000s
    Published April 5, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The praseodymium-aluminum perovskite−praseodymium oxide, PrAlO3−Pr2O3, eutectic has been studied. The growth of the eutectic by the micro-pulling down method is presented. The PrAlO3−Pr2O3 is not air-stable. The cause of the eutectic instability is the instability of the Pr2O3 phase. When exposed to air, the Pr2O3 phase changes into a new compound having a hexagonal unit cell with the lattice parameters a = b = 6.455(1) Å, c = 11.322(4) Å. The PrAlO3−Pr2O3 eutectic grows with a regular complex microstructure. The luminescence spectra are presented for both the eutectic and the new phase generated by exposing the eutectic to air.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     Corresponding author. E-mail:  [email protected]. Tel:  48 22 8349949.

     Institute of Electronic Materials Technology.

     Materials Science Department, Warsaw University of Technology.

    §

     Institute of Microelectronics and Optoelectronics, Warsaw University of Technology.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 17 publications.

    1. Dorota A. Pawlak, Katarzyna Kolodziejak, Krzysztof Rozniatowski, Ryszard Diduszko, Marcin Kaczkan, Michal Malinowski, Miroslaw Piersa, Jaroslaw Kisielewski and Tadeusz Lukasiewicz. PrAlO3−PrAl11O18 Eutectic: Its Microstructure and Spectroscopic Properties. Crystal Growth & Design 2008, 8 (4) , 1243-1249. https://doi.org/10.1021/cg0609522
    2. Y.Q. Wang, C.X. Shan, L. Wang, Z. Chen. A new complex-regular eutectic in the Fe7(CoNiMn)93-B high entropy alloys. Journal of Materials Research and Technology 2024, 30 , 4521-4526. https://doi.org/10.1016/j.jmrt.2024.04.173
    3. Emilija Petronijevic, Monika Tomczyk, Alessandro Belardini, Paweł Osewski, Piotr Piotrowski, Marco Centini, Grigore Leahu, Roberto Li Voti, Dorota Anna Pawlak, Concita Sibilia, Maria Cristina Larciprete. Surprising Eutectics: Enhanced Properties of ZnO‐ZnWO 4 from Visible to MIR. Advanced Materials 2023, 35 (34) https://doi.org/10.1002/adma.202206005
    4. Jaroslaw Sar, Katarzyna Kołodziejak, Krzysztof Orliński, Michal Gajewski, Marian Teodorczyk, Dorota Anna Pawlak. Thin Layers of SrTiO3-TiO2 with Eutectic Composition for Photoelectrochemical Water Splitting. Coatings 2022, 12 (12) , 1876. https://doi.org/10.3390/coatings12121876
    5. Hafiz Muhammad Zeeshan, Sandhya Sharma, Mohammad Panahi, Elena Voloshina, Yuriy Dedkov. Semiconducting eutectic materials for photocatalysis and photoelectrochemistry applications: a perspective. Physical Chemistry Chemical Physics 2022, 24 (42) , 25720-25734. https://doi.org/10.1039/D2CP03836F
    6. Yong Zhang, Keding Li, Jun Liao. Facile synthesis of reduced-graphene-oxide/rare-earth-metal-oxide aerogels as a highly efficient adsorbent for Rhodamine-B. Applied Surface Science 2020, 504 , 144377. https://doi.org/10.1016/j.apsusc.2019.144377
    7. Chien-Chih Lai, Chia-Yao Lo, Jian-Zhi Huang, Chien-Chou Fan Chiang, Duc Huy Nguyen, Yu-Peng Chen, Chun-Da Liao. Architecting a nonlinear hybrid crystal–glass metamaterial fiber for all-optical photonic integration. Journal of Materials Chemistry C 2018, 6 (7) , 1659-1669. https://doi.org/10.1039/C7TC05112C
    8. László Rátkai, Gyula I. Tóth, László Környei, Tamás Pusztai, László Gránásy. Phase-field modeling of eutectic structures on the nanoscale: the effect of anisotropy. Journal of Materials Science 2017, 52 (10) , 5544-5558. https://doi.org/10.1007/s10853-017-0853-8
    9. Yuntao Wu, Eric D. Lukosi, Mariya Zhuravleva, Adam C. Lindsey, Charles L. Melcher. A novel LiCl–BaCl2:Eu2+ eutectic scintillator for thermal neutron detection. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2015, 797 , 319-323. https://doi.org/10.1016/j.nima.2015.06.064
    10. Xun Feng, Lang Liu, Li-Li Zhou, Hong-Liang Song, Zhi-Qiang Shi, Xu-Hong Wu. An Oxalate Bridged Praseodymium-Organic Framework Containing 2- (Pyridin-4-yl)-1H-4,5-Imidazole- Dicarboxylate: Crystal Structure, Luminescence, and Magnetic Property. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2013, 43 (10) , 1545-1551. https://doi.org/10.1080/15533174.2012.762794
    11. Vijay Singh, Vineet Kumar Rai, Katharina Al-Shamery, Markus Haase, Sang Hwan Kim. NIR to visible frequency upconversion in Er3+ and Yb3+ co-doped BaZrO3 phosphor. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2013, 108 , 141-145. https://doi.org/10.1016/j.saa.2013.01.073
    12. Víctor M. Orera, José I. Peña. Directional Solidification. 2012, 415-457. https://doi.org/10.1002/9781118176665.ch12
    13. V.M. Orera, J.I. Peña, A. Larrea, R.I. Merino, P.B. Oliete. Engineered Self‐Organized Microstructures Using Directional Solidification of Eutectics. 2011, 183-196. https://doi.org/10.1002/9781118144442.ch16
    14. M. Malinowski, M. Kaczkan, S. Turczyński, D. Pawlak. Concentration effects on Pr3+ luminescence in LaAlO3 crystals. Optical Materials 2011, 33 (7) , 1004-1007. https://doi.org/10.1016/j.optmat.2010.11.001
    15. Evelyn M. DeLiso, Karl‐Heinz Schofalvi. Novel Nontraditional High Alumina Ceramic Composite. 2010, 47-55. https://doi.org/10.1002/9780470930953.ch6
    16. Hai Jun Su, Jun Zhang, Yang Fang Deng, Kan Song, Lin Liu, Heng Zhi Fu. Directional Solidification and Characterization of Al2O3/Er3Al5O12 Eutectic In Situ Composite by Laser Zone Remelting. Materials Science Forum 2010, 654-656 , 1347-1350. https://doi.org/10.4028/www.scientific.net/MSF.654-656.1347
    17. M. Kaczkan, D.A. Pawlak, S. Turczyński, M. Malinowski. Emission properties of Tb 3 Sc 2 Al 3 O 12 – TbScO 3 eutectic with self-organized rodlike microstructure. Physics Procedia 2009, 2 (2) , 391-406. https://doi.org/10.1016/j.phpro.2009.07.024

    Chemistry of Materials

    Cite this: Chem. Mater. 2007, 19, 9, 2195–2202
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm063000s
    Published April 5, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    488

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.