ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Calculations of Li-Ion Diffusion in Olivine Phosphates

View Author Information
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States
Cite this: Chem. Mater. 2011, 23, 17, 4032–4037
Publication Date (Web):August 18, 2011
https://doi.org/10.1021/cm201604g
Copyright © 2011 American Chemical Society

    Article Views

    4564

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Kinetic pathways of Li-ion diffusion in olivine phosphates are calculated from density functional theory (DFT). Previously reported theoretical diffusion rates for Li ions and vacancies in defect-free crystalline FePO4 and LiFePO4 are six orders of magnitude faster than experimentally measured values. This discrepancy can be resolved by considering the different components of Li kinetics, including diffusion in the bulk, on the surface, in the presence of defects, and in varying local environments. Using DFT+U, we quantify each of these effects and determine that, while bulk diffusion is affected by strain and Li concentration, these are not significant enough to explain the slow diffusion observed in experiment. However, surface diffusion is observed to have have high barriers, which could contribute to slow kinetics in nanostructured cathodes. Anti-site defects also provide a possible explanation for slow diffusion, but only for vacancy diffusion in LiFePO4, which has a barrier of 0.71 eV, compared to 0.29 eV in defect-free channels. In FePO4, a concerted Li-ion diffusion mechanism around the anti-site defect is found to have a low barrier of 0.35 eV, allowing for facile cross-channel diffusion at room temperature. The difference between Li-ion and vacancy diffusion is understood in terms of a favorable coordination between Li ions and localized electrons on Fe centers at the transition states for Li-ion hopping in FePO4. Greater distances between vacancies and holes at the transition states for vacancy diffusion lead to higher diffusion barriers.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 242 publications.

    1. Hui Wan, Shu Li, Xiang-Long Zhang, Lichen Wu, Zhixiao Liu, Guangdong Liu, Caitian Gao, Wei-Qing Huang, Huiqiu Deng, Wangyu Hu, Fei Gao. Magnesium Mitigation Behavior in P2-Layered Sodium-Ion Battery Cathode. The Journal of Physical Chemistry Letters 2023, 14 (47) , 10537-10544. https://doi.org/10.1021/acs.jpclett.3c02437
    2. Ann Rutt, Dogancan Sari, Qian Chen, Jiyoon Kim, Gerbrand Ceder, Kristin A. Persson. Novel Structural Motif To Promote Mg-Ion Mobility: Investigating ABO4 Zircons as Magnesium Intercalation Cathodes. ACS Applied Materials & Interfaces 2023, 15 (29) , 34983-34991. https://doi.org/10.1021/acsami.3c05964
    3. Menghang Zhang, Hui Pan, Yigang Wang, Jingui Yang, Hao Dong, Ping He, Haoshen Zhou. Research on Li+/Na+ Selectivity of NASICON-Type Solid-State Ion Conductors by First-Principles Calculations. Energy & Fuels 2023, 37 (14) , 10663-10672. https://doi.org/10.1021/acs.energyfuels.3c01502
    4. Baofeng Zhang, Xiaoning Ma, Wenqiang Hou, Wei yuan, Lixia He, Ou Yang, Yuebo Liu, Jie Wang, Youlong Xu. Revealing the Ultrahigh Rate Performance of the La and Ce Co-doping LiFePO4 Composite. ACS Applied Energy Materials 2022, 5 (12) , 14712-14719. https://doi.org/10.1021/acsaem.2c02035
    5. Ann Rutt, Jimmy-Xuan Shen, Matthew Horton, Jiyoon Kim, Jerry Lin, Kristin A. Persson. Expanding the Material Search Space for Multivalent Cathodes. ACS Applied Materials & Interfaces 2022, 14 (39) , 44367-44376. https://doi.org/10.1021/acsami.2c11733
    6. Said Oukahou, Mohammad Maymoun, Abdelali Elomrani, Khalid Sbiaai, Abdellatif Hasnaoui. Enhancing the Electrochemical Performance of Olivine LiMnPO4 as Cathode Materials for Li-Ion Batteries by Ni–Fe Codoping. ACS Applied Energy Materials 2022, 5 (9) , 10591-10603. https://doi.org/10.1021/acsaem.2c01319
