ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material

View Author Information
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
Cite this: Chem. Mater. 2012, 24, 1, 15–17
Publication Date (Web):December 9, 2011
https://doi.org/10.1021/cm203303y
Copyright © 2011 American Chemical Society

    Article Views

    17237

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Computational details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 571 publications.

    1. Maddalena D’Amore, Moon Young Yang, Tridip Das, Anna Maria Ferrari, Minho M. Kim, Riccardo Rocca, Mauro Sgroi, Alessandro Fortunelli, William A. Goddard, III. Understanding Ionic Diffusion Mechanisms in Li2S Coatings for Solid-State Batteries: Development of a Tailored Reactive Force Field for Multiscale Simulations. The Journal of Physical Chemistry C 2023, 127 (47) , 22880-22888. https://doi.org/10.1021/acs.jpcc.3c04991
    2. Jongseung Kim, Dong Hyeon Mok, Heejin Kim, Seoin Back. Accelerating the Search for New Solid Electrolytes: Exploring Vast Chemical Space with Machine Learning-Enabled Computational Calculations. ACS Applied Materials & Interfaces 2023, 15 (45) , 52427-52435. https://doi.org/10.1021/acsami.3c10798
    3. Xinyu Zhang, Denys Butenko, Lei Gao, Xinyan Ye, Bolong Hong, Songbai Han, Wei Xia, Shaofei Wang, Yang Sun, Yusheng Zhao, Jinlong Zhu. Synergistic Ion Diffusion in Lithium Titanium Phosphate Conductors: A Tale from Solo to Ensemble. Chemistry of Materials 2023, 35 (11) , 4541-4548. https://doi.org/10.1021/acs.chemmater.3c00856
    4. Jing Xu, Yuqi Wang, Siyuan Wu, Qifan Yang, Xiao Fu, Ruijuan Xiao, Hong Li. New Halide-Based Sodium-Ion Conductors Na3Y2Cl9 Inversely Designed by Building Block Construction. ACS Applied Materials & Interfaces 2023, 15 (17) , 21086-21096. https://doi.org/10.1021/acsami.3c01570
    5. Jiahui Liu, Shuo Wang, Yoshiyuki Kawazoe, Qiang Sun. A New Spinel Chloride Solid Electrolyte with High Ionic Conductivity and Stability for Na-Ion Batteries. ACS Materials Letters 2023, 5 (4) , 1009-1017. https://doi.org/10.1021/acsmaterialslett.3c00119
    6. Victor Landgraf, Theodosios Famprikis, Joris de Leeuw, Lars Johannes Bannenberg, Swapna Ganapathy, Marnix Wagemaker. Li5NCl2: A Fully-Reduced, Highly-Disordered Nitride-Halide Electrolyte for Solid-State Batteries with Lithium-Metal Anodes. ACS Applied Energy Materials 2023, 6 (3) , 1661-1672. https://doi.org/10.1021/acsaem.2c03551
    7. Chengwei Gao, Jiahui Zhang, Chengmiao He, Shiliang Kang, Linling Tan, Qing Jiao, Tiefeng Xu, Shixun Dai, Changgui Lin. Enhancing the Interfacial Stability of the Li2S–SiS2–P2S5 Solid Electrolyte toward Metallic Lithium Anode by LiI Incorporation. ACS Applied Materials & Interfaces 2023, 15 (1) , 1392-1400. https://doi.org/10.1021/acsami.2c19810
    8. Yu Yang, Hong Zhu. Effects of F and Cl Doping in Cubic Li7La3Zr2O12 Solid Electrolyte: A First-Principles Investigation. ACS Applied Energy Materials 2022, 5 (12) , 15086-15092. https://doi.org/10.1021/acsaem.2c02747
    9. Garima Dobhal, Tiffany R. Walsh, Sherif Abdulkader Tawfik. Blocking Directional Lithium Diffusion in Solid-State Electrolytes at the Interface: First-Principles Insights into the Impact of the Space Charge Layer. ACS Applied Materials & Interfaces 2022, 14 (50) , 55471-55479. https://doi.org/10.1021/acsami.2c12192
    10. Xiayue Fan, Cheng Zhong, Jie Liu, Jia Ding, Yida Deng, Xiaopeng Han, Lei Zhang, Wenbin Hu, David P. Wilkinson, Jiujun Zhang. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews 2022, 122 (23) , 17155-17239. https://doi.org/10.1021/acs.chemrev.2c00196
    11. Zhewen Zhu, Yizhou Zhu. Developing Classical Interatomic Potentials for Solid Electrolytes. Accounts of Materials Research 2022, 3 (11) , 1101-1105. https://doi.org/10.1021/accountsmr.2c00184
    12. Jianhui Zheng, Yao Wang, Juncheng Wang, Huadong Yuan, Yujing Liu, Tiefeng Liu, Jianmin Luo, Jianwei Nai, Xinyong Tao. Toward Understanding the Effect of Fluoride Ions on the Solvation Structure in Lithium Metal Batteries: Insights from First-Principles Simulations. ACS Applied Materials & Interfaces 2022, 14 (43) , 48762-48769. https://doi.org/10.1021/acsami.2c14770
    13. Xiaojun Zhao, Songzhao Duan, Binghui Zhou, Zhengyang Gao, Ian D. Gates, Weijie Yang. Rapid Hierarchical Screening for Promising Ternary and Quaternary Inorganic Solid-State Electrolytes. The Journal of Physical Chemistry C 2022, 126 (37) , 15996-16005. https://doi.org/10.1021/acs.jpcc.2c04435
    14. Joohwi Lee, Ryoji Asahi. Doping Effect and Li-Ion Conduction Mechanism of ALi6XO6 (A = K or Rb and X = Pentavalent): A First-Principles Study. The Journal of Physical Chemistry C 2022, 126 (32) , 13548-13559. https://doi.org/10.1021/acs.jpcc.2c02357
    15. Fiaz Hussain, Jinlong Zhu, Hui Xia, Yusheng Zhao, Wei Xia. Theoretical Insights on the Comparison of Li-Ion Conductivity in Halide Superionic Conductors Li3MCl6, Li2M2/3Cl4, and LiMCl4 (M = Y, Sc, Al, and Sm). The Journal of Physical Chemistry C 2022, 126 (31) , 13105-13113. https://doi.org/10.1021/acs.jpcc.2c02511
    16. Christoph Kirsch, Christian Dreßler, Daniel Sebastiani. Atomistic Diffusion Pathways of Lithium Ions in Crystalline Lithium Silicides from ab Initio Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2022, 126 (29) , 12136-12149. https://doi.org/10.1021/acs.jpcc.2c01555
    17. Jianhang Wang Huiling Zhao Ying Bai . Ceramic-Based Solid-State Electrolytes. , 295-318. https://doi.org/10.1021/bk-2022-1413.ch012
    18. N. C. Rosero-Navarro M. Calpa A. Miura K. Tadanaga . Sulfide-Based Solid-State Electrolytes. , 319-351. https://doi.org/10.1021/bk-2022-1413.ch013
    19. Satoshi Hori, Ryoji Kanno, Ohmin Kwon, Yuki Kato, Takeshi Yamada, Masato Matsuura, Masao Yonemura, Takashi Kamiyama, Kaoru Shibata, Yukinobu Kawakita. Revealing the Ion Dynamics in Li10GeP2S12 by Quasi-Elastic Neutron Scattering Measurements. The Journal of Physical Chemistry C 2022, 126 (22) , 9518-9527. https://doi.org/10.1021/acs.jpcc.2c01748
    20. Lukas Schweiger, Katharina Hogrefe, Bernhard Gadermaier, Jennifer L. M. Rupp, H. Martin R. Wilkening. Ionic Conductivity of Nanocrystalline and Amorphous Li10GeP2S12: The Detrimental Impact of Local Disorder on Ion Transport. Journal of the American Chemical Society 2022, 144 (22) , 9597-9609. https://doi.org/10.1021/jacs.1c13477
    21. Jiahui Liu, Shuo Wang, Yoshiyuki Kawazoe, Qiang Sun. Mechanisms of Ionic Diffusion and Stability of the Na4MnCr(PO4)3 Cathode. ACS Materials Letters 2022, 4 (5) , 860-867. https://doi.org/10.1021/acsmaterialslett.2c00194
    22. Zhiwen Min, Chunlei Yang, Guo-Hua Zhong, Ziheng Lu. First-Principles Insights into Lithium-Rich Ternary Phosphide Superionic Conductors: Solid Electrolytes or Active Electrodes. ACS Applied Materials & Interfaces 2022, 14 (16) , 18373-18382. https://doi.org/10.1021/acsami.2c00292
    23. Pai Li, Xiongzhi Zeng, Zhenyu Li. Understanding High-Temperature Chemical Reactions on Metal Surfaces: A Case Study on Equilibrium Concentration and Diffusivity of CxHy on a Cu(111) Surface. JACS Au 2022, 2 (2) , 443-452. https://doi.org/10.1021/jacsau.1c00483
    24. Jiajie Zhong, Bingkai Zhang, Feng Pan, Zhan Lin. Thiotetrelates Li2ZnXS4 (X = Si, Ge, and Sn) As Potential Li-Ion Solid-State Electrolytes. ACS Applied Materials & Interfaces 2022, 14 (7) , 9203-9211. https://doi.org/10.1021/acsami.1c24206
    25. Zuyan Hu, Shuai Wang, Yizhou Yang, Feng Zhou, Shanshan Liang, Liang Chen. Enhanced Separation Performance of Radioactive Cesium and Cobalt in Graphene Oxide Membrane via Cationic Control. Langmuir 2022, 38 (6) , 1995-2002. https://doi.org/10.1021/acs.langmuir.1c02656
    26. Wei Xia, Yang Zhao, Feipeng Zhao, Keegan Adair, Ruo Zhao, Shuai Li, Ruqiang Zou, Yusheng Zhao, Xueliang Sun. Antiperovskite Electrolytes for Solid-State Batteries. Chemical Reviews 2022, 122 (3) , 3763-3819. https://doi.org/10.1021/acs.chemrev.1c00594
    27. James A. Dawson, M. Saiful Islam. A Nanoscale Design Approach for Enhancing the Li-Ion Conductivity of the Li10GeP2S12 Solid Electrolyte. ACS Materials Letters 2022, 4 (2) , 424-431. https://doi.org/10.1021/acsmaterialslett.1c00766
    28. Ye Jin, Han Yu, Xiaoqing He, Xinhua Liang. Stabilizing the Interface of All-Solid-State Electrolytes against Cathode Electrodes by Atomic Layer Deposition. ACS Applied Energy Materials 2022, 5 (1) , 760-769. https://doi.org/10.1021/acsaem.1c03237
    29. Swastika Banerjee, Manas Likhit Holekevi Chandrappa, Shyue Ping Ong. Role of Critical Oxygen Concentration in the β-Li3PS4–xOx Solid Electrolyte. ACS Applied Energy Materials 2022, 5 (1) , 35-41. https://doi.org/10.1021/acsaem.1c03795
    30. Xinmiao Liang, Li Yang, Youyi Lei, Luyao Qu, Liying Wang, Wuyao Cai, Ke Xu, Yangming Jiang, Biaolan Liu, Jiwen Feng. Selective Blockage of Li-Ion Diffusion Pathways in Li10SnP2S12: Insights from Nuclear Magnetic Resonance. The Journal of Physical Chemistry C 2021, 125 (50) , 27884-27890. https://doi.org/10.1021/acs.jpcc.1c09983
    31. Jiahao Qiu, Musheng Wu, Wenwei Luo, Bo Xu, Gang Liu, Chuying Ouyang. Insights into Bulk Properties and Transport Mechanisms in New Ternary Halide Solid Electrolytes: First-Principles Calculations. The Journal of Physical Chemistry C 2021, 125 (42) , 23510-23520. https://doi.org/10.1021/acs.jpcc.1c07347
    32. Chunxiao Zhang, Bo Wei, Wenjun Jiang, Meiyu Wang, Wang Hu, Chaoping Liang, Tianshuo Wang, Libao Chen, Ruifeng Zhang, Peng Wang, Weifeng Wei. Insights into the Enhanced Structural and Thermal Stabilities of Nb-Substituted Lithium-Rich Layered Oxide Cathodes. ACS Applied Materials & Interfaces 2021, 13 (38) , 45619-45629. https://doi.org/10.1021/acsami.1c13908
    33. Ushio Matsumoto, Takafumi Ogawa, Craig A. J. Fisher, Satoshi Kitaoka, Isao Tanaka. Cooperative Oxide-Ion Transport in Pyrochlore Y2Ti2O7: A First-Principles Molecular Dynamics Study. The Journal of Physical Chemistry C 2021, 125 (37) , 20460-20467. https://doi.org/10.1021/acs.jpcc.1c03610
    34. Amir Hajibabaei, Kwang S. Kim. Universal Machine Learning Interatomic Potentials: Surveying Solid Electrolytes. The Journal of Physical Chemistry Letters 2021, 12 (33) , 8115-8120. https://doi.org/10.1021/acs.jpclett.1c01605
    35. Qian Zhang, William Arnold, Zachary D. Hood, Yang Li, Rachel DeWees, Miaofang Chi, Zhiwen Chen, Yan Chen, Hui Wang. Li0.625Al0.125H0.25Cl0.75O0.25 Superionic Conductor with Disordered Rock-Salt Structure. ACS Applied Energy Materials 2021, 4 (8) , 7674-7680. https://doi.org/10.1021/acsaem.1c01011
    36. Nobuaki Suzuki, Joohwi Lee, Yumi Masuoka, Shingo Ohta, Tetsuro Kobayashi, Ryoji Asahi. Theoretical and Experimental Studies of KLi6TaO6 as a Li-Ion Solid Electrolyte. Inorganic Chemistry 2021, 60 (14) , 10371-10379. https://doi.org/10.1021/acs.inorgchem.1c00902
    37. Yuwei Chen, Ying Huang, Haoyu Fu, Yongmin Wu, Dongdong Zhang, Jiayun Wen, Liqiang Huang, Yiming Dai, Yunhui Huang, Wei Luo. TiO2 Nanofiber-Modified Lithium Metal Composite Anode for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces 2021, 13 (24) , 28398-28404. https://doi.org/10.1021/acsami.1c07761
    38. Zhong-Heng Fu, Xiang Chen, Chen-Zi Zhao, Hong Yuan, Rui Zhang, Xin Shen, Xia-Xia Ma, Yang Lu, Quan-Bing Liu, Li-Zhen Fan, Qiang Zhang. Stress Regulation on Atomic Bonding and Ionic Diffusivity: Mechanochemical Effects in Sulfide Solid Electrolytes. Energy & Fuels 2021, 35 (12) , 10210-10218. https://doi.org/10.1021/acs.energyfuels.1c00488
    39. Xining Zang, Shuo Wang, Ruopeng Zhang. Ultrathin Carbon Deficient Molybdenum Carbide (α-MoC1–x) Enables High-Rate Mg-Ion-based Energy Storage. The Journal of Physical Chemistry Letters 2021, 12 (18) , 4434-4439. https://doi.org/10.1021/acs.jpclett.1c00908
    40. Kavish Kaup, Kevin Bishop, Abdeljalil Assoud, Jue Liu, Linda F. Nazar. Fast Ion-Conducting Thioboracite with a Perovskite Topology and Argyrodite-like Lithium Substructure. Journal of the American Chemical Society 2021, 143 (18) , 6952-6961. https://doi.org/10.1021/jacs.1c00941
    41. Takahiro Ohkubo, Shingo Urata, Yutaka Imamura, Taketoshi Taniguchi, Nanae Ishioka, Masamichi Tanida, Eiji Tsuchida, Lu Deng, Jincheng Du. Modeling the Structure and Dynamics of Lithium Borosilicate Glasses with Ab Initio Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2021, 125 (15) , 8080-8089. https://doi.org/10.1021/acs.jpcc.1c00309
    42. Huanhuan Xie, Yu Qie, Imran Muhammad, Qiang Sun. B4 Cluster-Based 3D Porous Topological Metal as an Anode Material for Both Li- and Na-Ion Batteries with a Superhigh Capacity. The Journal of Physical Chemistry Letters 2021, 12 (5) , 1548-1553. https://doi.org/10.1021/acs.jpclett.0c03709
    43. Yongheum Lee, Jiwon Jeong, Hee-Dae Lim, Sang-Ok Kim, Hun-Gi Jung, Kyung Yoon Chung, Seungho Yu. Superionic Si-Substituted Lithium Argyrodite Sulfide Electrolyte Li6+xSb1–xSixS5I for All-Solid-State Batteries. ACS Sustainable Chemistry & Engineering 2021, 9 (1) , 120-128. https://doi.org/10.1021/acssuschemeng.0c05549
    44. Yuxiang Li, Shugo Daikuhara, Satoshi Hori, Xueying Sun, Kota Suzuki, Masaaki Hirayama, Ryoji Kanno. Oxygen Substitution for Li–Si–P–S–Cl Solid Electrolytes toward Purified Li10GeP2S12-Type Phase with Enhanced Electrochemical Stabilities for All-Solid-State Batteries. Chemistry of Materials 2020, 32 (20) , 8860-8867. https://doi.org/10.1021/acs.chemmater.0c02351
    45. E. Gilardi, G. Materzanini, L. Kahle, M. Döbeli, S. Lacey, X. Cheng, N. Marzari, D. Pergolesi, A. Hintennach, T. Lippert. Li4–xGe1–xPxO4, a Potential Solid-State Electrolyte for All-Oxide Microbatteries. ACS Applied Energy Materials 2020, 3 (10) , 9910-9917. https://doi.org/10.1021/acsaem.0c01601
    46. Qingshi Liu, Lanlan Xu, Junling Meng, Jian Meng, Xiaojuan Liu, Hongjie Zhang. Microscopic Mechanism Study of 4f Electrons’ Positive Effect on the Enhanced Proton Conduction in a Pr-Doped BaCeO3 Electrolyte. The Journal of Physical Chemistry C 2020, 124 (39) , 21232-21241. https://doi.org/10.1021/acs.jpcc.0c05067
    47. Jun Zhang, Lujie Li, Chao Zheng, Yang Xia, Yongping Gan, Hui Huang, Chu Liang, Xinping He, Xinyong Tao, Wenkui Zhang. Silicon-Doped Argyrodite Solid Electrolyte Li6PS5I with Improved Ionic Conductivity and Interfacial Compatibility for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces 2020, 12 (37) , 41538-41545. https://doi.org/10.1021/acsami.0c11683
    48. Cleber F. N. Marchiori, Rodrigo P. Carvalho, Mahsa Ebadi, Daniel Brandell, C. Moyses Araujo. Understanding the Electrochemical Stability Window of Polymer Electrolytes in Solid-State Batteries from Atomic-Scale Modeling: The Role of Li-Ion Salts. Chemistry of Materials 2020, 32 (17) , 7237-7246. https://doi.org/10.1021/acs.chemmater.0c01489
    49. Austin D. Sendek, Evan R. Antoniuk, Ekin D. Cubuk, Brandi Ransom, Brian E. Francisco, Josh Buettner-Garrett, Yi Cui, Evan J. Reed. Combining Superionic Conduction and Favorable Decomposition Products in the Crystalline Lithium–Boron–Sulfur System: A New Mechanism for Stabilizing Solid Li-Ion Electrolytes. ACS Applied Materials & Interfaces 2020, 12 (34) , 37957-37966. https://doi.org/10.1021/acsami.9b19091
    50. Dong-Xing Song, Lin Xie, Yu-Feng Zhang, Yang Lu, Meng An, Wei-Gang Ma, Xing Zhang. Multilayer Ion Load and Diffusion on TMD/MXene Heterostructure Anodes for Alkali-Ion Batteries. ACS Applied Energy Materials 2020, 3 (8) , 7699-7709. https://doi.org/10.1021/acsaem.0c01110
    51. Rusong Chen, Qinghao Li, Xiqian Yu, Liquan Chen, Hong Li. Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews 2020, 120 (14) , 6820-6877. https://doi.org/10.1021/acs.chemrev.9b00268
    52. Anton Van der Ven, Zhi Deng, Swastika Banerjee, Shyue Ping Ong. Rechargeable Alkali-Ion Battery Materials: Theory and Computation. Chemical Reviews 2020, 120 (14) , 6977-7019. https://doi.org/10.1021/acs.chemrev.9b00601
    53. Yirong Gao, Adelaide M. Nolan, Peng Du, Yifan Wu, Chao Yang, Qianli Chen, Yifei Mo, Shou-Hang Bo. Classical and Emerging Characterization Techniques for Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic Conductors. Chemical Reviews 2020, 120 (13) , 5954-6008. https://doi.org/10.1021/acs.chemrev.9b00747
    54. Kenji Homma, Yu Liu, Masato Sumita, Ryo Tamura, Naoki Fushimi, Junichi Iwata, Koji Tsuda, Chioko Kaneta. Optimization of a Heterogeneous Ternary Li3PO4–Li3BO3–Li2SO4 Mixture for Li-Ion Conductivity by Machine Learning. The Journal of Physical Chemistry C 2020, 124 (24) , 12865-12870. https://doi.org/10.1021/acs.jpcc.9b11654
    55. Xinmiao Liang, Yangming Jiang, Wuyao Cai, Shuaishuai Wu, Liying Wang, Zhenyu Lei, Junfei Chen, Youyi Lei, Li Yang, Jiwen Feng. New Li10GeP2S12 Structure Ordering and Li-Ion Dynamics Unveiled in Li4GeS4–Li3PS4 Superionic Conductors: A Solid-State Nuclear Magnetic Resonance Study. ACS Applied Materials & Interfaces 2020, 12 (24) , 27029-27036. https://doi.org/10.1021/acsami.0c03290
    56. Yu Qie, Shuo Wang, Sijie Fu, Huanhuan Xie, Qiang Sun, Puru Jena. Yttrium–Sodium Halides as Promising Solid-State Electrolytes with High Ionic Conductivity and Stability for Na-Ion Batteries. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3376-3383. https://doi.org/10.1021/acs.jpclett.0c00010
    57. Qiang Zhang, Liangting Cai, Gaozhan Liu, Qihua Li, Miao Jiang, Xiayin Yao. Selenium-Infused Ordered Mesoporous Carbon for Room-Temperature All-Solid-State Lithium–Selenium Batteries with Ultrastable Cyclability. ACS Applied Materials & Interfaces 2020, 12 (14) , 16541-16547. https://doi.org/10.1021/acsami.0c01996
    58. Jianwen Liang, Ning Chen, Xiaona Li, Xia Li, Keegan R. Adair, Junjie Li, Changhong Wang, Chuang Yu, Mohammad Norouzi Banis, Li Zhang, Shangqian Zhao, Shigang Lu, Huan Huang, Ruying Li, Yining Huang, Xueliang Sun. Li10Ge(P1–xSbx)2S12 Lithium-Ion Conductors with Enhanced Atmospheric Stability. Chemistry of Materials 2020, 32 (6) , 2664-2672. https://doi.org/10.1021/acs.chemmater.9b04764
    59. Kayahan Saritas, Eric R. Fadel, Boris Kozinsky, Jeffrey C. Grossman. Charge Density and Redox Potential of LiNiO2 Using Ab Initio Diffusion Quantum Monte Carlo. The Journal of Physical Chemistry C 2020, 124 (11) , 5893-5901. https://doi.org/10.1021/acs.jpcc.9b10372
    60. Daxian Cao, Yubin Zhang, Adelaide M. Nolan, Xiao Sun, Chao Liu, Jinzhi Sheng, Yifei Mo, Yan Wang, Hongli Zhu. Stable Thiophosphate-Based All-Solid-State Lithium Batteries through Conformally Interfacial Nanocoating. Nano Letters 2020, 20 (3) , 1483-1490. https://doi.org/10.1021/acs.nanolett.9b02678
    61. Guoping Gao, Fan Zheng, Lin-Wang Wang. Solid 3D Li–S Battery Design via Stacking 2D Conductive Microporous Coordination Polymers and Amorphous Li–S Layers. Chemistry of Materials 2020, 32 (5) , 1974-1982. https://doi.org/10.1021/acs.chemmater.9b04852
    62. Yohandys A. Zulueta, Minh Tho Nguyen, James A. Dawson. Na- and K-Doped Li2SiO3 as an Alternative Solid Electrolyte for Solid-State Lithium Batteries. The Journal of Physical Chemistry C 2020, 124 (9) , 4982-4988. https://doi.org/10.1021/acs.jpcc.9b10003
    63. Kyungju Nam, Hoje Chun, Jeemin Hwang, Byungchan Han. First-Principles Design of Highly Functional Sulfide Electrolyte of Li10−xSnP2S12−xClx for All Solid-State Li-Ion Battery Applications. ACS Sustainable Chemistry & Engineering 2020, 8 (8) , 3321-3327. https://doi.org/10.1021/acssuschemeng.9b07166
    64. Arup Chakraborty, Sooraj Kunnikuruvan, Sandeep Kumar, Boris Markovsky, Doron Aurbach, Mudit Dixit, Dan Thomas Major. Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2. Chemistry of Materials 2020, 32 (3) , 915-952. https://doi.org/10.1021/acs.chemmater.9b04066
    65. Bingkai Zhang, Zhan Lin, Lin-Wang Wang, Feng Pan. Achieving Both High Ionic Conductivity and High Interfacial Stability with the Li2+xC1–xBxO3 Solid-State Electrolyte: Design from Theoretical Calculations. ACS Applied Materials & Interfaces 2020, 12 (5) , 6007-6014. https://doi.org/10.1021/acsami.9b22185
    66. Birane Fall, Prabhat Prakash, Michael R. Gau, Stephanie L. Wunder, Arun Venkatnathan, Michael J. Zdilla. Experimental and Theoretical Investigation of the Ion Conduction Mechanism of Tris(adiponitrile)perchloratosodium, a Self-Binding, Melt-Castable Crystalline Sodium Electrolyte. Chemistry of Materials 2019, 31 (21) , 8850-8863. https://doi.org/10.1021/acs.chemmater.9b02853
    67. Kyungbae Oh, Donghee Chang, Inchul Park, Kyungho Yoon, Kisuk Kang. First-Principles Investigations on Sodium Superionic Conductor Na11Sn2PS12. Chemistry of Materials 2019, 31 (16) , 6066-6075. https://doi.org/10.1021/acs.chemmater.8b04965
    68. Fiaz Hussain, Pai Li, Zhenyu Li. Theoretical Insights into Li-Ion Transport in LiTa2PO8. The Journal of Physical Chemistry C 2019, 123 (32) , 19282-19287. https://doi.org/10.1021/acs.jpcc.9b03313
    69. Syed Atif Pervez, Musa Ali Cambaz, Venkataraman Thangadurai, Maximilian Fichtner. Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook. ACS Applied Materials & Interfaces 2019, 11 (25) , 22029-22050. https://doi.org/10.1021/acsami.9b02675
    70. Rui Iwasaki, Satoshi Hori, Ryoji Kanno, Takeshi Yajima, Daigorou Hirai, Yuki Kato, Zenji Hiroi. Weak Anisotropic Lithium-Ion Conductivity in Single Crystals of Li10GeP2S12. Chemistry of Materials 2019, 31 (10) , 3694-3699. https://doi.org/10.1021/acs.chemmater.9b00420
    71. Nicolò Minafra, Sean P. Culver, Cheng Li, Anatoliy Senyshyn, Wolfgang G. Zeier. Influence of the Lithium Substructure on the Diffusion Pathways and Transport Properties of the Thio-LISICON Li4Ge1–xSnxS4. Chemistry of Materials 2019, 31 (10) , 3794-3802. https://doi.org/10.1021/acs.chemmater.9b01059
    72. Makoto Inagaki, Kota Suzuki, Satoshi Hori, Kazuhiro Yoshino, Naoki Matsui, Masao Yonemura, Masaaki Hirayama, Ryoji Kanno. Conduction Mechanism of Li10GeP2S12-type Lithium Superionic Conductors in a Li–Sn–Si–P–S System. Chemistry of Materials 2019, 31 (9) , 3485-3490. https://doi.org/10.1021/acs.chemmater.9b00743
    73. Sascha Harm, Anna-Katharina Hatz, Igor Moudrakovski, Roland Eger, Alexander Kuhn, Constantin Hoch, Bettina V. Lotsch. Lesson Learned from NMR: Characterization and Ionic Conductivity of LGPS-like Li7SiPS8. Chemistry of Materials 2019, 31 (4) , 1280-1288. https://doi.org/10.1021/acs.chemmater.8b04051
    74. Jin Zheng, Pengbo Wang, Haoyu Liu, Yan-Yan Hu. Interface-Enabled Ion Conduction in Li10GeP2S12–Poly(ethylene Oxide) Hybrid Electrolytes. ACS Applied Energy Materials 2019, 2 (2) , 1452-1459. https://doi.org/10.1021/acsaem.8b02008
    75. Donghee Chang, Kyungbae Oh, Sung Joo Kim, Kisuk Kang. Super-Ionic Conduction in Solid-State Li7P3S11-Type Sulfide Electrolytes. Chemistry of Materials 2018, 30 (24) , 8764-8770. https://doi.org/10.1021/acs.chemmater.8b03000
    76. Tim Bernges, Sean P. Culver, Nicolò Minafra, Raimund Koerver, Wolfgang G. Zeier. Competing Structural Influences in the Li Superionic Conducting Argyrodites Li6PS5–xSexBr (0 ≤ x ≤ 1) upon Se Substitution. Inorganic Chemistry 2018, 57 (21) , 13920-13928. https://doi.org/10.1021/acs.inorgchem.8b02443
    77. Zhen-Ming Xu, Shou-Hang Bo, Hong Zhu. LiCrS2 and LiMnS2 Cathodes with Extraordinary Mixed Electron–Ion Conductivities and Favorable Interfacial Compatibilities with Sulfide Electrolyte. ACS Applied Materials & Interfaces 2018, 10 (43) , 36941-36953. https://doi.org/10.1021/acsami.8b12026
    78. Thorben Krauskopf, Sokseiha Muy, Sean P. Culver, Saneyuki Ohno, Olivier Delaire, Yang Shao-Horn, Wolfgang G. Zeier. Comparing the Descriptors for Investigating the Influence of Lattice Dynamics on Ionic Transport Using the Superionic Conductor Na3PS4–xSex. Journal of the American Chemical Society 2018, 140 (43) , 14464-14473. https://doi.org/10.1021/jacs.8b09340
    79. Valentina Lacivita, Nongnuch Artrith, Gerbrand Ceder. Structural and Compositional Factors That Control the Li-Ion Conductivity in LiPON Electrolytes. Chemistry of Materials 2018, 30 (20) , 7077-7090. https://doi.org/10.1021/acs.chemmater.8b02812
    80. Ji-Su Kim, Wo Dum Jung, Sungjun Choi, Ji-Won Son, Byung-Kook Kim, Jong-Ho Lee, Hyoungchul Kim. Thermally Induced S-Sublattice Transition of Li3PS4 for Fast Lithium-Ion Conduction. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5592-5597. https://doi.org/10.1021/acs.jpclett.8b01989
    81. Kyungbae Oh, Donghee Chang, Byungju Lee, Do-Hoon Kim, Gabin Yoon, Inchul Park, Byunghoon Kim, Kisuk Kang. Native Defects in Li10GeP2S12 and Their Effect on Lithium Diffusion. Chemistry of Materials 2018, 30 (15) , 4995-5004. https://doi.org/10.1021/acs.chemmater.8b01163
    82. Sean P. Culver, Raimund Koerver, Thorben Krauskopf, Wolfgang G. Zeier. Designing Ionic Conductors: The Interplay between Structural Phenomena and Interfaces in Thiophosphate-Based Solid-State Batteries. Chemistry of Materials 2018, 30 (13) , 4179-4192. https://doi.org/10.1021/acs.chemmater.8b01293
    83. Qiang Bai, Xingfeng He, Yizhou Zhu, Yifei Mo. First-Principles Study of Oxyhydride H– Ion Conductors: Toward Facile Anion Conduction in Oxide-Based Materials. ACS Applied Energy Materials 2018, 1 (4) , 1626-1634. https://doi.org/10.1021/acsaem.8b00077
    84. Thorben Krauskopf, Sean P. Culver, Wolfgang G. Zeier. Local Tetragonal Structure of the Cubic Superionic Conductor Na3PS4. Inorganic Chemistry 2018, 57 (8) , 4739-4744. https://doi.org/10.1021/acs.inorgchem.8b00458
    85. Naoki Suzuki, William D. Richards, Yan Wang, Lincoln J. Miara, Jae Chul Kim, In-Sun Jung, Tomoyuki Tsujimura, Gerbrand Ceder. Synthesis and Electrochemical Properties of I4̅-Type Li1+2xZn1–xPS4 Solid Electrolyte. Chemistry of Materials 2018, 30 (7) , 2236-2244. https://doi.org/10.1021/acs.chemmater.7b03833
    86. Thorben Krauskopf, Sean P. Culver, Wolfgang G. Zeier. Bottleneck of Diffusion and Inductive Effects in Li10Ge1–xSnxP2S12. Chemistry of Materials 2018, 30 (5) , 1791-1798. https://doi.org/10.1021/acs.chemmater.8b00266
    87. Yuxing Wang, Dongping Lu, Mark Bowden, Patrick Z. El Khoury, Kee Sung Han, Zhiqun Daniel Deng, Jie Xiao, Ji-Guang Zhang, and Jun Liu . Mechanism of Formation of Li7P3S11 Solid Electrolytes through Liquid Phase Synthesis. Chemistry of Materials 2018, 30 (3) , 990-997. https://doi.org/10.1021/acs.chemmater.7b04842
    88. Kavish Kaup, Fabien Lalère, Ashfia Huq, Abhinandan Shyamsunder, Torben Adermann, Pascal Hartmann, and Linda F. Nazar . Correlation of Structure and Fast Ion Conductivity in the Solid Solution Series Li1+2xZn1–xPS4. Chemistry of Materials 2018, 30 (3) , 592-596. https://doi.org/10.1021/acs.chemmater.7b05108
    89. Sangryun Kim, Naoki Toyama, Hiroyuki Oguchi, Toyoto Sato, Shigeyuki Takagi, Tamio Ikeshoji, and Shin-ichi Orimo . Fast Lithium-Ion Conduction in Atom-Deficient closo-Type Complex Hydride Solid Electrolytes. Chemistry of Materials 2018, 30 (2) , 386-391. https://doi.org/10.1021/acs.chemmater.7b03986
    90. Hanmei Tang, Zhi Deng, Zhuonan Lin, Zhenbin Wang, Iek-Heng Chu, Chi Chen, Zhuoying Zhu, Chen Zheng, and Shyue Ping Ong . Probing Solid–Solid Interfacial Reactions in All-Solid-State Sodium-Ion Batteries with First-Principles Calculations. Chemistry of Materials 2018, 30 (1) , 163-173. https://doi.org/10.1021/acs.chemmater.7b04096
    91. Ziheng Lu and Francesco Ciucci . Metal Borohydrides as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A First-Principles Study. Chemistry of Materials 2017, 29 (21) , 9308-9319. https://doi.org/10.1021/acs.chemmater.7b03284
    92. Yan Wang, William D. Richards, Shou-Hang Bo, Lincoln J. Miara, and Gerbrand Ceder . Computational Prediction and Evaluation of Solid-State Sodium Superionic Conductors Na7P3X11 (X = O, S, Se). Chemistry of Materials 2017, 29 (17) , 7475-7482. https://doi.org/10.1021/acs.chemmater.7b02476
    93. SeyedHosein Payandeh GharibDoust, Matteo Brighi, Yolanda Sadikin, Dorthe B. Ravnsbæk, Radovan Černý, Jørgen Skibsted, and Torben R. Jensen . Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I. The Journal of Physical Chemistry C 2017, 121 (35) , 19010-19021. https://doi.org/10.1021/acs.jpcc.7b04905
    94. Maxim Arsentev, Alexander Missyul, Andrey V. Petrov, and Mahmoud Hammouri . TiS3 Magnesium Battery Material: Atomic-Scale Study of Maximum Capacity and Structural Behavior. The Journal of Physical Chemistry C 2017, 121 (29) , 15509-15515. https://doi.org/10.1021/acs.jpcc.7b01575
    95. Sen Xin, Ya You, Shaofei Wang, Hong-Cai Gao, Ya-Xia Yin, and Yu-Guo Guo . Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects. ACS Energy Letters 2017, 2 (6) , 1385-1394. https://doi.org/10.1021/acsenergylett.7b00175
    96. Xinyong Tao, Yayuan Liu, Wei Liu, Guangmin Zhou, Jie Zhao, Dingchang Lin, Chenxi Zu, Ouwei Sheng, Wenkui Zhang, Hyun-Wook Lee, and Yi Cui . Solid-State Lithium–Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer. Nano Letters 2017, 17 (5) , 2967-2972. https://doi.org/10.1021/acs.nanolett.7b00221
    97. Chen Ling and Koji Suto . Thermodynamic Origin of Irreversible Magnesium Trapping in Chevrel Phase Mo6S8: Importance of Magnesium and Vacancy Ordering. Chemistry of Materials 2017, 29 (8) , 3731-3739. https://doi.org/10.1021/acs.chemmater.7b00772
    98. Lingzi Sang, Richard T. Haasch, Andrew A. Gewirth, and Ralph G. Nuzzo . Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping. Chemistry of Materials 2017, 29 (7) , 3029-3037. https://doi.org/10.1021/acs.chemmater.7b00034
    99. Zhuoying Zhu, Iek-Heng Chu, and Shyue Ping Ong . Li3Y(PS4)2 and Li5PS4Cl2: New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations. Chemistry of Materials 2017, 29 (6) , 2474-2484. https://doi.org/10.1021/acs.chemmater.6b04049
    100. Kevin Leung . First-Principles Modeling of Mn(II) Migration above and Dissolution from LixMn2O4 (001) Surfaces. Chemistry of Materials 2017, 29 (6) , 2550-2562. https://doi.org/10.1021/acs.chemmater.6b04429
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect