ACS Publications. Most Trusted. Most Cited. Most Read
Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations
My Activity
    Article

    Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations
    Click to copy article linkArticle link copied!

    View Author Information
    Massachusetts Institute of Technology, Department of Materials Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2011, 23, 15, 3495–3508
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm200949v
    Published July 13, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Phosphate materials are being extensively studied as lithium-ion battery electrodes. In this work, we present a high-throughput ab initio analysis of phosphates as cathode materials. Capacity, voltage, specific energy, energy density, and thermal stability are evaluated computationally on thousands of compounds. The limits in terms of gravimetric and volumetric capacity inherent to the phosphate chemistry are determined. Voltage ranges for all redox couples in phosphates are provided, and the structural factors influencing the voltages are analyzed. We reinvestigate whether phosphate materials are inherently safe and find that, for the same oxidation state, oxygen release happens thermodynamically at lower temperature for phosphates than for oxides. These findings are used to recommend specific chemistries within the phosphate class and to show the intrinsic limits of certain materials of current interest (e.g., LiCoPO4 and LiNiPO4).

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Stability results for lithium-containing ICSD phosphates, relative stability of LiCoPO4 phases with different functionals, and details on the ANOVA analysis of the factors determining the voltage. This information is available free of charge via the Internet at http://pubs.acs.org/

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 377 publications.

    1. Savi Chaudhary, Ramaswamy Murugavel. Thermally Labile Organic-Soluble Heterometal Diorganophosphate-Derived Efficient Electrocatalysts for the Oxygen Evolution Reaction. Chemistry of Materials 2024, 36 (13) , 6475-6488. https://doi.org/10.1021/acs.chemmater.4c00536
    2. Steven Kiyabu, Donald J. Siegel. Computational Discovery of Thermochemical Heat Storage Materials Based on Chalcogenide and Complex Anion Salt Hydrates. ACS Applied Engineering Materials 2023, 1 (10) , 2614-2625. https://doi.org/10.1021/acsaenm.3c00392
    3. Sriram Mansingh, Kundan Kumar Das, Newmoon Priyadarshini, Dipti Prava Sahoo, Deeptimayee Prusty, Jyotirmayee Sahu, Upali Aparajita Mohanty, Kulamani Parida. Minireview Elaborating S-Scheme Charge Dynamic Photocatalysts: Journey from Z to S, Mechanism of Charge Flow, Characterization Proof, and H2O2 Evolution. Energy & Fuels 2023, 37 (14) , 9873-9894. https://doi.org/10.1021/acs.energyfuels.3c00717
    4. Stephanie C. C. van der Lubbe, Ziliang Wang, Damien K. J. Lee, Pieremanuele Canepa. Unlocking the Inaccessible Energy Density of Sodium Vanadium Fluorophosphate Electrode Materials by Transition Metal Mixing. Chemistry of Materials 2023, 35 (13) , 5116-5126. https://doi.org/10.1021/acs.chemmater.3c00745
    5. Arava Zohar, Kira E. Wyckoff, Rebecca C. Vincent, Thomas E. Mates, Ram Seshadri. Controlling Operating Voltages in Molybdenum Oxide Anodes through Inductive Effects. Chemistry of Materials 2023, 35 (13) , 5009-5016. https://doi.org/10.1021/acs.chemmater.3c00354
    6. Simon Redor, Louis Godeffroy, Gwenaëlle Rousse, Artem M. Abakumov, Biao Li, Frédéric Kanoufi, Jean-Marie Tarascon. Electrochromic Corundum-like Compound Based on the Reversible (De)insertion of Lithium: Li2Ni2W2O9. Journal of the American Chemical Society 2023, 145 (23) , 12823-12836. https://doi.org/10.1021/jacs.3c03631
    7. Yu Yang, Hong Zhu. Effects of F and Cl Doping in Cubic Li7La3Zr2O12 Solid Electrolyte: A First-Principles Investigation. ACS Applied Energy Materials 2022, 5 (12) , 15086-15092. https://doi.org/10.1021/acsaem.2c02747
    8. Hexin Liu, Xiayan Zhao, Yongjia Xie, Shuting Luo, Zhenyu Wang, Lingyun Zhu, Xing Zhang. Insights into Capacity Fading Mechanism and Coating Modification of High-Nickel Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2022, 14 (50) , 55491-55502. https://doi.org/10.1021/acsami.2c14235
    9. Taehun Kim, Kanghyeon Kim, Seonghyun Lee, Gawon Song, Min Soo Jung, Kyu Tae Lee. Thermal Runaway Behavior of Li6PS5Cl Solid Electrolytes for LiNi0.8Co0.1Mn0.1O2 and LiFePO4 in All-Solid-State Batteries. Chemistry of Materials 2022, 34 (20) , 9159-9171. https://doi.org/10.1021/acs.chemmater.2c02106
    10. Rami Shafei, Dimitrios Maganas, Philipp Jean Strobel, Peter J. Schmidt, Wolfgang Schnick, Frank Neese. Electronic and Optical Properties of Eu2+-Activated Narrow-Band Phosphors for Phosphor-Converted Light-Emitting Diode Applications: Insights from a Theoretical Spectroscopy Perspective. Journal of the American Chemical Society 2022, 144 (18) , 8038-8053. https://doi.org/10.1021/jacs.2c00218
    11. Jielan Li, Wei Hu, Jinlong Yang. High-Throughput Screening of Rattling-Induced Ultralow Lattice Thermal Conductivity in Semiconductors. Journal of the American Chemical Society 2022, 144 (10) , 4448-4456. https://doi.org/10.1021/jacs.1c11887
    12. Jiahong Shen, Vinay I. Hegde, Jiangang He, Yi Xia, Chris Wolverton. High-Throughput Computational Discovery of Ternary Mixed-Anion Oxypnictides. Chemistry of Materials 2021, 33 (24) , 9486-9500. https://doi.org/10.1021/acs.chemmater.1c02294
    13. Tristram Jenkins, Jose A. Alarco, Bruce Cowie, Ian D. R. Mackinnon. Validating the Electronic Structure of Vanadium Phosphate Cathode Materials. ACS Applied Materials & Interfaces 2021, 13 (38) , 45505-45520. https://doi.org/10.1021/acsami.1c12447
    14. Ting Hei Wan, Francesco Ciucci. Ab Initio Study of the Defect Chemistry and Substitutional Strategies for Highly Conductive Li3YX6 (X = F, Cl, Br, and I) Electrolyte for the Application of Solid-State Batteries. ACS Applied Energy Materials 2021, 4 (8) , 7930-7941. https://doi.org/10.1021/acsaem.1c01262
    15. Rebecca C. Vincent, Jimmy-Xuan Shen, Molleigh B. Preefer, Justin Lin, Fabian Seeler, Kerstin Schierle-Arndt, Kristin A. Persson, Ram Seshadri. Prospects for Employing Lithium Copper Phosphates as High-Voltage Li-Ion Cathodes. The Journal of Physical Chemistry C 2021, 125 (24) , 13123-13130. https://doi.org/10.1021/acs.jpcc.1c01406
    16. Krystal Lee, Carrie Siu, Marc F. V. Hidalgo, Jatinkumar Rana, Mateusz Zuba, Youngmin Chung, Fredrick Omenya, Louis F. J. Piper, Hao Liu, Natasha A. Chernova, M. Stanley Whittingham. Structure, Composition, and Electrochemistry of Chromium-Substituted ε-LiVOPO4. ACS Applied Energy Materials 2021, 4 (2) , 1421-1430. https://doi.org/10.1021/acsaem.0c02634
    17. Tristram Jenkins, Jose A. Alarco, Ian D. R. Mackinnon. Synthesis and Characterization of a Novel Hydrated Layered Vanadium(III) Phosphate Phase K3V3(PO4)4·H2O: A Functional Cathode Material for Potassium-Ion Batteries. ACS Omega 2021, 6 (3) , 1917-1929. https://doi.org/10.1021/acsomega.0c04675
    18. Jidon Jang, Geun Ho Gu, Juhwan Noh, Juhwan Kim, Yousung Jung. Structure-Based Synthesizability Prediction of Crystals Using Partially Supervised Learning. Journal of the American Chemical Society 2020, 142 (44) , 18836-18843. https://doi.org/10.1021/jacs.0c07384
    19. Rebecca C. Vincent, Pratap Vishnoi, Molleigh B. Preefer, Jimmy-Xuan Shen, Fabian Seeler, Kristin A. Persson, Ram Seshadri. Li5VF4(SO4)2: A Prototype High-Voltage Li-Ion Cathode. ACS Applied Materials & Interfaces 2020, 12 (43) , 48662-48668. https://doi.org/10.1021/acsami.0c14781
    20. Joseph W. Bennett. Exploring the A2BX3 Family for New Functional Materials Using Crystallographic Database Mining and First-Principles Calculations. The Journal of Physical Chemistry C 2020, 124 (36) , 19413-19425. https://doi.org/10.1021/acs.jpcc.0c03093
    21. Megha Acharya, Stephanie Mack, Abel Fernandez, Jieun Kim, Huaiyu Wang, Kazutaka Eriguchi, Derek Meyers, Venkatraman Gopalan, Jeffrey Neaton, Lane W. Martin. Searching for New Ferroelectric Materials Using High-Throughput Databases: An Experimental Perspective on BiAlO3 and BiInO3. Chemistry of Materials 2020, 32 (17) , 7274-7283. https://doi.org/10.1021/acs.chemmater.0c01770
    22. Krishna Chaitanya Pitike, Santosh KC, Markus Eisenbach, Craig A. Bridges, Valentino R. Cooper. Predicting the Phase Stability of Multicomponent High-Entropy Compounds. Chemistry of Materials 2020, 32 (17) , 7507-7515. https://doi.org/10.1021/acs.chemmater.0c02702
    23. Xingyu Guo, Zhenbin Wang, Zhi Deng, Bo Wang, Xi Chen, Shyue Ping Ong. Design Principles for Aqueous Na-Ion Battery Cathodes. Chemistry of Materials 2020, 32 (16) , 6875-6885. https://doi.org/10.1021/acs.chemmater.0c01582
    24. Anton Van der Ven, Zhi Deng, Swastika Banerjee, Shyue Ping Ong. Rechargeable Alkali-Ion Battery Materials: Theory and Computation. Chemical Reviews 2020, 120 (14) , 6977-7019. https://doi.org/10.1021/acs.chemrev.9b00601
    25. Yirong Gao, Adelaide M. Nolan, Peng Du, Yifan Wu, Chao Yang, Qianli Chen, Yifei Mo, Shou-Hang Bo. Classical and Emerging Characterization Techniques for Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic Conductors. Chemical Reviews 2020, 120 (13) , 5954-6008. https://doi.org/10.1021/acs.chemrev.9b00747
    26. Tiantian Jia, Zhenzhen Feng, Shuping Guo, Xuemei Zhang, Yongsheng Zhang. Screening Promising Thermoelectric Materials in Binary Chalcogenides through High-Throughput Computations. ACS Applied Materials & Interfaces 2020, 12 (10) , 11852-11864. https://doi.org/10.1021/acsami.9b23297
    27. Hang Xiao, Yong Dan, Bingbing Suo, Xi Chen. Comment on “Accelerated Discovery of New 8-Electron Half-Heusler Compounds as Promising Energy and Topological Quantum Materials”. The Journal of Physical Chemistry C 2020, 124 (3) , 2247-2249. https://doi.org/10.1021/acs.jpcc.9b10295
    28. Daniele Di Lecce, Vincenzo Gancitano, Jusef Hassoun. Investigation of Mn and Fe Substitution Effects on the Characteristics of High-Voltage LiCo1–xMxPO4 (x = 0.1, 0.4) Cathodes Prepared by Sol–gel Route. ACS Sustainable Chemistry & Engineering 2020, 8 (1) , 278-289. https://doi.org/10.1021/acssuschemeng.9b05325
    29. Debasmita Dwibedi, Ritambhara Gond, Prabeer Barpanda. Alluaudite NaCoFe2(PO4)3 as a 2.9 V Cathode for Sodium-Ion Batteries Exhibiting Bifunctional Electrocatalytic Activity. Chemistry of Materials 2019, 31 (18) , 7501-7509. https://doi.org/10.1021/acs.chemmater.9b02220
    30. You Na Ko, Seung Ho Choi, Heejin Kim, Hae Jin Kim. One-Pot Formation of Sb–Carbon Microspheres with Graphene Sheets: Potassium-Ion Storage Properties and Discharge Mechanisms. ACS Applied Materials & Interfaces 2019, 11 (31) , 27973-27981. https://doi.org/10.1021/acsami.9b08929
    31. Youngmin Chung, Ellen Cassidy, Krystal Lee, Carrie Siu, Yiqing Huang, Fredrick Omenya, Jatinkumar Rana, Kamila M. Wiaderek, Natasha A. Chernova, Karena W. Chapman, Louis F. J. Piper, M. Stanley Whittingham. Nonstoichiometry and Defects in Hydrothermally Synthesized ε-LiVOPO4. ACS Applied Energy Materials 2019, 2 (7) , 4792-4800. https://doi.org/10.1021/acsaem.9b00448
    32. Zihe Zhang, Xu Zhang, Xudong Zhao, Sai Yao, An Chen, Zhen Zhou. Computational Screening of Layered Materials for Multivalent Ion Batteries. ACS Omega 2019, 4 (4) , 7822-7828. https://doi.org/10.1021/acsomega.9b00482
    33. Prashanth Sandineni, Hooman Yaghoobnejad Asl, Nikolay Gerasimchuk, Kartik Ghosh, Amitava Choudhury. Soft chemical routes to electrochemically active iron phosphates. Inorganic Chemistry 2019, 58 (7) , 4117-4133. https://doi.org/10.1021/acs.inorgchem.8b03065
    34. Jun Zhou, Lei Shen, Ming Yang, Haixia Cheng, Weilong Kong, Yuan Ping Feng. Discovery of Hidden Classes of Layered Electrides by Extensive High-Throughput Material Screening. Chemistry of Materials 2019, 31 (6) , 1860-1868. https://doi.org/10.1021/acs.chemmater.8b03021
    35. Brenden R. Ortiz, Wanyue Peng, Lídia C. Gomes, Prashun Gorai, Taishan Zhu, David M. Smiadak, G. Jeffrey Snyder, Vladan Stevanović, Elif Ertekin, Alexandra Zevalkink, Eric S. Toberer. Ultralow Thermal Conductivity in Diamond-Like Semiconductors: Selective Scattering of Phonons from Antisite Defects. Chemistry of Materials 2018, 30 (10) , 3395-3409. https://doi.org/10.1021/acs.chemmater.8b00890
    36. Joseph W. Bennett, Diamond Jones, Xu Huang, Robert J. Hamers, Sara E. Mason. Dissolution of Complex Metal Oxides from First-Principles and Thermodynamics: Cation Removal from the (001) Surface of Li(Ni1/3Mn1/3Co1/3)O2. Environmental Science & Technology 2018, 52 (10) , 5792-5802. https://doi.org/10.1021/acs.est.8b00054
    37. Steven Kiyabu, Jeffrey S. Lowe, Alauddin Ahmed, Donald J. Siegel. Computational Screening of Hydration Reactions for Thermal Energy Storage: New Materials and Design Rules. Chemistry of Materials 2018, 30 (6) , 2006-2017. https://doi.org/10.1021/acs.chemmater.7b05230
    38. Kosuke Kawai, Wenwen Zhao, Shin-ichi Nishimura, Atsuo Yamada. High-Voltage Cr4+/Cr3+ Redox Couple in Polyanion Compounds. ACS Applied Energy Materials 2018, 1 (3) , 928-931. https://doi.org/10.1021/acsaem.7b00105
    39. Ziheng Lu and Francesco Ciucci . Metal Borohydrides as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A First-Principles Study. Chemistry of Materials 2017, 29 (21) , 9308-9319. https://doi.org/10.1021/acs.chemmater.7b03284
    40. Ankita Bhutani, Joshua A. Schiller, Julia L. Zuo, James N. Eckstein, Laura H. Greene, Santanu Chaudhuri, and Daniel P. Shoemaker . Combined Computational and in Situ Experimental Search for Phases in an Open Ternary system, Ba–Ru–S. Chemistry of Materials 2017, 29 (14) , 5841-5849. https://doi.org/10.1021/acs.chemmater.7b00809
    41. Minkyung Kim, Seongsu Lee, and Byoungwoo Kang . High Energy Density Polyanion Electrode Material: LiVPO4O1–xFx (x ≈ 0.25) with Tavorite Structure. Chemistry of Materials 2017, 29 (11) , 4690-4699. https://doi.org/10.1021/acs.chemmater.7b00124
    42. Zhuoying Zhu, Iek-Heng Chu, and Shyue Ping Ong . Li3Y(PS4)2 and Li5PS4Cl2: New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations. Chemistry of Materials 2017, 29 (6) , 2474-2484. https://doi.org/10.1021/acs.chemmater.6b04049
    43. Xu Huang, Joseph W. Bennett, Mimi N. Hang, Elizabeth D. Laudadio, Robert J. Hamers, and Sara E. Mason . Ab Initio Atomistic Thermodynamics Study of the (001) Surface of LiCoO2 in a Water Environment and Implications for Reactivity under Ambient Conditions. The Journal of Physical Chemistry C 2017, 121 (9) , 5069-5080. https://doi.org/10.1021/acs.jpcc.6b12163
    44. Tonghu Jiang, Shiva Rudraraju, Anindya Roy, Anton Van der Ven, Krishna Garikipati, and Michael L. Falk . Multiphysics Simulations of Lithiation-Induced Stress in Li1+xTi2O4 Electrode Particles. The Journal of Physical Chemistry C 2016, 120 (49) , 27871-27881. https://doi.org/10.1021/acs.jpcc.6b09775
    45. Yiman Zhang, Kevin C. Kirshenbaum, Amy C. Marschilok, Esther S. Takeuchi, and Kenneth J. Takeuchi . Battery Relevant Electrochemistry of Ag7Fe3(P2O7)4: Contrasting Contributions from the Redox Chemistries of Ag+ and Fe3+. Chemistry of Materials 2016, 28 (21) , 7619-7628. https://doi.org/10.1021/acs.chemmater.6b02343
    46. Hongcai Gao, Yutao Li, Kyusung Park, and John B. Goodenough . Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples. Chemistry of Materials 2016, 28 (18) , 6553-6559. https://doi.org/10.1021/acs.chemmater.6b02096
    47. Hooman Yaghoobnejad Asl and Amitava Choudhury . Combined Theoretical and Experimental Approach to the Discovery of Electrochemically Active Mixed Polyanionic Phosphatonitrates, AFePO4NO3 (A = NH4/Li, K). Chemistry of Materials 2016, 28 (14) , 5029-5036. https://doi.org/10.1021/acs.chemmater.6b01755
    48. Zhenbin Wang, Iek-Heng Chu, Fei Zhou, and Shyue Ping Ong . Electronic Structure Descriptor for the Discovery of Narrow-Band Red-Emitting Phosphors. Chemistry of Materials 2016, 28 (11) , 4024-4031. https://doi.org/10.1021/acs.chemmater.6b01496
    49. Matthew Y. Lu, Fadwa Badway, Joshua R. Kim, and Glenn G. Amatucci . Investigation of Physical and Electrochemical Properties of β-TaxNb1–xPO5 as an Electrode Material for Lithium Batteries. Chemistry of Materials 2016, 28 (9) , 2949-2961. https://doi.org/10.1021/acs.chemmater.5b05009
    50. Bohua Wen, Qi Wang, Yuhchieh Lin, Natasha A. Chernova, Khim Karki, Youngmin Chung, Fredrick Omenya, Shawn Sallis, Louis F. J. Piper, Shyue Ping Ong, and M. S. Whittingham . Molybdenum Substituted Vanadyl Phosphate ε-VOPO4 with Enhanced Two-Electron Transfer Reversibility and Kinetics for Lithium-Ion Batteries. Chemistry of Materials 2016, 28 (9) , 3159-3170. https://doi.org/10.1021/acs.chemmater.6b00891
    51. Bohua Wen, Jue Liu, Natasha A. Chernova, Xiaoya Wang, Yuri Janssen, Fredrick Omenya, Peter G. Khalifah, and M. Stanley Whittingham . Li3Mo4P5O24: A Two-Electron Cathode for Lithium-Ion Batteries with Three-Dimensional Diffusion Pathways. Chemistry of Materials 2016, 28 (7) , 2229-2235. https://doi.org/10.1021/acs.chemmater.6b00177
    52. Yuh-Chieh Lin, Bohua Wen, Kamila M. Wiaderek, Shawn Sallis, Hao Liu, Saul H. Lapidus, Olaf J. Borkiewicz, Nicholas F. Quackenbush, Natasha A. Chernova, Khim Karki, Fredrick Omenya, Peter J. Chupas, Louis F. J. Piper, M. Stanley Whittingham, Karena W. Chapman, and Shyue Ping Ong . Thermodynamics, Kinetics and Structural Evolution of ε-LiVOPO4 over Multiple Lithium Intercalation. Chemistry of Materials 2016, 28 (6) , 1794-1805. https://doi.org/10.1021/acs.chemmater.5b04880
    53. Yanhui Chen, Shaorui Sun, Xiayan Wang, and Qinghua Shi . Study of Lithium Migration Pathways in the Organic Electrode Materials of Li-Battery by Dispersion-Corrected Density Functional Theory. The Journal of Physical Chemistry C 2015, 119 (46) , 25719-25725. https://doi.org/10.1021/acs.jpcc.5b07978
    54. Karl J. Kreder, III, Gaurav Assat, and Arumugam Manthiram . Microwave-Assisted Solvothermal Synthesis of Three Polymorphs of LiCoPO4 and Their Electrochemical Properties. Chemistry of Materials 2015, 27 (16) , 5543-5549. https://doi.org/10.1021/acs.chemmater.5b01670
    55. Tanmay Sarkar, Mridula Dixit Bharadwaj, Umesh V. Waghmare, and Parveen Kumar . Mechanism of Charge Transfer in Olivine-Type LiFeSiO4 and LiFe0.5M0.5SiO4 (M = Mg or Al) Cathode Materials: First-Principles Analysis. The Journal of Physical Chemistry C 2015, 119 (17) , 9125-9133. https://doi.org/10.1021/acs.jpcc.5b01692
    56. Meiling Sun, Gwenaëlle Rousse, Artem M. Abakumov, Matthieu Saubanère, Marie-Liesse Doublet, Juan Rodríguez-Carvajal, Gustaaf Van Tendeloo, and Jean-Marie Tarascon . Li2Cu2O(SO4)2: a Possible Electrode for Sustainable Li-Based Batteries Showing a 4.7 V Redox Activity vs Li+/Li0. Chemistry of Materials 2015, 27 (8) , 3077-3087. https://doi.org/10.1021/acs.chemmater.5b00588
    57. Matthias J. Young, Aaron M. Holder, Steven M. George, and Charles B. Musgrave . Charge Storage in Cation Incorporated α-MnO2. Chemistry of Materials 2015, 27 (4) , 1172-1180. https://doi.org/10.1021/cm503544e
    58. M. Stanley Whittingham . Ultimate Limits to Intercalation Reactions for Lithium Batteries. Chemical Reviews 2014, 114 (23) , 11414-11443. https://doi.org/10.1021/cr5003003
    59. Yanhui Chen, Zeyuan Wu, and Shaorui Sun . First-Principles Study of an Ethoxycarbonyl-Based Organic Electrode Material of Lithium Battery. The Journal of Physical Chemistry C 2014, 118 (38) , 21813-21818. https://doi.org/10.1021/jp5056792
    60. Hyung-Kyu Lim, Hyeyoung Shin, William A. Goddard, III, Yun Jeong Hwang, Byoung Koun Min, and Hyungjun Kim . Embedding Covalency into Metal Catalysts for Efficient Electrochemical Conversion of CO2. Journal of the American Chemical Society 2014, 136 (32) , 11355-11361. https://doi.org/10.1021/ja503782w
    61. Jun-chao Zheng, Ya-dong Han, Bao Zhang, Chao Shen, Lei Ming, Xing Ou, and Jia-feng Zhang . Electrochemical Properties of VPO4/C Nanosheets and Microspheres As Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2014, 6 (9) , 6223-6226. https://doi.org/10.1021/am5016638
    62. Julibeth M. Martinez de la Hoz, Kevin Leung, and Perla B. Balbuena . Reduction Mechanisms of Ethylene Carbonate on Si Anodes of Lithium-Ion Batteries: Effects of Degree of Lithiation and Nature of Exposed Surface. ACS Applied Materials & Interfaces 2013, 5 (24) , 13457-13465. https://doi.org/10.1021/am404365r
    63. Danielle L. Smiley, Linda J. M. Davis, and Gillian R. Goward . An Improved Understanding of Li+ Hopping Pathways and Rates in Li3Fe2(PO4)3 Using Selective Inversion 6Li NMR Spectroscopy. The Journal of Physical Chemistry C 2013, 117 (46) , 24181-24188. https://doi.org/10.1021/jp407510h
    64. Gary M. Koenig, Jr., Jiwei Ma, Baris Key, Justin Fink, Ke-Bin Low, Reza Shahbazian-Yassar, and Ilias Belharouak . Composite of LiFePO4 with Titanium Phosphate Phases as Lithium-Ion Battery Electrode Material. The Journal of Physical Chemistry C 2013, 117 (41) , 21132-21138. https://doi.org/10.1021/jp4074174
    65. Bohua Wen, Natasha A. Chernova, Ruibo Zhang, Qi Wang, Fredrick Omenya, Jin Fang, and M. Stanley Whittingham . Layered Molybdenum (Oxy)Pyrophosphate as Cathode for Lithium-Ion Batteries. Chemistry of Materials 2013, 25 (17) , 3513-3521. https://doi.org/10.1021/cm401946h
    66. Christian Masquelier and Laurence Croguennec . Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chemical Reviews 2013, 113 (8) , 6552-6591. https://doi.org/10.1021/cr3001862
    67. Mao Tamaru, Sai Cheong Chung, Daisuke Shimizu, Shin-ichi Nishimura, and Atsuo Yamada . Pyrophosphate Chemistry toward Safe Rechargeable Batteries. Chemistry of Materials 2013, 25 (12) , 2538-2543. https://doi.org/10.1021/cm4010739
    68. Ying Shirley Meng and M. Elena Arroyo-de Dompablo . Recent Advances in First Principles Computational Research of Cathode Materials for Lithium-Ion Batteries. Accounts of Chemical Research 2013, 46 (5) , 1171-1180. https://doi.org/10.1021/ar2002396
    69. G. Pilania, C. C. Wang, K. Wu, N. Sukumar, C. Breneman, G. Sotzing, and R. Ramprasad . New Group IV Chemical Motifs for Improved Dielectric Permittivity of Polyethylene. Journal of Chemical Information and Modeling 2013, 53 (4) , 879-886. https://doi.org/10.1021/ci400033h
    70. Glen Ferguson Larry A. Curtiss . Atomic-Level Modeling of Organic Electrolytes in Lithium-Ion Batteries. 2013, 217-233. https://doi.org/10.1021/bk-2013-1133.ch012
    71. Sergio Brutti Stefania Panero . Recent Advances in the Development of LiCoPO4 as High Voltage Cathode Material for Li-Ion Batteries. 2013, 67-99. https://doi.org/10.1021/bk-2013-1140.ch004
    72. Sanghun Lee and Sung Soo Park . Atomistic Simulation Study of Monoclinic Li3V2(PO4)3 as a Cathode Material for Lithium Ion Battery: Structure, Defect Chemistry, Lithium Ion Transport Pathway, and Dynamics. The Journal of Physical Chemistry C 2012, 116 (48) , 25190-25197. https://doi.org/10.1021/jp306105g
    73. Sanghun Lee and Sung Soo Park . Structure, Defect Chemistry, and Lithium Transport Pathway of Lithium Transition Metal Pyrophosphates (Li2MP2O7, M: Mn, Fe, and Co): Atomistic Simulation Study. Chemistry of Materials 2012, 24 (18) , 3550-3557. https://doi.org/10.1021/cm301921d
    74. Mathieu Salanne, Dario Marrocchelli, and Graeme W. Watson . Cooperative Mechanism for the Diffusion of Li+ Ions in LiMgSO4F. The Journal of Physical Chemistry C 2012, 116 (35) , 18618-18625. https://doi.org/10.1021/jp304767d
    75. Hailong Chen, Geoffroy Hautier, Anubhav Jain, Charles Moore, Byoungwoo Kang, Robert Doe, Lijun Wu, Yimei Zhu, Yuanzhi Tang, and Gerbrand Ceder . Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally. Chemistry of Materials 2012, 24 (11) , 2009-2016. https://doi.org/10.1021/cm203243x
    76. Carlos Díaz, María Luisa Valenzuela, Vladimir Lavayen, and Colm O’Dwyer . Layered Graphitic Carbon Host Formation during Liquid-free Solid State Growth of Metal Pyrophosphates. Inorganic Chemistry 2012, 51 (11) , 6228-6236. https://doi.org/10.1021/ic300767h
    77. Tim Mueller, Geoffroy Hautier, Anubhav Jain, and Gerbrand Ceder . Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing. Chemistry of Materials 2011, 23 (17) , 3854-3862. https://doi.org/10.1021/cm200753g
    78. Dongxin Gao, Zhao Shen, Kai Chen, Xiao Zhou, Hong Liu, Jingya Wang, Yangxin Li, Zhixiao Liu, Huiqiu Deng, William Yi Wang, Xiaoqin Zeng. Review of progress in calculation and simulation of high-temperature oxidation. Progress in Materials Science 2025, 147 , 101348. https://doi.org/10.1016/j.pmatsci.2024.101348
    79. Takashi Takeda, Yukinori Koyama, Hidekazu Ikeno, Satoru Matsuishi, Naoto Hirosaki. Exploring new useful phosphors by combining experiments with machine learning. Science and Technology of Advanced Materials 2024, 25 (1) https://doi.org/10.1080/14686996.2024.2421761
    80. Jonas Grill, Simon K. Steensen, Diana Lucia Quintero Castro, Ivano E. Castelli, Jelena Popovic-Neuber. Solid-state inorganic electrolytes for next generation potassium batteries. Communications Materials 2024, 5 (1) https://doi.org/10.1038/s43246-024-00568-3
    81. Simuck F. Yuk, Irmak Sargin, Noah Meyer, Jaron T. Krogel, Scott P. Beckman, Valentino R. Cooper. Putting error bars on density functional theory. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-69194-w
    82. Zirui Zhao, Xiaoke Wang, Si Wu, Pengfei Zhou, Qian Zhao, Guanping Xu, Kaitong Sun, Hai-Feng Li. Deep learning-driven evaluation and prediction of ion-doped NASICON materials for enhanced solid-state battery performance. AAPPS Bulletin 2024, 34 (1) https://doi.org/10.1007/s43673-024-00131-9
    83. Viswesh Prakash, Sagnik Acharya, Henu Sharma, Anil D. Pathak, Kisor K. Sahu. Machine Learning Approaches for Designing Electrode Materials for Lithium‐Ion Batteries. 2024, 75-110. https://doi.org/10.1002/9783527838851.ch3
    84. Yu Xia, Xu Han, Yue Ji, Simeng Zhang, Saiqi Wei, Yue Gong, Junyi Yue, Yueyue Wang, Xiaona Li, Zhiqiang Fang, Changtai Zhao, Jianwen Liang. Solid-electrolyte interphases for all-solid-state batteries. ChemPhysMater 2024, 4 https://doi.org/10.1016/j.chphma.2024.09.006
    85. Dongfang Guo, Siyu Chu, Bin Zhang, Zijiong Li. The Development and Prospect of Stable Polyanion Compound Cathodes in LIBs and Promising Complementers. Small Methods 2024, 7 https://doi.org/10.1002/smtd.202400587
    86. Sam H. Finkelstein, Marco Ricci, Tom Bötticher, Klaus Schmidt-Rohr. How lithium-ion batteries work conceptually: thermodynamics of Li bonding in idealized electrodes. Physical Chemistry Chemical Physics 2024, 26 (36) , 24157-24171. https://doi.org/10.1039/D4CP00818A
    87. Dohyeong Kwon, Duho Kim. Machine learning interatomic potentials in engineering perspective for developing cathode materials. Journal of Materials Chemistry A 2024, 12 (35) , 23837-23847. https://doi.org/10.1039/D4TA03452J
    88. Jin-Tao Ru, Chen-Ho Tung, Li-Zhu Wu. S-scheme quantum dots heterojunction photocatalysts: Assembly types, mechanism insights, and design strategies. Nano Research 2024, 115 https://doi.org/10.1007/s12274-024-6904-2
    89. Huilin Li, Shao-Chu Huang, Shu-Yu Chen, Jianyuan Wu, Han-Yi Chen, Cho-Jen Tsai. Effect of Fe and Zn co-doping on LiCoPO4 cathode materials for High-Voltage Lithium-Ion batteries. Journal of Colloid and Interface Science 2024, 669 , 117-125. https://doi.org/10.1016/j.jcis.2024.04.173
    90. Aifang Liu, Suwan Lu, Xiaodong Wu. Enhancing Voltage Output in Polyanion‐Type Cathode Materials for Sodium Ion Batteries. Batteries & Supercaps 2024, 28 https://doi.org/10.1002/batt.202400290
    91. Yihang Li, Xinying Zhang, Tao Li, Yingying Chen, Yi Liu, Lingyan Feng. Accelerating materials discovery for electrocatalytic water oxidation via center-environment deep learning in spinel oxides. Journal of Materials Chemistry A 2024, 12 (30) , 19362-19377. https://doi.org/10.1039/D4TA02771J
    92. Ningxia Li, Qi Luo, Meiyan Cui, zhiying Zhao, Zhangzhen He. Synthesis, structure and characterization of two new silver-iron based phosphates AgFe2(PO4)2F(H2O)2 and Ag3Fe2(PO4)(HPO4)3. Journal of Solid State Chemistry 2024, 9-10 , 124868. https://doi.org/10.1016/j.jssc.2024.124868
    93. Gerd Liebig, Stefan Geißendörfer, Frank Schuldt, Karsten von Maydell. Analysis of a stand alone battery-converter device from a simulative systems engineering perspective. Energy Reports 2024, 11 , 4085-4101. https://doi.org/10.1016/j.egyr.2024.03.053
    94. Ijaz Ul Mohsin, Andreas Hofmann, Carlos Ziebert. Exploring the reactivity of Na3V2(PO4)3/C and hard carbon electrodes in sodium-ion batteries at various charge states. Electrochimica Acta 2024, 487 , 144197. https://doi.org/10.1016/j.electacta.2024.144197
    95. Jiadong Chen, Samuel R. Cross, Lincoln J. Miara, Jeong-Ju Cho, Yan Wang, Wenhao Sun. Navigating phase diagram complexity to guide robotic inorganic materials synthesis. Nature Synthesis 2024, 3 (5) , 606-614. https://doi.org/10.1038/s44160-024-00502-y
    96. Xingyu Guo, Zhenbin Wang, Ji-Hui Yang, Xin-Gao Gong. Machine-learning assisted high-throughput discovery of solid-state electrolytes for Li-ion batteries. Journal of Materials Chemistry A 2024, 12 (17) , 10124-10136. https://doi.org/10.1039/D4TA00721B
    97. Tanmoy Chakraborty, Bartomeu Monserrat, Alexandru Tănase, Richard I. Walton, Bora Karasulu. Computational discovery of superior vanadium-niobate-based cathode materials for next-generation all-solid-state lithium-ion battery applications. Journal of Materials Chemistry A 2024, 12 (17) , 10059-10071. https://doi.org/10.1039/D3TA08096J
    98. Tanmoy Paul, Abhik Banerjee, G P Das, Biplab Sanyal. Optimizing solid electrolytes with 3d transition metal doped Li 3 YCl 6 for Li-ion batteries. Journal of Physics D: Applied Physics 2024, 57 (14) , 145503. https://doi.org/10.1088/1361-6463/ad1b0a
    99. Sutapa Bhattacharya, Amitava Choudhury. Gamma polymorph of vanadium oxy-selenite and its solid-state Li-ion electrochemistry. Journal of Solid State Chemistry 2024, 332 , 124575. https://doi.org/10.1016/j.jssc.2024.124575
    100. Hanjiao Huang, Xiaowei Wu, Yanjun Gao, Zongyou Li, Wei Wang, Wenshuai Dong, Qingyi Song, Songjie Gan, Jianguo Zhang, Qiyao Yu. Polyanionic Cathode Materials: A Comparison Between Na‐Ion and K‐Ion Batteries. Advanced Energy Materials 2024, 14 (14) https://doi.org/10.1002/aenm.202304251
    Load more citations

    Chemistry of Materials

    Cite this: Chem. Mater. 2011, 23, 15, 3495–3508
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm200949v
    Published July 13, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    8990

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.