    7. Chao-Hung Chang, Kuan-Ting Chen, Yi-Yen Hsieh, Che-Bin Chang, Hsing-Yu Tuan. Crystal Facet and Architecture Engineering of Metal Oxide Nanonetwork Anodes for High-Performance Potassium Ion Batteries and Hybrid Capacitors. ACS Nano 2022, 16 (1) , 1486-1501. https://doi.org/10.1021/acsnano.1c09863
    8. JinKiong Ling, Chelladurai Karuppiah, Syam G. Krishnan, M. V. Reddy, Izan Izwan Misnon, Mohd Hasbi Ab Rahim, Chun-Chen Yang, Rajan Jose. Phosphate Polyanion Materials as High-Voltage Lithium-Ion Battery Cathode: A Review. Energy & Fuels 2021, 35 (13) , 10428-10450. https://doi.org/10.1021/acs.energyfuels.1c01102
    9. Vasilii Vasilchenko, Sergey Levchenko, Vasili Perebeinos, Andriy Zhugayevych. Small Polarons in Two-Dimensional Pnictogens: A First-Principles Study. The Journal of Physical Chemistry Letters 2021, 12 (19) , 4674-4680. https://doi.org/10.1021/acs.jpclett.1c00929
    10. Shunsuke Kobayashi, Akihide Kuwabara, Craig A. J. Fisher, Yuichi Ikuhara. Atomic-Scale Analysis of Biphasic Boundaries in the Lithium-Ion Battery Cathode Material LiFePO4. ACS Applied Energy Materials 2020, 3 (8) , 8009-8016. https://doi.org/10.1021/acsaem.0c01408
    11. Peter Benedek, Ola K. Forslund, Elisabetta Nocerino, Nuri Yazdani, Nami Matsubara, Yasmine Sassa, Fanni Jurànyi, Marisa Medarde, Mark Telling, Martin Månsson, Vanessa Wood. Quantifying Diffusion through Interfaces of Lithium-Ion Battery Active Materials. ACS Applied Materials & Interfaces 2020, 12 (14) , 16243-16249. https://doi.org/10.1021/acsami.9b21470
    12. Haesun Park, Yanjie Cui, Sanghyeon Kim, J. T. Vaughey, Peter Zapol. Ca Cobaltites as Potential Cathode Materials for Rechargeable Ca-Ion Batteries: Theory and Experiment. The Journal of Physical Chemistry C 2020, 124 (11) , 5902-5909. https://doi.org/10.1021/acs.jpcc.9b11192
    13. Mei-ying Zheng, Zong-yao Bai, Yue-Wen He, Shunqing Wu, Yong Yang, Zi-Zhong Zhu. Anionic Redox Processes in Maricite- and Triphylite-NaFePO4 of Sodium-Ion Batteries. ACS Omega 2020, 5 (10) , 5192-5201. https://doi.org/10.1021/acsomega.9b04213
    14. Man-Fai Ng, Michael B. Sullivan. First-Principles Characterization of Lithium Cobalt Pyrophosphate as a Cathode Material for Solid-State Li-Ion Batteries. The Journal of Physical Chemistry C 2019, 123 (49) , 29623-29629. https://doi.org/10.1021/acs.jpcc.9b09946
    15. Wei Zhang, Xiaoli Sun, Yuxin Tang, Huarong Xia, Yi Zeng, Liang Qiao, Zhiqiang Zhu, Zhisheng Lv, Yanyan Zhang, Xiang Ge, Shibo Xi, Zhiguo Wang, Yonghua Du, Xiaodong Chen. Lowering Charge Transfer Barrier of LiMn2O4 via Nickel Surface Doping To Enhance Li+ Intercalation Kinetics at Subzero Temperatures. Journal of the American Chemical Society 2019, 141 (36) , 14038-14042. https://doi.org/10.1021/jacs.9b05531
    16. Wojciech A. Sławiński, Helen Y. Playford, Stephen Hull, Stefan T. Norberg, Sten G. Eriksson, Torbjörn Gustafsson, Kristina Edström, William R. Brant. Neutron Pair Distribution Function Study of FePO4 and LiFePO4. Chemistry of Materials 2019, 31 (14) , 5024-5034. https://doi.org/10.1021/acs.chemmater.9b00552
    17. Vasily D. Sumanov, Dmitry A. Aksyonov, Oleg A. Drozhzhin, Igor Presniakov, Alexey V. Sobolev, Iana Glazkova, Alexander A. Tsirlin, Dmitry Rupasov, Anatoliy Senyshyn, Irina V. Kolesnik, Keith J. Stevenson, Evgeny Antipov, Artem M. Abakumov. “Hydrotriphylites” Li1–xFe1+x(PO4)1–y(OH)4y as Cathode Materials for Li-ion Batteries. Chemistry of Materials 2019, 31 (14) , 5035-5046. https://doi.org/10.1021/acs.chemmater.9b00627
    18. Hao Liu, Saeed Kazemiabnavi, Antonin Grenier, Gavin Vaughan, Marco Di Michiel, Bryant J. Polzin, Katsuyo Thornton, Karena W. Chapman, Peter J. Chupas. Quantifying Reaction and Rate Heterogeneity in Battery Electrodes in 3D through Operando X-ray Diffraction Computed Tomography. ACS Applied Materials & Interfaces 2019, 11 (20) , 18386-18394. https://doi.org/10.1021/acsami.9b02173
    19. Zhen-Ming Xu, Shou-Hang Bo, Hong Zhu. LiCrS2 and LiMnS2 Cathodes with Extraordinary Mixed Electron–Ion Conductivities and Favorable Interfacial Compatibilities with Sulfide Electrolyte. ACS Applied Materials & Interfaces 2018, 10 (43) , 36941-36953. https://doi.org/10.1021/acsami.8b12026
    20. Alexandros Vasileiadis, Brian Carlsen, Niek J. J. de Klerk, Marnix Wagemaker. Ab Initio Study of Sodium Insertion in the λ-Mn2O4 and Dis/Ordered λ-Mn1.5Ni0.5O4 Spinels. Chemistry of Materials 2018, 30 (19) , 6646-6659. https://doi.org/10.1021/acs.chemmater.8b01634
    21. Yu-Kun Hou, Gui-Ling Pan, Yan-Yun Sun, Xue-Ping Gao. LiMn0.8Fe0.2PO4/Carbon Nanospheres@Graphene Nanoribbons Prepared by the Biomineralization Process as the Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2018, 10 (19) , 16500-16510. https://doi.org/10.1021/acsami.8b02736
    22. Toshiro Yamanaka, Taketoshi Minato, Ken-ichi Okazaki, Takeshi Abe, Koji Nishio, Zempachi Ogumi. Evolution and Migration of Lithium-Deficient Phases during Electrochemical Delithiation of Large Single Crystals of LiFePO4. ACS Applied Energy Materials 2018, 1 (3) , 1140-1145. https://doi.org/10.1021/acsaem.7b00246
    23. Renchao Xiao, Jian Xie, Ting Luo, Liting Huang, Yan Zhou, Danmei Yu, Changguo Chen, and Yuping Liu . Phase Transformation and Diffusion Kinetics of V2O5 Electrode in Rechargeable Li and Mg Batteries: A First-Principle Study. The Journal of Physical Chemistry C 2018, 122 (3) , 1513-1521. https://doi.org/10.1021/acs.jpcc.7b11488
    24. Penghao Xiao and Graeme Henkelman . Kinetic Monte Carlo Study of Li Intercalation in LiFePO4. ACS Nano 2018, 12 (1) , 844-851. https://doi.org/10.1021/acsnano.7b08278
    25. Suwit Suthirakun, Alexander Genest, and Notker Rösch . Modeling Polaron-Coupled Li Cation Diffusion in V2O5 Cathode Material. The Journal of Physical Chemistry C 2018, 122 (1) , 150-157. https://doi.org/10.1021/acs.jpcc.7b10321
    26. Aaron Mascaro, Zi Wang, Pierre Hovington, Yoichi Miyahara, Andrea Paolella, Vincent Gariepy, Zimin Feng, Tyler Enright, Connor Aiken, Karim Zaghib, Kirk H. Bevan, and Peter Grutter . Measuring Spatially Resolved Collective Ionic Transport on Lithium Battery Cathodes Using Atomic Force Microscopy. Nano Letters 2017, 17 (7) , 4489-4496. https://doi.org/10.1021/acs.nanolett.7b01857
    27. Hao Liu, Min-Ju Choe, Raul A. Enrique, Bernardo Orvañanos, Lina Zhou, Tao Liu, Katsuyo Thornton, and Clare P. Grey . Effects of Antisite Defects on Li Diffusion in LiFePO4 Revealed by Li Isotope Exchange. The Journal of Physical Chemistry C 2017, 121 (22) , 12025-12036. https://doi.org/10.1021/acs.jpcc.7b02819
    28. Shunsuke Kobayashi, Craig A. J. Fisher, Takeharu Kato, Yoshio Ukyo, Tsukasa Hirayama, and Yuichi Ikuhara . Atomic-Scale Observations of (010) LiFePO4 Surfaces Before and After Chemical Delithiation. Nano Letters 2016, 16 (9) , 5409-5414. https://doi.org/10.1021/acs.nanolett.6b01689
    29. Ruigang Zhang and Chen Ling . Unveil the Chemistry of Olivine FePO4 as Magnesium Battery Cathode. ACS Applied Materials & Interfaces 2016, 8 (28) , 18018-18026. https://doi.org/10.1021/acsami.6b03297
    30. Shuping Huang, Yuan Fang, Bo Wang, Benjamin E. Wilson, Nam Tran, Donald G. Truhlar, and Andreas Stein . Conduction and Surface Effects in Cathode Materials: Li8ZrO6 and Doped Li8ZrO6. The Journal of Physical Chemistry C 2016, 120 (18) , 9637-9649. https://doi.org/10.1021/acs.jpcc.6b02077
    31. Bohua Wen, Jue Liu, Natasha A. Chernova, Xiaoya Wang, Yuri Janssen, Fredrick Omenya, Peter G. Khalifah, and M. Stanley Whittingham . Li3Mo4P5O24: A Two-Electron Cathode for Lithium-Ion Batteries with Three-Dimensional Diffusion Pathways. Chemistry of Materials 2016, 28 (7) , 2229-2235. https://doi.org/10.1021/acs.chemmater.6b00177
    32. Guohua Tao . Nonequilibrium Electron-Coupled Lithium Ion Diffusion in LiFePO4: Nonadiabatic Dynamics with Multistate Trajectory Approach. The Journal of Physical Chemistry C 2016, 120 (13) , 6938-6952. https://doi.org/10.1021/acs.jpcc.5b12676
    33. Guang He, Ashfia Huq, Wang Hay Kan, and Arumugam Manthiram . β-NaVOPO4 Obtained by a Low-Temperature Synthesis Process: A New 3.3 V Cathode for Sodium-Ion Batteries. Chemistry of Materials 2016, 28 (5) , 1503-1512. https://doi.org/10.1021/acs.chemmater.5b04992
    34. Hua Guo, Xiaohe Song, Zengqing Zhuo, Jiangtao Hu, Tongchao Liu, Yandong Duan, Jiaxin Zheng, Zonghai Chen, Wanli Yang, Khalil Amine, and Feng Pan . Storage and Effective Migration of Li-Ion for Defected β-LiFePO4 Phase Nanocrystals. Nano Letters 2016, 16 (1) , 601-608. https://doi.org/10.1021/acs.nanolett.5b04302
    35. Jiaxin Zheng, Yuyang Hou, Yandong Duan, Xiaohe Song, Yi Wei, Tongchao Liu, Jiangtao Hu, Hua Guo, Zengqing Zhuo, Lili Liu, Zheng Chang, Xiaowei Wang, Danylo Zherebetskyy, Yanyan Fang, Yuan Lin, Kang Xu, Lin-Wang Wang, Yuping Wu, and Feng Pan . Janus Solid–Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries. Nano Letters 2015, 15 (9) , 6102-6109. https://doi.org/10.1021/acs.nanolett.5b02379
    36. Ian L. Matts, Stephen Dacek, Tomasz K. Pietrzak, Rahul Malik, and Gerbrand Ceder . Explaining Performance-Limiting Mechanisms in Fluorophosphate Na-Ion Battery Cathodes through Inactive Transition-Metal Mixing and First-Principles Mobility Calculations. Chemistry of Materials 2015, 27 (17) , 6008-6015. https://doi.org/10.1021/acs.chemmater.5b02299
    37. Ziqin Rong, Rahul Malik, Pieremanuele Canepa, Gopalakrishnan Sai Gautam, Miao Liu, Anubhav Jain, Kristin Persson, and Gerbrand Ceder . Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures. Chemistry of Materials 2015, 27 (17) , 6016-6021. https://doi.org/10.1021/acs.chemmater.5b02342
    38. Vladimir Timoshevskii, Zimin Feng, Kirk H. Bevan, and Karim Zaghib . Emergence of Metallic Properties at LiFePO4 Surfaces and LiFePO4/Li2S Interfaces: An Ab Initio Study. ACS Applied Materials & Interfaces 2015, 7 (33) , 18362-18368. https://doi.org/10.1021/acsami.5b04108
    39. Mudit Dixit, Hamutal Engel, Reuven Eitan, Doron Aurbach, Mikhael D. Levi, Monica Kosa, and Dan Thomas Major . Classical and Quantum Modeling of Li and Na Diffusion in FePO4. The Journal of Physical Chemistry C 2015, 119 (28) , 15801-15809. https://doi.org/10.1021/acs.jpcc.5b00405
    40. Tanmay Sarkar, Mridula Dixit Bharadwaj, Umesh V. Waghmare, and Parveen Kumar . Mechanism of Charge Transfer in Olivine-Type LiFeSiO4 and LiFe0.5M0.5SiO4 (M = Mg or Al) Cathode Materials: First-Principles Analysis. The Journal of Physical Chemistry C 2015, 119 (17) , 9125-9133. https://doi.org/10.1021/acs.jpcc.5b01692
    41. Kyu-Young Park, Inchul Park, Hyungsub Kim, Hee-dae Lim, Jihyun Hong, Jongsoon Kim, and Kisuk Kang . Anti-Site Reordering in LiFePO4: Defect Annihilation on Charge Carrier Injection. Chemistry of Materials 2014, 26 (18) , 5345-5351. https://doi.org/10.1021/cm502432q
    42. Guobo Zeng, Riccarda Caputo, Daniel Carriazo, Li Luo, and Markus Niederberger . Tailoring Two Polymorphs of LiFePO4 by Efficient Microwave-Assisted Synthesis: A Combined Experimental and Theoretical Study. Chemistry of Materials 2013, 25 (17) , 3399-3407. https://doi.org/10.1021/cm400995g
    43. Chen Ling and Fuminori Mizuno . Phase Stability of Post-spinel Compound AMn2O4 (A = Li, Na, or Mg) and Its Application as a Rechargeable Battery Cathode. Chemistry of Materials 2013, 25 (15) , 3062-3071. https://doi.org/10.1021/cm401250c
    44. Yang Sun, Xia Lu, Ruijuan Xiao, Hong Li, and Xuejie Huang . Kinetically Controlled Lithium-Staging in Delithiated LiFePO4 Driven by the Fe Center Mediated Interlayer Li–Li Interactions. Chemistry of Materials 2012, 24 (24) , 4693-4703. https://doi.org/10.1021/cm3028324
    45. Yukinori Koyama, Hajime Arai, Isao Tanaka, Yoshiharu Uchimoto, and Zempachi Ogumi . Defect Chemistry in Layered LiMO2 (M = Co, Ni, Mn, and Li1/3Mn2/3) by First-Principles Calculations. Chemistry of Materials 2012, 24 (20) , 3886-3894. https://doi.org/10.1021/cm3018314
    46. Chen Ling and Fuminori Mizuno . Capture Lithium in αMnO2: Insights from First Principles. Chemistry of Materials 2012, 24 (20) , 3943-3951. https://doi.org/10.1021/cm302347j
    47. Kyu-Sung Park, Penghao Xiao, So-Yeon Kim, Anthony Dylla, Young-Min Choi, Graeme Henkelman, Keith J. Stevenson, and John B. Goodenough . Enhanced Charge-Transfer Kinetics by Anion Surface Modification of LiFePO4. Chemistry of Materials 2012, 24 (16) , 3212-3218. https://doi.org/10.1021/cm301569m
    48. Anthony G. Dylla, Penghao Xiao, Graeme Henkelman, and Keith J. Stevenson . Morphological Dependence of Lithium Insertion in Nanocrystalline TiO2(B) Nanoparticles and Nanosheets. The Journal of Physical Chemistry Letters 2012, 3 (15) , 2015-2019. https://doi.org/10.1021/jz300766a
    49. J.E. Antonio, J.M. Cervantes, H. Muñoz, E.P. Arévalo-López, M. Romero, E. Carvajal, R. Escamilla. Substitution effects on the structural, mechanical, electronic and electrochemical properties of lithium/sodium strontium stannate perovskite for battery applications. Journal of Physics and Chemistry of Solids 2024, 189 , 111935. https://doi.org/10.1016/j.jpcs.2024.111935
    50. Zepeng Li, Jianhui Zhu, Maowen Xu, Jian Jiang. Achieving long-lasting and high-capacity LiFe 0.5 Mn 0.5 PO 4 cathodes with a synergistic F/In dual doping strategy. New Journal of Chemistry 2024, 48 (15) , 6857-6863. https://doi.org/10.1039/D4NJ00255E
    51. Lucia Rathinasamy, Balasubramanian Natesan. Electrochemical benefits of conductive polymers as a cathode material in LFP battery technology. Journal of Solid State Electrochemistry 2024, 11 https://doi.org/10.1007/s10008-024-05858-x
    52. Dung The Nguyen, Jimin Kim, Youngil Lee. Design of interfacial Li-ion transfer channels for practical improvement of a multicomponent high-voltage olivine cathode. Ceramics International 2024, 50 (7) , 12351-12360. https://doi.org/10.1016/j.ceramint.2024.01.140
    53. Tianyu Zhao, Harshit Mahandra, Rajashekhar Marthi, Xiaobo Ji, Wenqing Zhao, Sujin Chae, Michael Traversy, Weilun Li, Fan Yu, Lin Li, Yeonuk Choi, Ahmad Ghahreman, Zhongwei Zhao, Chao Zhang, Yuxin Kang, Yuntao Lei, Yunfeng Song. An overview on the life cycle of lithium iron phosphate: synthesis, modification, application, and recycling. Chemical Engineering Journal 2024, 485 , 149923. https://doi.org/10.1016/j.cej.2024.149923
    54. Sajeela Awasthi, Srikanta Moharana, Vaneet Kumar, Nannan Wang, Elham Chmanehpour, Anupam Deep Sharma, Santosh K. Tiwari, Vijay Kumar, Yogendra Kumar Mishra. Progress in doping and crystal deformation for polyanions cathode based lithium-ion batteries. Nano Materials Science 2024, 12 https://doi.org/10.1016/j.nanoms.2024.01.004
    55. Guixin Wang, Zhechen Wang, Hucheng Shi, Aobing Du, Mingliang Sun, Guanglei Cui. Progress and perspective on rechargeable magnesium-ion batteries. Science China Chemistry 2024, 67 (1) , 214-246. https://doi.org/10.1007/s11426-022-1454-0
    56. Ananya Bansal, Pramod Kumar, Sheetal Issar, Vipin Chawla, Ramesh Chandra. Binder Free Approach for Fabrication of Lithium Cobalt Oxide for Thin Film Based Lithium-Ion Μ-Batteries. 2024https://doi.org/10.2139/ssrn.4795970
    57. Shucheng Wang, Fazhan Wang, Zhenxing Chen, Tingbi Li, Chi Yao, Minggang Wang, Hongbo Wang, Hong Wu. First-principles investigation of the electronic and Li-ion diffusion properties of LiFePO 4 by graphene surface modification. Molecular Physics 2023, 121 (23) https://doi.org/10.1080/00268976.2023.2239380
    58. Sandip Maiti, Matthew T. Curnan, Kakali Maiti, Seokhyun Choung, Jeong Woo Han. Accelerating Li-based battery design by computationally engineering materials. Chem 2023, 9 (12) , 3415-3460. https://doi.org/10.1016/j.chempr.2023.09.007
    59. Youcheng Hu, Xiaoxiao Wang, Peng Li, Junxiang Chen, Shengli Chen. Understanding the sluggish and highly variable transport kinetics of lithium ions in LiFePO4. Science China Chemistry 2023, 66 (11) , 3297-3306. https://doi.org/10.1007/s11426-023-1662-9
    60. Jin-young Choi, Hye-min Kim, Yu-sung Kim, In-sik Lee, Byung-chul Cha, Dae-wook Kim. Modification of mixed-nitrogen anions configuration for accelerating lithium ions transport in the LiFePO 4 electrode. RSC Advances 2023, 13 (45) , 31873-31880. https://doi.org/10.1039/D3RA06242B
    61. Moohyun Woo, Jinhyuk Lee, George P. Demopoulos. Surface and bulk defect formation during hydrothermal synthesis of LiCoPO 4 crystals and their electrochemical implications. Materials Advances 2023, 4 (20) , 4823-4834. https://doi.org/10.1039/D3MA00455D
    62. Martin Z. Bazant. Unified quantum theory of electrochemical kinetics by coupled ion–electron transfer. Faraday Discussions 2023, 246 , 60-124. https://doi.org/10.1039/D3FD00108C
    63. Julián Juan, Luciana Fernández-Werner, Pablo Bechthold, Paula V. Jasen, Ricardo Faccio, Estela A. González. Li intercalation, electronic and thermodynamic properties in H2Ti3O7 bulk: A theoretical study. Computational Materials Science 2023, 228 , 112344. https://doi.org/10.1016/j.commatsci.2023.112344
    64. Xiangping Chen, Lu Yuan, Shuxuan Yan, Xin Ma. Self-activation of Ferro-chemistry based advanced oxidation process towards in-situ recycling of spent LiFePO4 batteries. Chemical Engineering Journal 2023, 471 , 144343. https://doi.org/10.1016/j.cej.2023.144343
    65. Bonho Koo, Jinkyu Chung, Juwon Kim, Dimitrios Fraggedakis, Sungjae Seo, Chihyun Nam, Danwon Lee, Jeongwoo Han, Sugeun Jo, Hongbo Zhao, Neel Nadkarni, Jian Wang, Namdong Kim, Markus Weigand, Martin Z. Bazant, Jongwoo Lim. Dynamic surface phases controlling asymmetry of high-rate lithiation and delithiation in phase-separating electrodes. Energy & Environmental Science 2023, 16 (8) , 3302-3313. https://doi.org/10.1039/D3EE00341H
    66. Runtian Zheng, Yuhang Li, Haoxiang Yu, Xikun Zhang, Ding Yang, Lei Yan, Yu Li, Jie Shu, Bao‐Lian Su. Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie 2023, 135 (23) https://doi.org/10.1002/ange.202301629
    67. Runtian Zheng, Yuhang Li, Haoxiang Yu, Xikun Zhang, Ding Yang, Lei Yan, Yu Li, Jie Shu, Bao‐Lian Su. Ammonium Ion Batteries: Material, Electrochemistry and Strategy. Angewandte Chemie International Edition 2023, 62 (23) https://doi.org/10.1002/anie.202301629
    68. Yang Liu, Cai Qi, Dandan Cai, Xiao Tang, Ying Li, Wenxian Li, Qinsi Shao, Jiujun Zhang. TaC-modified LiFePO4/C composite as cathode material for high-performance lithium-ion batteries. Ionics 2023, 29 (6) , 2191-2198. https://doi.org/10.1007/s11581-023-04969-1
    69. Xinjie Shen, Zijun Qin, Peipei He, Xugang Ren, Yunjiao Li, Feixiang Wu, Yi Cheng, Zhenjiang He. Refined Grain Enhancing Lithium-Ion Diffusion of LiFePO4 via Air Oxidation. Coatings 2023, 13 (6) , 1038. https://doi.org/10.3390/coatings13061038
    70. D.A. Aksyonov, A.O. Boev, S.S. Fedotov, A.M. Abakumov. Computational insights into ionic conductivity of transition metal electrode materials for metal-ion batteries - A review. Solid State Ionics 2023, 393 , 116170. https://doi.org/10.1016/j.ssi.2023.116170
    71. N.H.M. Zaki, S.I. Ahmad, F.N. Sazman, F.W. Badrudin, A.L.A. Abdullah, M.F.M. Taib, O.H. Hassan, M.Z.A. Yahya. The influence of Cl doping on the structural, electronic properties and Li-ion migration of LiFePO4: A DFT study. Computational and Theoretical Chemistry 2023, 1221 , 114029. https://doi.org/10.1016/j.comptc.2023.114029
    72. Wang Zhang, Fu-Ye Du, Yang Dai, Jin-Cheng Zheng. Strain engineering of Li + ion migration in olivine phosphate cathode materials LiMPO 4 (M = Mn, Fe, Co) and (LiFePO 4 ) n (LiMnPO 4 ) m superlattices. Physical Chemistry Chemical Physics 2023, 25 (8) , 6142-6152. https://doi.org/10.1039/D2CP05241E
    73. Guiling Luo, Xiaowei Li, Linlin Chen, Yanhong Chao, Wenshuai Zhu. Electrochemical lithium ion pumps for lithium recovery: A systematic review and influencing factors analysis. Desalination 2023, 548 , 116228. https://doi.org/10.1016/j.desal.2022.116228
    74. Xin Su, Ying Xu, Yanchao Wu, Huijing Li, Jianzhong Yang, Ying Liao, Renjie Qu, Zhengcheng Zhang. Liquid electrolytes for low-temperature lithium batteries: main limitations, current advances, and future perspectives. Energy Storage Materials 2023, 56 , 642-663. https://doi.org/10.1016/j.ensm.2023.01.044
    75. Zhong‐Heng Fu, Xiang Chen, Qiang Zhang. Review on the lithium transport mechanism in solid‐state battery materials. WIREs Computational Molecular Science 2023, 13 (1) https://doi.org/10.1002/wcms.1621
    76. Alevtina Smirnova, Collin Rodmyre, Misti Acevedo. Battery cathodes for lithium-ion batteries with liquid and solid-state electrolytes. 2023, 171-195. https://doi.org/10.1016/B978-0-323-90635-7.00003-8
    77. Weifang Liu, Xichang Liu, Rui Hao, Zhihao Yang, Baixue Ouyang, Mengjie Zhang, Mengwei Pan, Kaiyu Liu. Contribution of calcium ion doping to the rate property for LiFe0.5Mn0.5PO4/C. Journal of Electroanalytical Chemistry 2023, 929 , 117117. https://doi.org/10.1016/j.jelechem.2022.117117
    78. Azemtsop Manfo Theodore. Structural, electrical, and electrochemical studies of the olivine LiMPO4 (M=Fe, Co, Cr, Mn, V) as cathode materials for lithium-ion rechargeable batteries based on the intercalation principle. Materials Open Research 2023, 2 , 11. https://doi.org/10.12688/materialsopenres.17559.1
    79. Xin Ren, Jianling Guo, Ruoxuan Liu, Hongyuan Guo, Guangchuan Liang. Are Fe-Li Antisite Defects Necessarily Detrimental to the Diffusion of Li + in LiFePO4/C?. Journal of The Electrochemical Society 2022, 169 (12) , 120507. https://doi.org/10.1149/1945-7111/aca365
    80. Feng Yang, Rui Ding, Ziyang Jia, Wujiang Yu, Yi Li, Ailin Wang, Miao Liu, Jinmei Xie, Miao Yan, Qi Fang, Yuzheng Zhang, Xiujuan Sun, Enhui Liu. High specific energy and power sodium-based dual-ion supercabatteries by pseudocapacitive Ni-Zn-Mn ternary perovskite fluorides@reduced graphene oxides anodes with conversion-alloying-intercalation triple mechanisms. Energy Storage Materials 2022, 53 , 222-237. https://doi.org/10.1016/j.ensm.2022.08.049
    81. Maoping Yang, Xueying Jia, Pengfei Li, Jie Yao, Weiwei Wang. Annealing Treatment: A Facile Approach to Enhance Transfer Kinetics for a LiFePO 4 /C Cathode. Chemical Engineering & Technology 2022, 45 (10) , 1850-1856. https://doi.org/10.1002/ceat.202200191
    82. Sayan Kanungo, Ankur Bhattacharjee, Naresh Bahadursha, Aritra Ghosh. Comparative Analysis of LiMPO4 (M = Fe, Co, Cr, Mn, V) as Cathode Materials for Lithium-Ion Battery Applications—A First-Principle-Based Theoretical Approach. Nanomaterials 2022, 12 (19) , 3266. https://doi.org/10.3390/nano12193266
    83. Jiachun Xiong, Lihua He, Zhongwei Zhao. Lithium extraction from high-sodium raw brine with Li0.3FePO4 electrode. Desalination 2022, 535 , 115822. https://doi.org/10.1016/j.desal.2022.115822
    84. Selvarasu Praneetha, Yun-Sung Lee, Vanchiappan Aravindan. V2O5 vs. LiFePO4: Who is performing better in the 3.4 V class category? A performance evaluation in “Rocking-chair” configuration with graphite anode. Journal of Industrial and Engineering Chemistry 2022, 112 , 389-397. https://doi.org/10.1016/j.jiec.2022.05.036
    85. Gamachis Sakata Gurmesa, Tamiru Teshome, Natei Ermias Benti, Girum Ayalneh Tiruye, Ayan Datta, Yedilfana Setarge Mekonnen, Chernet Amente Geffe. Rational Design of Biaxial Tensile Strain for Boosting Electronic and Ionic Conductivities of Na 2 MnSiO 4 for Rechargeable Sodium‐Ion Batteries. ChemistryOpen 2022, 11 (6) https://doi.org/10.1002/open.202100289
    86. Wang Lin, Mengyu Zhu, You Fan, Huibo Wang, Guangjian Tao, Maofeng Ding, Na Liu, Hang Yang, Jiang Wu, Jianhua Fang, Yuxin Tang. Low temperature lithium-ion batteries electrolytes: Rational design, advancements, and future perspectives. Journal of Alloys and Compounds 2022, 905 , 164163. https://doi.org/10.1016/j.jallcom.2022.164163
    87. Vasilii Vasilchenko, Andriy Zhugayevych, Xavier Gonze. Variational polaron equations applied to the anisotropic Fröhlich model. Physical Review B 2022, 105 (21) https://doi.org/10.1103/PhysRevB.105.214301
    88. Zhi Gao, Tao Zhang, Xiaoliang Pan, Shikun Xie, Lijun Liu, Yonghui Zeng, Chengning Xie. Preparation of nanorod-assembled CNT-embedded LiMnPO 4 hollow microspheres for enhanced electrochemical performance of lithium-ion batteries. CrystEngComm 2022, 24 (11) , 2149-2158. https://doi.org/10.1039/D1CE01342D
    89. Ya-Jing Mao, Louise Schoneveld, Stephen J Barnes, Morgan J Williams, Ben-Xun Su, Philipp Ruprecht, Noreen J Evans, Ke-Zhang Qin. Coupled Li-P Zoning and Trace Elements of Olivine from Magmatic Ni-Cu Deposits: Implications for Postcumulus Re-Equilibration in Olivine. Journal of Petrology 2022, 63 (3) https://doi.org/10.1093/petrology/egac018
    90. Zhong Ma, Zhijun Zuo, Lin Li, Yuning Li. Unleash the Capacity Potential of LiFePO 4 through Rocking‐Chair Coordination Chemistry. Advanced Functional Materials 2022, 32 (8) https://doi.org/10.1002/adfm.202108692
    91. Zeyang Geng, Yu-Chuan Chien, Matthew J. Lacey, Torbjörn Thiringer, Daniel Brandell. Validity of solid-state Li + diffusion coefficient estimation by electrochemical approaches for lithium-ion batteries. Electrochimica Acta 2022, 404 , 139727. https://doi.org/10.1016/j.electacta.2021.139727
    92. Kuan-Ching Wu, Chieh-Ming Hsieh, Bor Kae Chang. First principles calculations on lithium diffusion near the surface and in the bulk of Fe-doped LiCoPO 4. Physical Chemistry Chemical Physics 2022, 24 (2) , 1147-1155. https://doi.org/10.1039/D1CP04517B
    93. Lucy M Morgan, Michael P Mercer, Arihant Bhandari, Chao Peng, Mazharul M Islam, Hui Yang, Julian Holland, Samuel W Coles, Ryan Sharpe, Aron Walsh, Benjamin J Morgan, Denis Kramer, M Saiful Islam, Harry E Hoster, Jacqueline Sophie Edge, Chris-Kriton Skylaris. Pushing the boundaries of lithium battery research with atomistic modelling on different scales. Progress in Energy 2022, 4 (1) , 012002. https://doi.org/10.1088/2516-1083/ac3894
    94. Huu Duc Luong, Hiroyoshi Momida, Van An Dinh, Tamio Oguchi. Understanding doping effects on P2 Na x Mn 1 − y M y O 2 ( M = Li , Mg, Al, Ti, V, Cr, Fe, Co, Ni) cathode materials for Na-ion batteries. Physical Review Materials 2022, 6 (1) https://doi.org/10.1103/PhysRevMaterials.6.015802
    95. Xichang Liu, Rui Hao, Zhihao Yang, Baixue Ouyang, Mengjie Zhang, Mengwei Pan, Weifang Liu, Kaiyu Liu. The Contribution of Calcium Ion Doping To the Rate Property for Life0.5mn0.5po4/C. SSRN Electronic Journal 2022, 144 https://doi.org/10.2139/ssrn.4191179
    96. Yu Gao, Jun Huang, Yuwen Liu, Shengli Chen. Unexpected role of electronic coupling between host redox centers in transport kinetics of lithium ions in olivine phosphate materials. Chemical Science 2021, 13 (1) , 257-262. https://doi.org/10.1039/D1SC05402C
    97. Kentaro Yamamoto, Takahiro Yoshinari, Akihide Kuwabara, Eri Kato, Yuki Orikasa, Koji Nakanishi, Tomoki Uchiyama, Kazuhiko Maeda, Hiroshi Kageyama, Toshiaki Ohta, Yoshiharu Uchimoto. Accelerated lithium ions diffusion at the interface between LiFePO4 electrode and electrolyte by surface-nitride treatment. Solid State Ionics 2021, 373 , 115792. https://doi.org/10.1016/j.ssi.2021.115792
    98. Qun-fang Zhao, Shu-qiong Zhang, Min-yi Hu, Chang Wang, Guang-hui Jiang. Recent Advances in LiFePO4 Cathode Materials for Lithium-Ion Batteries. First-Principles Research. International Journal of Electrochemical Science 2021, 16 (12) , 211226. https://doi.org/10.20964/2021.12.11
    99. Tanya Boyadzhieva, Violeta Koleva, Pavel Markov, Radostina Stoyanova. Iron oxidation to amplify the Na and Li storage capacities of nano-sized maricite NaFePO 4. Dalton Transactions 2021, 50 (45) , 16548-16561. https://doi.org/10.1039/D1DT03318B
    100. Shude Liu, Ling Kang, Seong Chan Jun. Challenges and Strategies toward Cathode Materials for Rechargeable Potassium‐Ion Batteries. Advanced Materials 2021, 33 (47) https://doi.org/10.1002/adma.202004689
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect