Calculations of Li-Ion Diffusion in Olivine PhosphatesClick to copy article linkArticle link copied!
Abstract

Kinetic pathways of Li-ion diffusion in olivine phosphates are calculated from density functional theory (DFT). Previously reported theoretical diffusion rates for Li ions and vacancies in defect-free crystalline FePO4 and LiFePO4 are six orders of magnitude faster than experimentally measured values. This discrepancy can be resolved by considering the different components of Li kinetics, including diffusion in the bulk, on the surface, in the presence of defects, and in varying local environments. Using DFT+U, we quantify each of these effects and determine that, while bulk diffusion is affected by strain and Li concentration, these are not significant enough to explain the slow diffusion observed in experiment. However, surface diffusion is observed to have have high barriers, which could contribute to slow kinetics in nanostructured cathodes. Anti-site defects also provide a possible explanation for slow diffusion, but only for vacancy diffusion in LiFePO4, which has a barrier of 0.71 eV, compared to 0.29 eV in defect-free channels. In FePO4, a concerted Li-ion diffusion mechanism around the anti-site defect is found to have a low barrier of 0.35 eV, allowing for facile cross-channel diffusion at room temperature. The difference between Li-ion and vacancy diffusion is understood in terms of a favorable coordination between Li ions and localized electrons on Fe centers at the transition states for Li-ion hopping in FePO4. Greater distances between vacancies and holes at the transition states for vacancy diffusion lead to higher diffusion barriers.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 266 publications.
- Michelle D. Qian, Eshaan S. Patheria, Nicholas V. Dulock, Colin T. Morrell, Kimberly A. See. Alkali-independent Anion Redox in LiNaFeS2. Chemistry of Materials 2024, 36
(16)
, 7953-7966. https://doi.org/10.1021/acs.chemmater.4c01396
- Jiyoon Kim, Dogancan Sari, Qian Chen, Ann Rutt, Gerbrand Ceder, Kristin A. Persson. First-Principles and Experimental Investigation of ABO4 Zircons as Calcium Intercalation Cathodes. Chemistry of Materials 2024, 36
(9)
, 4444-4455. https://doi.org/10.1021/acs.chemmater.4c00062
- Hui Wan, Shu Li, Xiang-Long Zhang, Lichen Wu, Zhixiao Liu, Guangdong Liu, Caitian Gao, Wei-Qing Huang, Huiqiu Deng, Wangyu Hu, Fei Gao. Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode. The Journal of Physical Chemistry Letters 2023, 14
(47)
, 10537-10544. https://doi.org/10.1021/acs.jpclett.3c02437
- Ann Rutt, Dogancan Sari, Qian Chen, Jiyoon Kim, Gerbrand Ceder, Kristin A. Persson. Novel Structural Motif To Promote Mg-Ion Mobility: Investigating ABO4 Zircons as Magnesium Intercalation Cathodes. ACS Applied Materials & Interfaces 2023, 15
(29)
, 34983-34991. https://doi.org/10.1021/acsami.3c05964
- Menghang Zhang, Hui Pan, Yigang Wang, Jingui Yang, Hao Dong, Ping He, Haoshen Zhou. Research on Li+/Na+ Selectivity of NASICON-Type Solid-State Ion Conductors by First-Principles Calculations. Energy & Fuels 2023, 37
(14)
, 10663-10672. https://doi.org/10.1021/acs.energyfuels.3c01502
- Baofeng Zhang, Xiaoning Ma, Wenqiang Hou, Wei yuan, Lixia He, Ou Yang, Yuebo Liu, Jie Wang, Youlong Xu. Revealing the Ultrahigh Rate Performance of the La and Ce Co-doping LiFePO4 Composite. ACS Applied Energy Materials 2022, 5
(12)
, 14712-14719. https://doi.org/10.1021/acsaem.2c02035
- Ann Rutt, Jimmy-Xuan Shen, Matthew Horton, Jiyoon Kim, Jerry Lin, Kristin A. Persson. Expanding the Material Search Space for Multivalent Cathodes. ACS Applied Materials & Interfaces 2022, 14
(39)
, 44367-44376. https://doi.org/10.1021/acsami.2c11733
- Said Oukahou, Mohammad Maymoun, Abdelali Elomrani, Khalid Sbiaai, Abdellatif Hasnaoui. Enhancing the Electrochemical Performance of Olivine LiMnPO4 as Cathode Materials for Li-Ion Batteries by Ni–Fe Codoping. ACS Applied Energy Materials 2022, 5
(9)
, 10591-10603. https://doi.org/10.1021/acsaem.2c01319
- Chao-Hung Chang, Kuan-Ting Chen, Yi-Yen Hsieh, Che-Bin Chang, Hsing-Yu Tuan. Crystal Facet and Architecture Engineering of Metal Oxide Nanonetwork Anodes for High-Performance Potassium Ion Batteries and Hybrid Capacitors. ACS Nano 2022, 16
(1)
, 1486-1501. https://doi.org/10.1021/acsnano.1c09863
- JinKiong Ling, Chelladurai Karuppiah, Syam G. Krishnan, M. V. Reddy, Izan Izwan Misnon, Mohd Hasbi Ab Rahim, Chun-Chen Yang, Rajan Jose. Phosphate Polyanion Materials as High-Voltage Lithium-Ion Battery Cathode: A Review. Energy & Fuels 2021, 35
(13)
, 10428-10450. https://doi.org/10.1021/acs.energyfuels.1c01102
- Vasilii Vasilchenko, Sergey Levchenko, Vasili Perebeinos, Andriy Zhugayevych. Small Polarons in Two-Dimensional Pnictogens: A First-Principles Study. The Journal of Physical Chemistry Letters 2021, 12
(19)
, 4674-4680. https://doi.org/10.1021/acs.jpclett.1c00929
- Shunsuke Kobayashi, Akihide Kuwabara, Craig A. J. Fisher, Yuichi Ikuhara. Atomic-Scale Analysis of Biphasic Boundaries in the Lithium-Ion Battery Cathode Material LiFePO4. ACS Applied Energy Materials 2020, 3
(8)
, 8009-8016. https://doi.org/10.1021/acsaem.0c01408
- Peter Benedek, Ola K. Forslund, Elisabetta Nocerino, Nuri Yazdani, Nami Matsubara, Yasmine Sassa, Fanni Jurànyi, Marisa Medarde, Mark Telling, Martin Månsson, Vanessa Wood. Quantifying Diffusion through Interfaces of Lithium-Ion Battery Active Materials. ACS Applied Materials & Interfaces 2020, 12
(14)
, 16243-16249. https://doi.org/10.1021/acsami.9b21470
- Haesun Park, Yanjie Cui, Sanghyeon Kim, J. T. Vaughey, Peter Zapol. Ca Cobaltites as Potential Cathode Materials for Rechargeable Ca-Ion Batteries: Theory and Experiment. The Journal of Physical Chemistry C 2020, 124
(11)
, 5902-5909. https://doi.org/10.1021/acs.jpcc.9b11192
- Mei-ying Zheng, Zong-yao Bai, Yue-Wen He, Shunqing Wu, Yong Yang, Zi-Zhong Zhu. Anionic Redox Processes in Maricite- and Triphylite-NaFePO4 of Sodium-Ion Batteries. ACS Omega 2020, 5
(10)
, 5192-5201. https://doi.org/10.1021/acsomega.9b04213
- Man-Fai Ng, Michael B. Sullivan. First-Principles Characterization of Lithium Cobalt Pyrophosphate as a Cathode Material for Solid-State Li-Ion Batteries. The Journal of Physical Chemistry C 2019, 123
(49)
, 29623-29629. https://doi.org/10.1021/acs.jpcc.9b09946
- Wei Zhang, Xiaoli Sun, Yuxin Tang, Huarong Xia, Yi Zeng, Liang Qiao, Zhiqiang Zhu, Zhisheng Lv, Yanyan Zhang, Xiang Ge, Shibo Xi, Zhiguo Wang, Yonghua Du, Xiaodong Chen. Lowering Charge Transfer Barrier of LiMn2O4 via Nickel Surface Doping To Enhance Li+ Intercalation Kinetics at Subzero Temperatures. Journal of the American Chemical Society 2019, 141
(36)
, 14038-14042. https://doi.org/10.1021/jacs.9b05531
- Wojciech A. Sławiński, Helen Y. Playford, Stephen Hull, Stefan T. Norberg, Sten G. Eriksson, Torbjörn Gustafsson, Kristina Edström, William R. Brant. Neutron Pair Distribution Function Study of FePO4 and LiFePO4. Chemistry of Materials 2019, 31
(14)
, 5024-5034. https://doi.org/10.1021/acs.chemmater.9b00552
- Vasily
D. Sumanov, Dmitry A. Aksyonov, Oleg A. Drozhzhin, Igor Presniakov, Alexey V. Sobolev, Iana Glazkova, Alexander A. Tsirlin, Dmitry Rupasov, Anatoliy Senyshyn, Irina V. Kolesnik, Keith J. Stevenson, Evgeny Antipov, Artem M. Abakumov. “Hydrotriphylites” Li1–xFe1+x(PO4)1–y(OH)4y as Cathode Materials for Li-ion Batteries. Chemistry of Materials 2019, 31
(14)
, 5035-5046. https://doi.org/10.1021/acs.chemmater.9b00627
- Hao Liu, Saeed Kazemiabnavi, Antonin Grenier, Gavin Vaughan, Marco Di Michiel, Bryant J. Polzin, Katsuyo Thornton, Karena W. Chapman, Peter J. Chupas. Quantifying Reaction and Rate Heterogeneity in Battery Electrodes in 3D through Operando X-ray Diffraction Computed Tomography. ACS Applied Materials & Interfaces 2019, 11
(20)
, 18386-18394. https://doi.org/10.1021/acsami.9b02173
- Zhen-Ming Xu, Shou-Hang Bo, Hong Zhu. LiCrS2 and LiMnS2 Cathodes with Extraordinary Mixed Electron–Ion Conductivities and Favorable Interfacial Compatibilities with Sulfide Electrolyte. ACS Applied Materials & Interfaces 2018, 10
(43)
, 36941-36953. https://doi.org/10.1021/acsami.8b12026
- Alexandros Vasileiadis, Brian Carlsen, Niek J. J. de Klerk, Marnix Wagemaker. Ab Initio Study of Sodium Insertion in the λ-Mn2O4 and Dis/Ordered λ-Mn1.5Ni0.5O4 Spinels. Chemistry of Materials 2018, 30
(19)
, 6646-6659. https://doi.org/10.1021/acs.chemmater.8b01634
- Yu-Kun Hou, Gui-Ling Pan, Yan-Yun Sun, Xue-Ping Gao. LiMn0.8Fe0.2PO4/Carbon Nanospheres@Graphene Nanoribbons Prepared by the Biomineralization Process as the Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2018, 10
(19)
, 16500-16510. https://doi.org/10.1021/acsami.8b02736
- Toshiro Yamanaka, Taketoshi Minato, Ken-ichi Okazaki, Takeshi Abe, Koji Nishio, Zempachi Ogumi. Evolution and Migration of Lithium-Deficient Phases during Electrochemical Delithiation of Large Single Crystals of LiFePO4. ACS Applied Energy Materials 2018, 1
(3)
, 1140-1145. https://doi.org/10.1021/acsaem.7b00246
- Renchao Xiao, Jian Xie, Ting Luo, Liting Huang, Yan Zhou, Danmei Yu, Changguo Chen, and Yuping Liu . Phase Transformation and Diffusion Kinetics of V2O5 Electrode in Rechargeable Li and Mg Batteries: A First-Principle Study. The Journal of Physical Chemistry C 2018, 122
(3)
, 1513-1521. https://doi.org/10.1021/acs.jpcc.7b11488
- Penghao Xiao and Graeme Henkelman . Kinetic Monte Carlo Study of Li Intercalation in LiFePO4. ACS Nano 2018, 12
(1)
, 844-851. https://doi.org/10.1021/acsnano.7b08278
- Suwit Suthirakun, Alexander Genest, and Notker Rösch . Modeling Polaron-Coupled Li Cation Diffusion in V2O5 Cathode Material. The Journal of Physical Chemistry C 2018, 122
(1)
, 150-157. https://doi.org/10.1021/acs.jpcc.7b10321
- Aaron Mascaro, Zi Wang, Pierre Hovington, Yoichi Miyahara, Andrea Paolella, Vincent Gariepy, Zimin Feng, Tyler Enright, Connor Aiken, Karim Zaghib, Kirk H. Bevan, and Peter Grutter . Measuring Spatially Resolved Collective Ionic Transport on Lithium Battery Cathodes Using Atomic Force Microscopy. Nano Letters 2017, 17
(7)
, 4489-4496. https://doi.org/10.1021/acs.nanolett.7b01857
- Hao Liu, Min-Ju Choe, Raul A. Enrique, Bernardo Orvañanos, Lina Zhou, Tao Liu, Katsuyo Thornton, and Clare P. Grey . Effects of Antisite Defects on Li Diffusion in LiFePO4 Revealed by Li Isotope Exchange. The Journal of Physical Chemistry C 2017, 121
(22)
, 12025-12036. https://doi.org/10.1021/acs.jpcc.7b02819
- Shunsuke Kobayashi, Craig A. J. Fisher, Takeharu Kato, Yoshio Ukyo, Tsukasa Hirayama, and Yuichi Ikuhara . Atomic-Scale Observations of (010) LiFePO4 Surfaces Before and After Chemical Delithiation. Nano Letters 2016, 16
(9)
, 5409-5414. https://doi.org/10.1021/acs.nanolett.6b01689
- Ruigang Zhang and Chen Ling . Unveil the Chemistry of Olivine FePO4 as Magnesium Battery Cathode. ACS Applied Materials & Interfaces 2016, 8
(28)
, 18018-18026. https://doi.org/10.1021/acsami.6b03297
- Shuping Huang, Yuan Fang, Bo Wang, Benjamin E. Wilson, Nam Tran, Donald G. Truhlar, and Andreas Stein . Conduction and Surface Effects in Cathode Materials: Li8ZrO6 and Doped Li8ZrO6. The Journal of Physical Chemistry C 2016, 120
(18)
, 9637-9649. https://doi.org/10.1021/acs.jpcc.6b02077
- Bohua Wen, Jue Liu, Natasha A. Chernova, Xiaoya Wang, Yuri Janssen, Fredrick Omenya, Peter G. Khalifah, and M. Stanley Whittingham . Li3Mo4P5O24: A Two-Electron Cathode for Lithium-Ion Batteries with Three-Dimensional Diffusion Pathways. Chemistry of Materials 2016, 28
(7)
, 2229-2235. https://doi.org/10.1021/acs.chemmater.6b00177
- Guohua Tao . Nonequilibrium Electron-Coupled Lithium Ion Diffusion in LiFePO4: Nonadiabatic Dynamics with Multistate Trajectory Approach. The Journal of Physical Chemistry C 2016, 120
(13)
, 6938-6952. https://doi.org/10.1021/acs.jpcc.5b12676
- Guang He, Ashfia Huq, Wang Hay Kan, and Arumugam Manthiram . β-NaVOPO4 Obtained by a Low-Temperature Synthesis Process: A New 3.3 V Cathode for Sodium-Ion Batteries. Chemistry of Materials 2016, 28
(5)
, 1503-1512. https://doi.org/10.1021/acs.chemmater.5b04992
- Hua Guo, Xiaohe Song, Zengqing Zhuo, Jiangtao Hu, Tongchao Liu, Yandong Duan, Jiaxin Zheng, Zonghai Chen, Wanli Yang, Khalil Amine, and Feng Pan . Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals. Nano Letters 2016, 16
(1)
, 601-608. https://doi.org/10.1021/acs.nanolett.5b04302
- Jiaxin Zheng, Yuyang Hou, Yandong Duan, Xiaohe Song, Yi Wei, Tongchao Liu, Jiangtao Hu, Hua Guo, Zengqing Zhuo, Lili Liu, Zheng Chang, Xiaowei Wang, Danylo Zherebetskyy, Yanyan Fang, Yuan Lin, Kang Xu, Lin-Wang Wang, Yuping Wu, and Feng Pan . Janus Solid–Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries. Nano Letters 2015, 15
(9)
, 6102-6109. https://doi.org/10.1021/acs.nanolett.5b02379
- Ian L. Matts, Stephen Dacek, Tomasz K. Pietrzak, Rahul Malik, and Gerbrand Ceder . Explaining Performance-Limiting Mechanisms in Fluorophosphate Na-Ion Battery Cathodes through Inactive Transition-Metal Mixing and First-Principles Mobility Calculations. Chemistry of Materials 2015, 27
(17)
, 6008-6015. https://doi.org/10.1021/acs.chemmater.5b02299
- Ziqin Rong, Rahul Malik, Pieremanuele Canepa, Gopalakrishnan Sai Gautam, Miao Liu, Anubhav Jain, Kristin Persson, and Gerbrand Ceder . Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures. Chemistry of Materials 2015, 27
(17)
, 6016-6021. https://doi.org/10.1021/acs.chemmater.5b02342
- Vladimir Timoshevskii, Zimin Feng, Kirk H. Bevan, and Karim Zaghib . Emergence of Metallic Properties at LiFePO4 Surfaces and LiFePO4/Li2S Interfaces: An Ab Initio Study. ACS Applied Materials & Interfaces 2015, 7
(33)
, 18362-18368. https://doi.org/10.1021/acsami.5b04108
- Mudit Dixit, Hamutal Engel, Reuven Eitan, Doron Aurbach, Mikhael D. Levi, Monica Kosa, and Dan Thomas Major . Classical and Quantum Modeling of Li and Na Diffusion in FePO4. The Journal of Physical Chemistry C 2015, 119
(28)
, 15801-15809. https://doi.org/10.1021/acs.jpcc.5b00405
- Tanmay Sarkar, Mridula Dixit Bharadwaj, Umesh V. Waghmare, and Parveen Kumar . Mechanism of Charge Transfer in Olivine-Type LiFeSiO4 and LiFe0.5M0.5SiO4 (M = Mg or Al) Cathode Materials: First-Principles Analysis. The Journal of Physical Chemistry C 2015, 119
(17)
, 9125-9133. https://doi.org/10.1021/acs.jpcc.5b01692
- Kyu-Young Park, Inchul Park, Hyungsub Kim, Hee-dae Lim, Jihyun Hong, Jongsoon Kim, and Kisuk Kang . Anti-Site Reordering in LiFePO4: Defect Annihilation on Charge Carrier Injection. Chemistry of Materials 2014, 26
(18)
, 5345-5351. https://doi.org/10.1021/cm502432q
- Guobo Zeng, Riccarda Caputo, Daniel Carriazo, Li Luo, and Markus Niederberger . Tailoring Two Polymorphs of LiFePO4 by Efficient Microwave-Assisted Synthesis: A Combined Experimental and Theoretical Study. Chemistry of Materials 2013, 25
(17)
, 3399-3407. https://doi.org/10.1021/cm400995g
- Chen Ling and Fuminori Mizuno . Phase Stability of Post-spinel Compound AMn2O4 (A = Li, Na, or Mg) and Its Application as a Rechargeable Battery Cathode. Chemistry of Materials 2013, 25
(15)
, 3062-3071. https://doi.org/10.1021/cm401250c
- Yang Sun, Xia Lu, Ruijuan Xiao, Hong Li, and Xuejie Huang . Kinetically Controlled Lithium-Staging in Delithiated LiFePO4 Driven by the Fe Center Mediated Interlayer Li–Li Interactions. Chemistry of Materials 2012, 24
(24)
, 4693-4703. https://doi.org/10.1021/cm3028324
- Yukinori Koyama, Hajime Arai, Isao Tanaka, Yoshiharu Uchimoto, and Zempachi Ogumi . Defect Chemistry in Layered LiMO2 (M = Co, Ni, Mn, and Li1/3Mn2/3) by First-Principles Calculations. Chemistry of Materials 2012, 24
(20)
, 3886-3894. https://doi.org/10.1021/cm3018314
- Chen Ling and Fuminori Mizuno . Capture Lithium in αMnO2: Insights from First Principles. Chemistry of Materials 2012, 24
(20)
, 3943-3951. https://doi.org/10.1021/cm302347j
- Kyu-Sung Park, Penghao Xiao, So-Yeon Kim, Anthony Dylla, Young-Min Choi, Graeme Henkelman, Keith J. Stevenson, and John B. Goodenough . Enhanced Charge-Transfer Kinetics by Anion Surface Modification of LiFePO4. Chemistry of Materials 2012, 24
(16)
, 3212-3218. https://doi.org/10.1021/cm301569m
- Anthony G. Dylla, Penghao Xiao, Graeme Henkelman, and Keith J. Stevenson . Morphological Dependence of Lithium Insertion in Nanocrystalline TiO2(B) Nanoparticles and Nanosheets. The Journal of Physical Chemistry Letters 2012, 3
(15)
, 2015-2019. https://doi.org/10.1021/jz300766a
- Ilyas Mukushev, Yuliya Tyan, Gulnur Kalimuldina, Aliya Mukanova, Zhanar Jakupova, Sung-Soo Kim, Zhumabay Bakenov, Arailym Nurpeissova. High-performance Na3V2(PO4)3/C cathode for efficient low-temperature lithium-ion batteries. NPG Asia Materials 2025, 17
(1)
https://doi.org/10.1038/s41427-025-00591-x
- Qiushi Cheng, Jiayu Chen, Chenzheng Yue, Kai Yu, Guang Yang, Huiying Mu, Wei Su, Yingjuan Hao, Ning Lin, Fatang Li. Dislocation-engineered MoNb12-xVxO33 for ultra-fast and stable lithium storage at low temperature. Applied Surface Science 2025, 699 , 163184. https://doi.org/10.1016/j.apsusc.2025.163184
- J.E. Antonio, J.M. Cervantes, H. Muñoz, E.P. Arévalo-López, J. Pilo, J. Vargas-Bustamante, E. Benítez-Flores, R. Escamilla, M. Romero. Lithium and sodium effects on the structural, electronic, and electrochemical properties of TiTe2 monolayers for batteries. Surfaces and Interfaces 2025, 69 , 106749. https://doi.org/10.1016/j.surfin.2025.106749
- Mehdi Shanbedi, Hossein Shahali, Andreas A. Polycarpou, Ahmad Amiri. Advances and future prospects of low-temperature electrolytes for lithium-ion batteries. EES Batteries 2025, 1
(3)
, 385-426. https://doi.org/10.1039/D5EB00013K
- Dishu Zeng, Chengyu Zhang, Huimin Chen, Ao Zeng, Jiangtao Xu, Zhanglin Shi, Jianfeng Xia, Peng Chen, Zhaohui Wang, Kunkun Guo. Multifunctional Copolymer Dispersants in High Solid Content Cathode Slurries: From Viscosity Reduction to Interfacial Stabilization and Improved Lithium Transport. Advanced Functional Materials 2025, https://doi.org/10.1002/adfm.202507831
- Huacui Wang, Binghe Liu, Dongjiang Li, Jun Xu. Mechanistic analysis on electrochemo-mechanics behaviors of lithium iron phosphate cathodes. Acta Materialia 2025, 292 , 121024. https://doi.org/10.1016/j.actamat.2025.121024
- Muhammad Faizan, Roheen Saeed, Erum Aamir, Tiong Sieh Kiong, Hua Song. Ion transport mechanism in sodium-ion batteries: Fundamentals, applications, and future trends. Journal of Energy Storage 2025, 122 , 116616. https://doi.org/10.1016/j.est.2025.116616
- Zijian Qiu, Quanyan Man, Yongbiao Mu, Huicun Gu, Zhiyu Zou, Meisheng Han, Lin Zeng. Modification Strategies for Enhancing the Performance of Lithium Manganese Iron Phosphate Cathodes in Lithium‐Ion Batteries. Chemistry–Methods 2025, 5
(6)
https://doi.org/10.1002/cmtd.202400065
- Moohyun Woo, Sang‐Wook Park, Jinhyuk Lee, Dong‐Hwa Seo, George P. Demopoulos. Attaining Full Li‐Ion Storage Capacity in Nearly Defect‐free and Preferential Orientation Grown LiCoPO
4
Via ab initio Solvothermal Crystallization Control. Advanced Energy Materials 2025, 15
(17)
https://doi.org/10.1002/aenm.202404404
- XiaoWei Lv, Jiao Lin, Xuan Sun, QingRong Huang, XiaoDong Zhang, TianYang Yu, ErSha Fan, YuSheng Ye, RenJie Chen, Feng Wu, Li Li. Direct Recycling of Spent LiFePO
4
Cathodes Through Photocatalytic Correction of Anti‐Site Defects. Advanced Materials 2025, 414 https://doi.org/10.1002/adma.202503398
- Shuaipeng Hao, Yuelin Lv, Yi Zhang, Shuaiwei Liu, Zhouliang Tan, Wei Liu, Yuanguang Xia, Wen Yin, Yaqi Liao, Haijin Ji, Yuelin Kong, Yudi Shao, Yunhui Huang, Lixia Yuan. Restoration of Li
+
pathways in the [010] direction during direct regeneration for spent LiFePO
4. Energy & Environmental Science 2025, 18
(8)
, 3750-3760. https://doi.org/10.1039/D5EE00641D
- Shuzhen Li, Jinkun Wang, Yong Liu, Zhibei Liu, Hao Zhang, Li Wang, Xiangming He. New Mechanisms of Phase Transition in Olivine‐Type Li
x
Mn
0.7
Fe
0.3
PO
4
Cathodes: a Finding on Relaxation Behavior and its Implications for Battery Performance. Advanced Functional Materials 2025, 35
(16)
https://doi.org/10.1002/adfm.202420514
- El Hassan El Haloui, Mourad Rkhis, Nora Hariti, Youssef Hairch, Fouad Belhora, Said Laasri, El-Kebir Hlil, Abdelowahed Hajjaji. First-principles study of olivine AFePO4 (A = Li, Na) as a positive electrode for lithium-ion and sodium-ion batteries. Euro-Mediterranean Journal for Environmental Integration 2025, 10
(1)
, 337-346. https://doi.org/10.1007/s41207-024-00639-4
- Ziquan Wang, Zengye Chen, Yongliang Li, Xiangzhong Ren, Xunhui Xiong, Zhouguang Lu, Libo Deng. Photothermal-enhanced ion transport for efficient electrochemical lithium extraction at low temperatures. Nano Energy 2024, 131 , 110249. https://doi.org/10.1016/j.nanoen.2024.110249
- Sajeela Awasthi, Srikanta Moharana, Vaneet Kumar, Nannan Wang, Elham Chmanehpour, Anupam Deep Sharma, Santosh K. Tiwari, Vijay Kumar, Yogendra Kumar Mishra. Progress in doping and crystal deformation for polyanions cathode based lithium-ion batteries. Nano Materials Science 2024, 6
(5)
, 504-535. https://doi.org/10.1016/j.nanoms.2024.01.004
- Lucia Rathinasamy, Balasubramanian Natesan. Electrochemical benefits of conductive polymers as a cathode material in LFP battery technology. Journal of Solid State Electrochemistry 2024, 28
(9)
, 3027-3050. https://doi.org/10.1007/s10008-024-05858-x
- Inmaculada Gimenez-Garcia, Antoni Forner-Cuenca. Elucidating the influence of electrolyte additives on iron electroplating performance. Electrochimica Acta 2024, 498 , 144509. https://doi.org/10.1016/j.electacta.2024.144509
- Ananya Bansal, Pramod Kumar, Sheetal Issar, Vipin Chawla, Ramesh Chandra. Binder free approach for fabrication of lithium cobalt oxide for thin film based lithium-ion µ-batteries. Thin Solid Films 2024, 805 , 140506. https://doi.org/10.1016/j.tsf.2024.140506
- Jingxi Zhang, Yanhao Dong, Chang‐An Wang. Surface‐Like Diffusion of Fast Ions in Framework Energy Materials for Li‐ and Na‐Ion Batteries. Angewandte Chemie 2024, 136
(33)
https://doi.org/10.1002/ange.202408629
- Jingxi Zhang, Yanhao Dong, Chang‐An Wang. Surface‐Like Diffusion of Fast Ions in Framework Energy Materials for Li‐ and Na‐Ion Batteries. Angewandte Chemie International Edition 2024, 63
(33)
https://doi.org/10.1002/anie.202408629
- Jiawei Luo, Jingchao Zhang, Zhaoxin Guo, Zhedong Liu, Chunying Wang, Haoran Jiang, Jinfeng Zhang, Longlong Fan, He Zhu, Yunhua Xu, Rui Liu, Jia Ding, Yanan Chen, Wenbin Hu. Coupling Antisite Defect and Lattice Tensile Stimulates Facile Isotropic Li‐Ion Diffusion. Advanced Materials 2024, 36
(32)
https://doi.org/10.1002/adma.202405956
- Dogancan Sari, Ann Rutt, Jiyoon Kim, Qian Chen, Nathan T. Hahn, Haegyeom Kim, Kristin A. Persson, Gerbrand Ceder. Alkali‐Ion‐Assisted Activation of ε‐VOPO
4
as a Cathode Material for Mg‐Ion Batteries. Advanced Science 2024, 11
(26)
https://doi.org/10.1002/advs.202307838
- J.E. Antonio, J.M. Cervantes, H. Muñoz, E.P. Arévalo-López, M. Romero, E. Carvajal, R. Escamilla. Substitution effects on the structural, mechanical, electronic and electrochemical properties of lithium/sodium strontium stannate perovskite for battery applications. Journal of Physics and Chemistry of Solids 2024, 189 , 111935. https://doi.org/10.1016/j.jpcs.2024.111935
- Kiran Kumar Surthi, Mamatha Thak, Kamal K. Kar. Charge–discharge mechanism, lithium-ion diffusion in Al, Ca, and Cu doped lithium metatitanate based anodes for Li-ion batteries: first principles study. Journal of Materials Chemistry A 2024, 12
(20)
, 12098-12111. https://doi.org/10.1039/D4TA00579A
- Juncheol Hwang, Duho Kim. Unified design flow for facilitating fast Li kinetics in layered oxide cathodes. Energy Storage Materials 2024, 69 , 103412. https://doi.org/10.1016/j.ensm.2024.103412
- Zhenming Xu. Can large lattice volume always facilitate ion diffusion in solids?. Energy Storage Materials 2024, 69 , 103433. https://doi.org/10.1016/j.ensm.2024.103433
- Zepeng Li, Jianhui Zhu, Maowen Xu, Jian Jiang. Achieving long-lasting and high-capacity LiFe
0.5
Mn
0.5
PO
4
cathodes with a synergistic F/In dual doping strategy. New Journal of Chemistry 2024, 48
(15)
, 6857-6863. https://doi.org/10.1039/D4NJ00255E
- Tianyu Zhao, Harshit Mahandra, Rajashekhar Marthi, Xiaobo Ji, Wenqing Zhao, Sujin Chae, Michael Traversy, Weilun Li, Fan Yu, Lin Li, Yeonuk Choi, Ahmad Ghahreman, Zhongwei Zhao, Chao Zhang, Yuxin Kang, Yuntao Lei, Yunfeng Song. An overview on the life cycle of lithium iron phosphate: synthesis, modification, application, and recycling. Chemical Engineering Journal 2024, 485 , 149923. https://doi.org/10.1016/j.cej.2024.149923
- Dung The Nguyen, Jimin Kim, Youngil Lee. Design of interfacial Li-ion transfer channels for practical improvement of a multicomponent high-voltage olivine cathode. Ceramics International 2024, 50
(7)
, 12351-12360. https://doi.org/10.1016/j.ceramint.2024.01.140
- Guixin Wang, Zhechen Wang, Hucheng Shi, Aobing Du, Mingliang Sun, Guanglei Cui. Progress and perspective on rechargeable magnesium-ion batteries. Science China Chemistry 2024, 67
(1)
, 214-246. https://doi.org/10.1007/s11426-022-1454-0
- Shucheng Wang, Fazhan Wang, Zhenxing Chen, Tingbi Li, Chi Yao, Minggang Wang, Hongbo Wang, Hong Wu. First-principles investigation of the electronic and Li-ion diffusion properties of LiFePO
4
by graphene surface modification. Molecular Physics 2023, 121
(23)
https://doi.org/10.1080/00268976.2023.2239380
- Sandip Maiti, Matthew T. Curnan, Kakali Maiti, Seokhyun Choung, Jeong Woo Han. Accelerating Li-based battery design by computationally engineering materials. Chem 2023, 9
(12)
, 3415-3460. https://doi.org/10.1016/j.chempr.2023.09.007
- Youcheng Hu, Xiaoxiao Wang, Peng Li, Junxiang Chen, Shengli Chen. Understanding the sluggish and highly variable transport kinetics of lithium ions in LiFePO4. Science China Chemistry 2023, 66
(11)
, 3297-3306. https://doi.org/10.1007/s11426-023-1662-9
- Jin-young Choi, Hye-min Kim, Yu-sung Kim, In-sik Lee, Byung-chul Cha, Dae-wook Kim. Modification of mixed-nitrogen anions configuration for accelerating lithium ions transport in the LiFePO
4
electrode. RSC Advances 2023, 13
(45)
, 31873-31880. https://doi.org/10.1039/D3RA06242B
- Moohyun Woo, Jinhyuk Lee, George P. Demopoulos. Surface and bulk defect formation during hydrothermal synthesis of LiCoPO
4
crystals and their electrochemical implications. Materials Advances 2023, 4
(20)
, 4823-4834. https://doi.org/10.1039/D3MA00455D
- Martin Z. Bazant. Unified quantum theory of electrochemical kinetics by coupled ion–electron transfer. Faraday Discussions 2023, 246 , 60-124. https://doi.org/10.1039/D3FD00108C
- Xiangping Chen, Lu Yuan, Shuxuan Yan, Xin Ma. Self-activation of Ferro-chemistry based advanced oxidation process towards in-situ recycling of spent LiFePO4 batteries. Chemical Engineering Journal 2023, 471 , 144343. https://doi.org/10.1016/j.cej.2023.144343
- Julián Juan, Luciana Fernández-Werner, Pablo Bechthold, Paula V. Jasen, Ricardo Faccio, Estela A. González. Li intercalation, electronic and thermodynamic properties in H2Ti3O7 bulk: A theoretical study. Computational Materials Science 2023, 228 , 112344. https://doi.org/10.1016/j.commatsci.2023.112344
- Bonho Koo, Jinkyu Chung, Juwon Kim, Dimitrios Fraggedakis, Sungjae Seo, Chihyun Nam, Danwon Lee, Jeongwoo Han, Sugeun Jo, Hongbo Zhao, Neel Nadkarni, Jian Wang, Namdong Kim, Markus Weigand, Martin Z. Bazant, Jongwoo Lim. Dynamic surface phases controlling asymmetry of high-rate lithiation and delithiation in phase-separating electrodes. Energy & Environmental Science 2023, 16
(8)
, 3302-3313. https://doi.org/10.1039/D3EE00341H
- Runtian Zheng, Yuhang Li, Haoxiang Yu, Xikun Zhang, Ding Yang, Lei Yan, Yu Li, Jie Shu, Bao‐Lian Su. Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie 2023, 135
(23)
https://doi.org/10.1002/ange.202301629
- Runtian Zheng, Yuhang Li, Haoxiang Yu, Xikun Zhang, Ding Yang, Lei Yan, Yu Li, Jie Shu, Bao‐Lian Su. Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie International Edition 2023, 62
(23)
https://doi.org/10.1002/anie.202301629
- Yang Liu, Cai Qi, Dandan Cai, Xiao Tang, Ying Li, Wenxian Li, Qinsi Shao, Jiujun Zhang. TaC-modified LiFePO4/C composite as cathode material for high-performance lithium-ion batteries. Ionics 2023, 29
(6)
, 2191-2198. https://doi.org/10.1007/s11581-023-04969-1
- Xinjie Shen, Zijun Qin, Peipei He, Xugang Ren, Yunjiao Li, Feixiang Wu, Yi Cheng, Zhenjiang He. Refined Grain Enhancing Lithium-Ion Diffusion of LiFePO4 via Air Oxidation. Coatings 2023, 13
(6)
, 1038. https://doi.org/10.3390/coatings13061038
- D.A. Aksyonov, A.O. Boev, S.S. Fedotov, A.M. Abakumov. Computational insights into ionic conductivity of transition metal electrode materials for metal-ion batteries - A review. Solid State Ionics 2023, 393 , 116170. https://doi.org/10.1016/j.ssi.2023.116170
- N.H.M. Zaki, S.I. Ahmad, F.N. Sazman, F.W. Badrudin, A.L.A. Abdullah, M.F.M. Taib, O.H. Hassan, M.Z.A. Yahya. The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study. Computational and Theoretical Chemistry 2023, 1221 , 114029. https://doi.org/10.1016/j.comptc.2023.114029
- Wang Zhang, Fu-Ye Du, Yang Dai, Jin-Cheng Zheng. Strain engineering of Li
+
ion migration in olivine phosphate cathode materials LiMPO
4
(M = Mn, Fe, Co) and (LiFePO
4
)
n
(LiMnPO
4
)
m
superlattices. Physical Chemistry Chemical Physics 2023, 25
(8)
, 6142-6152. https://doi.org/10.1039/D2CP05241E
- Guiling Luo, Xiaowei Li, Linlin Chen, Yanhong Chao, Wenshuai Zhu. Electrochemical lithium ion pumps for lithium recovery: A systematic review and influencing factors analysis. Desalination 2023, 548 , 116228. https://doi.org/10.1016/j.desal.2022.116228
- Xin Su, Ying Xu, Yanchao Wu, Huijing Li, Jianzhong Yang, Ying Liao, Renjie Qu, Zhengcheng Zhang. Liquid electrolytes for low-temperature lithium batteries: main limitations, current advances, and future perspectives. Energy Storage Materials 2023, 56 , 642-663. https://doi.org/10.1016/j.ensm.2023.01.044
- Zhong‐Heng Fu, Xiang Chen, Qiang Zhang. Review on the lithium transport mechanism in solid‐state battery materials. WIREs Computational Molecular Science 2023, 13
(1)
https://doi.org/10.1002/wcms.1621
- Alevtina Smirnova, Collin Rodmyre, Misti Acevedo. Battery cathodes for lithium-ion batteries with liquid and solid-state electrolytes. 2023, 171-195. https://doi.org/10.1016/B978-0-323-90635-7.00003-8
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.