ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Enhanced Cyclability of Lithium–Sulfur Batteries by a Polymer Acid-Doped Polypyrrole Mixed Ionic–Electronic Conductor

View Author Information
Electrochemical Energy Laboratory & Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
*Tel: +1-512-471-1791. Fax: +1-512-471-7681. E-mail: [email protected]
Cite this: Chem. Mater. 2012, 24, 15, 3081–3087
Publication Date (Web):July 23, 2012
https://doi.org/10.1021/cm301661y
Copyright © 2012 American Chemical Society

    Article Views

    4320

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)

    Abstract

    Abstract Image

    A mixed ionic–electronic conductor (MIEC) of polypyrrole (PPy) synthesized with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAAMPSA), which is water-dispersible and is in the form of nanoparticles intertwined by the PAAMPSA, is explored as an additive in sulfur cathodes for rechargeable lithium–sulfur (Li–S) batteries. A S-MIEC composite containing a sulfur content of 75 wt % was synthesized by an in situ deposition of sulfur with MIEC. The sulfur retains an orthorhombic phase randomly mixed with MIEC nanoparticles, exhibiting a lower thermal decomposition temperature than the pristine sulfur. Cathodes containing the S-MIEC composite were prepared and evaluated in half cells by cyclic voltammetry and galvanostatic cycling. The S-MIEC composite cathode shows excellent electrochemical stability as the MIEC facilitates ion and electron transfer and capture intermediate polysulfides within the electrodes. The MIEC in the composite electrodes forms a porous, 3D heterostructure providing good electrochemical contact upon cycling as indicated by scanning electron microscopy and electrochemical impedance spectroscopy. The sulfur in the S-MIEC composite retains a capacity of >600 mA h g–1 at low rates and 500 mA h g–1 at 1C after 50 cycles.

    Cited By

    This article is cited by 165 publications.

    1. Alicia M. Battaglia, Paniz Pahlavanlu, Eloi Grignon, So Young An, Dwight S. Seferos. High Active Material Loading in Organic Electrodes Enabled by a Multifunctional Binder. ACS Applied Materials & Interfaces 2022, 14 (37) , 42298-42307. https://doi.org/10.1021/acsami.2c10070
    2. Hongjing Gao, Nanping Deng, Gang Wang, Xiaoxiao Wang, Yarong Liu, Lugang Zhang, Yajing Liang, Jing Yan, Bowen Cheng, Weimin Kang. Overview of the Latest Developments and Perspectives about Noncarbon Sulfur Host Materials for High Performance Lithium–Sulfur Batteries. Energy & Fuels 2022, 36 (14) , 7284-7320. https://doi.org/10.1021/acs.energyfuels.2c01211
    3. Pratyusha Das, Rodrigo Elizalde-Segovia, Billal Zayat, Charlene Z. Salamat, Gordon Pace, Kuan Zhai, Rebecca C. Vincent, Bruce S. Dunn, Rachel A. Segalman, Sarah H. Tolbert, Sri R. Narayan, Barry C. Thompson. Enhancing the Ionic Conductivity of Poly(3,4-propylenedioxythiophenes) with Oligoether Side Chains for Use as Conductive Cathode Binders in Lithium-Ion Batteries. Chemistry of Materials 2022, 34 (6) , 2672-2686. https://doi.org/10.1021/acs.chemmater.1c03971
    4. Fei Dong, Chengxin Peng, Hongyi Xu, Yuxin Zheng, Hongfei Yao, Junhe Yang, Shiyou Zheng. Lithiated Sulfur-Incorporated, Polymeric Cathode for Durable Lithium–Sulfur Batteries with Promoted Redox Kinetics. ACS Nano 2021, 15 (12) , 20287-20299. https://doi.org/10.1021/acsnano.1c08449
    5. Siddhartha Akkiraju, John Vergados, Laura Hoagland, Zijie Lu, Venkataramani Anandan, Bryan W. Boudouris. Design of Mixed Electron- and Ion-Conducting Radical Polymer-Based Blends. Macromolecules 2021, 54 (11) , 5178-5186. https://doi.org/10.1021/acs.macromol.1c00113
    6. Wenli Wei, Jinmei Li, Dong Liu, Changou Pan, Peng Liu. Well-Defined Hierarchically Porous Double-Shell Hollow Polypyrrole@Sulfur Microspheres with Outer Sulfur Shells for Lithium–Sulfur Batteries with Superior Electrochemical Performance. Energy & Fuels 2020, 34 (6) , 7676-7683. https://doi.org/10.1021/acs.energyfuels.0c01163
    7. Gan Qu, Jiewen Tan, Hongru Wu, Zhaozhe Yu, Shengliang Zhang, Guangyou Liu, Guangyuan Wesley Zheng, Bingbing Tian, Chenliang Su. Synergistic Effect of Salinized Quinone for Entrapment of Polysulfides for High-Performance Li–S Batteries. ACS Applied Materials & Interfaces 2020, 12 (21) , 23867-23873. https://doi.org/10.1021/acsami.0c03621
    8. Jiheon Kim, Ahmed Elabd, Sung-Yoon Chung, Ali Coskun, Jang Wook Choi. Covalent Triazine Frameworks Incorporating Charged Polypyrrole Channels for High-Performance Lithium–Sulfur Batteries. Chemistry of Materials 2020, 32 (10) , 4185-4193. https://doi.org/10.1021/acs.chemmater.0c00246
    9. Dong Chen, Xin-Yang Yue, Xun-Lu Li, Jian Bao, Qi-Qi Qiu, Xiao-Jing Wu, Xin Zhang, Yong-Ning Zhou. Freestanding Double-Layer MoO3/CNT@S Membrane: A Promising Flexible Cathode for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2020, 12 (2) , 2354-2361. https://doi.org/10.1021/acsami.9b17200
    10. Chen Chen, Kan Li, Chen Li, Tonghua Sun, Jinping Jia. Combination of Pd–Cu Catalysis and Electrolytic H2 Evolution for Selective Nitrate Reduction Using Protonated Polypyrrole as a Cathode. Environmental Science & Technology 2019, 53 (23) , 13868-13877. https://doi.org/10.1021/acs.est.9b04447
    11. Haiping Su, Chengyin Fu, Yifan Zhao, Donghui Long, Licheng Ling, Bryan M. Wong, Jun Lu, and Juchen Guo . Polycation Binders: An Effective Approach toward Lithium Polysulfide Sequestration in Li–S Batteries. ACS Energy Letters 2017, 2 (11) , 2591-2597. https://doi.org/10.1021/acsenergylett.7b00779
    12. Joshua Lochala, Dianying Liu, Bingbin Wu, Cynthia Robinson, and Jie Xiao . Research Progress toward the Practical Applications of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2017, 9 (29) , 24407-24421. https://doi.org/10.1021/acsami.7b06208
    13. Shuaibo Zeng, Ligui Li, Dengke Zhao, Ji Liu, Wenhan Niu, Nan Wang, and Shaowei Chen . Polymer-Capped Sulfur Copolymers as Lithium–Sulfur Battery Cathode: Enhanced Performance by Combined Contributions of Physical and Chemical Confinements. The Journal of Physical Chemistry C 2017, 121 (5) , 2495-2503. https://doi.org/10.1021/acs.jpcc.6b09543
    14. Li Sun, Datao Wang, Yufeng Luo, Ke Wang, Weibang Kong, Yang Wu, Lina Zhang, Kaili Jiang, Qunqing Li, Yihe Zhang, Jiaping Wang, and Shoushan Fan . Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Electrode for High-Performance Lithium–Sulfur Batteries. ACS Nano 2016, 10 (1) , 1300-1308. https://doi.org/10.1021/acsnano.5b06675
    15. Yi Cui and Yongzhu Fu . Enhanced Cyclability of Li/Polysulfide Batteries by a Polymer-Modified Carbon Paper Current Collector. ACS Applied Materials & Interfaces 2015, 7 (36) , 20369-20376. https://doi.org/10.1021/acsami.5b06214
    16. Hao Hu, Haoyan Cheng, Zhengfei Liu, Guojian Li, Qianchen Zhu, and Ying Yu . In Situ Polymerized PAN-Assisted S/C Nanosphere with Enhanced High-Power Performance as Cathode for Lithium/Sulfur Batteries. Nano Letters 2015, 15 (8) , 5116-5123. https://doi.org/10.1021/acs.nanolett.5b01294
    17. Sheng-Heng Chung, Richa Singhal, Vibha Kalra, and Arumugam Manthiram . Porous Carbon Mat as an Electrochemical Testing Platform for Investigating the Polysulfide Retention of Various Cathode Configurations in Li–S Cells. The Journal of Physical Chemistry Letters 2015, 6 (12) , 2163-2169. https://doi.org/10.1021/acs.jpclett.5b00927
    18. Manik E. Bhosale and Kothandam Krishnamoorthy . Chemically Reduced Organic Small-Molecule-Based Lithium Battery with Improved Efficiency. Chemistry of Materials 2015, 27 (6) , 2121-2126. https://doi.org/10.1021/cm5046786
    19. Sanghyun Lim, Roshni Lilly Thankamony, Taeeun Yim, Hodong Chu, Young-Jun Kim, Junyoung Mun, and Tae-Hyun Kim . Surface Modification of Sulfur Electrodes by Chemically Anchored Cross-Linked Polymer Coating for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2015, 7 (3) , 1401-1405. https://doi.org/10.1021/am508528p
    20. Arumugam Manthiram, Yongzhu Fu, Sheng-Heng Chung, Chenxi Zu, and Yu-Sheng Su . Rechargeable Lithium–Sulfur Batteries. Chemical Reviews 2014, 114 (23) , 11751-11787. https://doi.org/10.1021/cr500062v
    21. Zhian Zhang, Qiang Li, Yanqing Lai, and Jie Li . Confine Sulfur in Polyaniline-Decorated Hollow Carbon Nanofiber Hybrid Nanostructure for Lithium–Sulfur Batteries. The Journal of Physical Chemistry C 2014, 118 (25) , 13369-13376. https://doi.org/10.1021/jp5005117
    22. Gui-Liang Xu, Yue-Feng Xu, Jun-Chuan Fang, Xin-Xing Peng, Fang Fu, Ling Huang, Jun-Tao Li, and Shi-Gang Sun . Porous Graphitic Carbon Loading Ultra High Sulfur as High-Performance Cathode of Rechargeable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2013, 5 (21) , 10782-10793. https://doi.org/10.1021/am402970x
    23. Jared F. Mike and Jodie L. Lutkenhaus . Electrochemically Active Polymers for Electrochemical Energy Storage: Opportunities and Challenges. ACS Macro Letters 2013, 2 (9) , 839-844. https://doi.org/10.1021/mz400329j
    24. Arumugam Manthiram, Yongzhu Fu, and Yu-Sheng Su . Challenges and Prospects of Lithium–Sulfur Batteries. Accounts of Chemical Research 2013, 46 (5) , 1125-1134. https://doi.org/10.1021/ar300179v
    25. Guowei Yu, Chen-Yang Wang, Wenda Dong, Ya-Wen Tian, Zhaoyun Wang, Jingyi Lu, Pu Hu, Yong Liu, Min Yan, Yu Li, Zhitian Liu. Anion-doped polypyrrole three-dimensional framework enables adsorption and conversion in lithium–sulfur batteries. Journal of Colloid and Interface Science 2024, 654 , 201-211. https://doi.org/10.1016/j.jcis.2023.10.033
    26. Prasenjit Sarkar, Ashwin Chaturvedi, Rajeev K. Gautam, Nilakshi Devi, Soumalya Sinha. Immobilization strategies for carbon electrode materials. 2023, 121-151. https://doi.org/10.1039/BK9781839169366-00121
    27. Long Zhang, Yanglong Hou. The Rise and Development of MOF‐Based Materials for Metal‐Chalcogen Batteries: Current Status, Challenges, and Prospects. Advanced Energy Materials 2023, 13 (20) https://doi.org/10.1002/aenm.202204378
    28. . Redox‐Active, Sulfur‐Containing Polymers. 2023, 203-254. https://doi.org/10.1002/9783527843466.ch5
    29. Natsuki Nakamura, Seongki Ahn, Toshiyuki Momma, Tetsuya Osaka. Future potential for lithium-sulfur batteries. Journal of Power Sources 2023, 558 , 232566. https://doi.org/10.1016/j.jpowsour.2022.232566
    30. Lufei Wang, Mengmeng Zhen, Zhenzhong Hu. Status and prospects of electrocatalysts for lithium-sulfur battery under lean electrolyte and high sulfur loading conditions. Chemical Engineering Journal 2023, 452 , 139344. https://doi.org/10.1016/j.cej.2022.139344
    31. Haoran Wang, Bowen Zhang, Romy Dop, Peiyao Yan, Alex R. Neale, Laurence J. Hardwick, Tom Hasell. Oxygen heteroatom enhanced sulfur-rich polymers synthesized by inverse vulcanization for high-performance lithium-sulfur batteries. Journal of Power Sources 2022, 545 , 231921. https://doi.org/10.1016/j.jpowsour.2022.231921
    32. Jing Wang, Wanhong Zhang, Huijie Wei, Xiaoliang Zhai, Fei Wang, Yazhou Zhou, Feng Tao, Penghui Zhai, Wei Liu, Yong Liu. Recent advances and perspectives in conductive-polymer-based composites as cathode materials for high-performance lithium–sulfur batteries. Sustainable Energy & Fuels 2022, 6 (12) , 2901-2923. https://doi.org/10.1039/D2SE00254J
    33. Erabhoina Harimohan, Katchala Nanaji, Boyapati Venkat Appa Rao, Tata Narasinga Rao. A facile one‐step synthesis of bio‐inspired porous graphitic carbon sheets for improved lithium‐sulfur battery performance. International Journal of Energy Research 2022, 46 (4) , 4339-4351. https://doi.org/10.1002/er.7430
    34. Fernando Luna-Lama, Alvaro Caballero, Julián Morales. Synergistic effect between PPy:PSS copolymers and biomass-derived activated carbons: a simple strategy for designing sustainable high-performance Li–S batteries. Sustainable Energy & Fuels 2022, 6 (6) , 1568-1586. https://doi.org/10.1039/D1SE02052H
    35. Yanqi Feng, Hui Liu, Qiongqiong Lu, Yi Liu, Junqi Li, Xuanmeng He, Xiaoxu Liu, Daria Mikhailova. Designing hierarchical MnO/polypyrrole heterostructures to couple polysulfides adsorption and electrocatalysis in lithium-sulfur batteries. Journal of Power Sources 2022, 520 , 230885. https://doi.org/10.1016/j.jpowsour.2021.230885
    36. Mingkai Li, Yingming Wang, Shuzheng Sun, Yanqin Yang, Guoxian Gu, Zisheng Zhang. Rational design of an Allyl-rich Triazine-based covalent organic framework host used as efficient cathode materials for Li-S batteries. Chemical Engineering Journal 2022, 429 , 132254. https://doi.org/10.1016/j.cej.2021.132254
    37. Shihong Dong, Hongji Liu, Yingzhen Hu, Shaokun Chong. Cathode Materials for Rechargeable Lithium‐Sulfur Batteries: Current Progress and Future Prospects. ChemElectroChem 2022, 9 (2) https://doi.org/10.1002/celc.202101564
    38. Baohua Li, Yuanming Liu. Physical and Chemical Adsorption of Polysulfides. 2022, 111-163. https://doi.org/10.1007/978-3-030-90899-7_4
    39. Hong Liu, Peng Zeng, Hao Yu, Xi Zhou, Zhi Li, Manfang Chen, Changqing Miao, Gairong Chen, Tianjing Wu, Xianyou Wang. Enhancing the electrochemical performances of Li2S-based cathode through conductive interface design and addition of mixed conductive materials. Electrochimica Acta 2021, 396 , 139238. https://doi.org/10.1016/j.electacta.2021.139238
    40. K. A. Niradha Sachinthani, Jenny R. Panchuk, Yuhang Wang, Tong Zhu, Edward H. Sargent, Dwight S. Seferos. Thiophene- and selenophene-based conjugated polymeric mixed ionic/electronic conductors. The Journal of Chemical Physics 2021, 155 (13) https://doi.org/10.1063/5.0064858
    41. . Electrical Applications. 2021, 137-195. https://doi.org/10.1002/9781119851547.ch5
    42. Sungjemmenla, Chhail Bihari Soni, S. K. Vineeth, Vipin Kumar. Unveiling the physiochemical aspects of the matrix in improving sulfur-loading for room-temperature sodium–sulfur batteries. Materials Advances 2021, 2 (13) , 4165-4189. https://doi.org/10.1039/D1MA00247C
    43. Hadar Frankenstein, Eyal Stein, Mikhail Stolov, Maria Koifman Khristosov, Viatcheslav Freger, Gitti L. Frey. Blends of polymer semiconductor and polymer electrolyte for mixed ionic and electronic conductivity. Journal of Materials Chemistry C 2021, 9 (24) , 7765-7777. https://doi.org/10.1039/D1TC00916H
    44. Ningyuan Nie, Mengmeng Hu, Jie Liu, Jiangqi Wang, Panpan Wang, Hua Wang, Zhenyuan Ji, Zhe Chen, Yan Huang. The Application of Polymer Nanocomposites in Energy Storage Devices. 2021, 157-187. https://doi.org/10.1002/9783527826490.ch6
    45. Yihan Xu, Dong Zheng, Weixiao Ji, Nidal Abu-Zahra, Deyang Qu. A molecular dynamics study of the binding effectiveness between undoped conjugated polymer binders and tetra-sulfides in lithium–sulfur batteries. Composites Part B: Engineering 2021, 206 , 108531. https://doi.org/10.1016/j.compositesb.2020.108531
    46. Eric R. Wolfson, Erica M. Moscarello, William K. Haug, Psaras L. McGrier. Covalent Organic Frameworks as Electrode Materials for Rechargeable Batteries. Organic Materials 2021, 03 (01) , 067-089. https://doi.org/10.1055/s-0041-1723020
    47. Manu Patel U.M.. Influence of polymers on carbon-based composites in energy storage applications. 2021, 249-264. https://doi.org/10.1016/B978-0-12-818484-4.00008-2
    48. Jonathan K. Harris, Erin L. Ratcliff. Ion diffusion coefficients in poly(3-alkylthiophenes) for energy conversion and biosensing: role of side-chain length and microstructure. Journal of Materials Chemistry C 2020, 8 (38) , 13319-13327. https://doi.org/10.1039/D0TC03690K
    49. Yoon Hwa, Elton J. Cairns. Nanostructured Sulfur and Sulfides for Advanced Lithium/Sulfur Cells. ChemElectroChem 2020, 7 (19) , 3927-3942. https://doi.org/10.1002/celc.202000758
    50. Omer Eroglu, Maryam Sadat Kiai, Huseyin Kizil. Glass fiber separator coated by boron doped anatase TiO2 for high-rate Li–S battery. Materials Research Bulletin 2020, 129 , 110917. https://doi.org/10.1016/j.materresbull.2020.110917
    51. Joseph John, M. Manoj, A. Abhilash, S. Jayalekshmi. Sulfur/polypyrrole composite cathodes for applications in high energy density lithium–sulfur cells. Journal of Materials Science: Materials in Electronics 2020, 31 (16) , 13926-13938. https://doi.org/10.1007/s10854-020-03952-0
    52. Mariano Romero, Dominique Mombrú, Fernando Pignanelli, Ricardo Faccio, Alvaro W. Mombrú. Mini-Review: Mixed Ionic–Electronic Charge Carrier Localization and Transport in Hybrid Organic–Inorganic Nanomaterials. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00537
    53. Hao Li, Dan Liu, Xinxin Zhu, Deyu Qu, Zhizhong Xie, Junsheng Li, Haolin Tang, Dong Zheng, Deyang Qu. Integrated 3D electrodes based on metal-nitrogen-doped graphitic ordered mesoporous carbon and carbon paper for high-loading lithium-sulfur batteries. Nano Energy 2020, 73 , 104763. https://doi.org/10.1016/j.nanoen.2020.104763
    54. Lei Huang, Jiaojiao Li, Bo Liu, Yahao Li, Shenghui Shen, Shengjue Deng, Chengwei Lu, Wenkui Zhang, Yang Xia, Guoxiang Pan, Xiuli Wang, Qinqin Xiong, Xinhui Xia, Jiangping Tu. Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional Materials 2020, 30 (22) https://doi.org/10.1002/adfm.201910375
    55. Zhiyan Kou, Chengjin Liu, Chang Miao, Ping Mei, Xuemin Yan, Wei Xiao. High-performance gel polymer electrolytes using P(VDF-HFP) doped with appropriate porous carbon powders as the matrix for lithium-ion batteries. Ionics 2020, 26 (4) , 1729-1737. https://doi.org/10.1007/s11581-020-03522-8
    56. Vikram Bharti, Ananya Gangadharan, Tata N. Rao, Chandra S. Sharma. Carbon soot over layered sulfur impregnated coconut husk derived carbon: An efficient polysulfide suppressor for lithium sulfur battery. Materials Today Communications 2020, 22 , 100717. https://doi.org/10.1016/j.mtcomm.2019.100717
    57. Sahebrao More, Nageshwar Khupse, Manik Bhosale, Jalindar Ambekar, Milind Kulkarni, Bharat Kale. Hierarchical Nanostructured Benzoic Naphthalene Tetracarboxylic Di‐imide Organic Cathode for Lithium Ion Battery. ChemistrySelect 2020, 5 (7) , 2157-2163. https://doi.org/10.1002/slct.201904741
    58. Xiaodong Hong, Yue Liu, Yang Li, Xu Wang, Jiawei Fu, Xuelei Wang. Application Progress of Polyaniline, Polypyrrole and Polythiophene in Lithium-Sulfur Batteries. Polymers 2020, 12 (2) , 331. https://doi.org/10.3390/polym12020331
    59. Rubai Luo, Haibin Li, Bin Du, Shisheng Zhou, Yuxiang Zhu. A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT:PSS-PDMS blends. Organic Electronics 2020, 76 , 105451. https://doi.org/10.1016/j.orgel.2019.105451
    60. Haritha Hareendrakrishnakumar, Reshma Chulliyote, Mary Gladis Joseph, Shruti Suriyakumar, Arul Manuel Stephan. Sulfonic groups stemmed ionic shield for polysulfides towards high performance Li–S batteries. Electrochimica Acta 2019, 321 , 134697. https://doi.org/10.1016/j.electacta.2019.134697
    61. Tao Li, Xue Bai, Umair Gulzar, Yu‐Jun Bai, Claudio Capiglia, Wei Deng, Xufeng Zhou, Zhaoping Liu, Zhifu Feng, Remo Proietti Zaccaria. A Comprehensive Understanding of Lithium–Sulfur Battery Technology. Advanced Functional Materials 2019, 29 (32) https://doi.org/10.1002/adfm.201901730
    62. Jiarui He, Arumugam Manthiram. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Materials 2019, 20 , 55-70. https://doi.org/10.1016/j.ensm.2019.04.038
    63. Qianqian Fan, Baohua Li, Yubing Si, Yongzhu Fu. Lowering the charge overpotential of Li 2 S via the inductive effect of phenyl diselenide in Li–S batteries. Chemical Communications 2019, 55 (53) , 7655-7658. https://doi.org/10.1039/C8CC09565E
    64. Junling Guo, Jinping Liu. A binder-free electrode architecture design for lithium–sulfur batteries: a review. Nanoscale Advances 2019, 1 (6) , 2104-2122. https://doi.org/10.1039/C9NA00040B
    65. Jonathan W. Onorato, Christine K. Luscombe. Morphological effects on polymeric mixed ionic/electronic conductors. Molecular Systems Design & Engineering 2019, 4 (2) , 310-324. https://doi.org/10.1039/C8ME00093J
    66. Jiadeng Zhu, Pei Zhu, Chaoyi Yan, Xia Dong, Xiangwu Zhang. Recent progress in polymer materials for advanced lithium-sulfur batteries. Progress in Polymer Science 2019, 90 , 118-163. https://doi.org/10.1016/j.progpolymsci.2018.12.002
    67. Pauline Han, Sheng-Heng Chung, Arumugam Manthiram. Designing a high-loading sulfur cathode with a mixed ionic-electronic conducting polymer for electrochemically stable lithium-sulfur batteries. Energy Storage Materials 2019, 17 , 317-324. https://doi.org/10.1016/j.ensm.2018.11.002
    68. Sheng Huang, Ruiteng Guan, Shuanjin Wang, Min Xiao, Dongmei Han, Luyi Sun, Yuezhong Meng. Polymers for high performance Li-S batteries: Material selection and structure design. Progress in Polymer Science 2019, 89 , 19-60. https://doi.org/10.1016/j.progpolymsci.2018.09.005
    69. Younes Ansari, Sonia Zhang, Bohua Wen, Frank Fan, Yet‐Ming Chiang. Stabilizing Li–S Battery Through Multilayer Encapsulation of Sulfur. Advanced Energy Materials 2019, 9 (1) https://doi.org/10.1002/aenm.201802213
    70. Juan Balach, Julia Linnemann, Tony Jaumann, Lars Giebeler. Metal-based nanostructured materials for advanced lithium–sulfur batteries. Journal of Materials Chemistry A 2018, 6 (46) , 23127-23168. https://doi.org/10.1039/C8TA07220E
    71. Ning Liu, Lu Wang, Yan Zhao, Taizhe Tan, Yongguang Zhang. Hierarchically porous TiO2 matrix encapsulated sulfur and polysulfides for high performance lithium/sulfur batteries. Journal of Alloys and Compounds 2018, 769 , 678-685. https://doi.org/10.1016/j.jallcom.2018.08.027
    72. Tianbiao Zeng, Penghui Ji, Biao Shang, Qimeng Peng, Xuebu Hu, Gang Li. Nano Li4Ti5O12 as sulfur host for high-performance Li-S battery. Ionics 2018, 24 (10) , 2973-2982. https://doi.org/10.1007/s11581-018-2468-8
    73. Xuejun Liu, Tao Qian, Jie Liu, Jinghua Tian, Li Zhang, Chenglin Yan. Greatly Improved Conductivity of Double‐Chain Polymer Network Binder for High Sulfur Loading Lithium–Sulfur Batteries with a Low Electrolyte/Sulfur Ratio. Small 2018, 14 (33) https://doi.org/10.1002/smll.201801536
    74. Xia Li, Xueliang Sun. Interface Design and Development of Coating Materials in Lithium–Sulfur Batteries. Advanced Functional Materials 2018, 28 (30) https://doi.org/10.1002/adfm.201801323
    75. Saul Perez Beltran, Perla B. Balbuena. Formation of Multilayer Graphene Domains with Strong Sulfur–Carbon Interaction and Enhanced Sulfur Reduction Zones for Lithium–Sulfur Battery Cathodes. ChemSusChem 2018, 11 (12) , 1970-1980. https://doi.org/10.1002/cssc.201702446
    76. Ye Liu, Wenjun Yan, Xiaowei An, Xiao Du, Zhongde Wang, Huiling Fan, Shibin Liu, Xiaogang Hao, Guoqing Guan. A polypyrrole hollow nanosphere with ultra-thin wrinkled shell: Synergistic trapping of sulfur in Lithium-Sulfur batteries with excellent elasticity and buffer capability. Electrochimica Acta 2018, 271 , 67-76. https://doi.org/10.1016/j.electacta.2018.03.131
    77. Qiuhong Yu, Rongjie Luo, Xianlin Bai, Wenchao Yang, Yang Lu, Xiaoyi Hou, Tao Peng, Xianming Liu, Jang-Kyo Kim, Yongsong Luo. Rational design of double-confined Mn2O3/S@Al2O3 nanocube cathodes for lithium-sulfur batteries. Journal of Solid State Electrochemistry 2018, 22 (3) , 849-858. https://doi.org/10.1007/s10008-017-3818-6
    78. Zhaohui Wang, Ruijun Pan, Changqing Ruan, Kristina Edström, Maria Strømme, Leif Nyholm. Redox‐Active Separators for Lithium‐Ion Batteries. Advanced Science 2018, 5 (3) https://doi.org/10.1002/advs.201700663
    79. Lei Zhu, Yourong Wang, Kai Xie, Guangsen Song, Siqing Cheng. Hierarchically Porous Carbon Derived from Peanut Shells for High-performance Lithium-sulfur Batteries. Chemistry Letters 2018, 47 (2) , 236-239. https://doi.org/10.1246/cl.171017
    80. Won-Gwang Lim, Changshin Jo, Jinwoo Lee, Dong Soo Hwang. Simple modification with amine- and hydroxyl- group rich biopolymer on ordered mesoporous carbon/sulfur composite for lithium-sulfur batteries. Korean Journal of Chemical Engineering 2018, 35 (2) , 579-586. https://doi.org/10.1007/s11814-017-0302-z
    81. Zhipeng Zeng, Xingbo Liu. Sulfur Immobilization by “Chemical Anchor” to Suppress the Diffusion of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials Interfaces 2018, 5 (4) https://doi.org/10.1002/admi.201701274
    82. Bin Liu, Shan Wang, Quanling Yang, Guo-Hua Hu, Chuanxi Xiong. Thiokol with Excellent Restriction on the Shuttle Effect in Lithium–Sulfur Batteries. Applied Sciences 2018, 8 (1) , 79. https://doi.org/10.3390/app8010079
    83. Lei Li, Yu-Jian Hong, Dong-Yang Chen, Mei-Jin Lin. A Laterally Extended Perylene Hexacarboxylate via Diels-Alder Reaction for High-Performance Organic Lithium-Ion Batteries. Electrochimica Acta 2017, 254 , 255-261. https://doi.org/10.1016/j.electacta.2017.09.119
    84. Shuaibo Zeng, Ligui Li, Lihong Xie, Dengke Zhao, Nan Wang, Shaowei Chen. Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High‐Rate, Ultralong‐Life Lithium–Sulfur Batteries. ChemSusChem 2017, 10 (17) , 3378-3386. https://doi.org/10.1002/cssc.201700913
    85. Ali Eftekhari, Dong-Won Kim. Cathode materials for lithium–sulfur batteries: a practical perspective. Journal of Materials Chemistry A 2017, 5 (34) , 17734-17776. https://doi.org/10.1039/C7TA00799J
    86. Aishuak Konarov, Zhumabay Bakenov, Hitoshi Yashiro, Yang-Kook Sun, Seung-Taek Myung. Effect of carbon-sulphur bond in a sulphur/dehydrogenated polyacrylonitrile/reduced graphene oxide composite cathode for lithium-sulphur batteries. Journal of Power Sources 2017, 355 , 140-146. https://doi.org/10.1016/j.jpowsour.2017.04.063
    87. Gérard Audran, Paul Brémond, Sylvain R.A. Marque, Maurice Santelli. Theoretical investigations on the conversions of cyclic polysulfides to acyclic polysulfide diradicals and subsequent reactions of biological interest. Tetrahedron 2017, 73 (25) , 3492-3496. https://doi.org/10.1016/j.tet.2017.05.024
    88. Philip T. Dirlam, Richard S. Glass, Kookheon Char, Jeffrey Pyun. The use of polymers in Li‐S batteries: A review. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55 (10) , 1635-1668. https://doi.org/10.1002/pola.28551
    89. Lin-Chao Zeng, Wei-Han Li, Yu Jiang, Yan Yu. Recent progress in Li–S and Li–Se batteries. Rare Metals 2017, 36 (5) , 339-364. https://doi.org/10.1007/s12598-017-0891-z
    90. Weiwei Qian, Qiuming Gao, Hang Zhang, Weiqian Tian, Zeyu Li, Yanli Tan. Crosslinked Polypyrrole Grafted Reduced Graphene Oxide-Sulfur Nanocomposite Cathode for High Performance Li-S Battery. Electrochimica Acta 2017, 235 , 32-41. https://doi.org/10.1016/j.electacta.2017.03.063
    91. Kazuhiro Yamabuki, Kanae Itaoka, Takahiro Shinchi, Nobuko Yoshimoto, Kazuhide Ueno, Hiromori Tsutsumi. Soluble sulfur-based copolymers prepared from elemental sulfur and alkenyl alcohol as positive active material for lithium-sulfur batteries. Polymer 2017, 117 , 225-230. https://doi.org/10.1016/j.polymer.2017.04.040
    92. Yuewu Zhu, Jie Li, Jin Liu. A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery. Journal of Power Sources 2017, 351 , 17-25. https://doi.org/10.1016/j.jpowsour.2017.03.072
    93. Angulakshmi Natarajan, Arul Manuel Stephan, Chin Han Chan, Nandakumar Kalarikkal, Sabu Thomas. Electrochemical studies on composite gel polymer electrolytes for lithium sulfur‐batteries. Journal of Applied Polymer Science 2017, 134 (11) https://doi.org/10.1002/app.44594
    94. Yuede Pan, Yahong Zhou, Qing Zhao, Yuhai Dou, Shulei Chou, Fangyi Cheng, Jun Chen, Hua Kun Liu, Lei Jiang, Shi Xue Dou. Introducing ion-transport-regulating nanochannels to lithium-sulfur batteries. Nano Energy 2017, 33 , 205-212. https://doi.org/10.1016/j.nanoen.2017.01.025
    95. Yong Jiang, Fang Chen, Yang Gao, Yanyan Wang, Shanshan Wang, Qiang Gao, Zheng Jiao, Bing Zhao, Zhiwen Chen. Inhibiting the shuttle effect of Li–S battery with a graphene oxide coating separator: Performance improvement and mechanism study. Journal of Power Sources 2017, 342 , 929-938. https://doi.org/10.1016/j.jpowsour.2017.01.013
    96. S.H. Li, X.H. Wang, X.H. Xia, Y.D. Wang, X.L. Wang, J.P. Tu. Sulfur cathode integrated with multileveled carbon nanoflake-nanosphere networks for high-performance lithium-sulfur batteries. Electrochimica Acta 2017, 227 , 217-224. https://doi.org/10.1016/j.electacta.2016.12.136
    97. Prakash Sengodu. Conducting Polymers/Inorganic Nanohybrids for Energy Applications. 2017, 365-417. https://doi.org/10.1007/978-3-319-57003-7_9
    98. Xianxian Tang, Taoxiang Liu, Han Li, Dongwang Yang, Liangjun Chen, Xinfeng Tang. Notably enhanced thermoelectric properties of lamellar polypyrrole by doping with β-naphthalene sulfonic acid. RSC Advances 2017, 7 (33) , 20192-20200. https://doi.org/10.1039/C7RA02302B
    99. Yan Zhao, Ming Liu, Wei Lv, Yan-Bing He, Chao Wang, Qinbai Yun, Baohua Li, Feiyu Kang, Quan-Hong Yang. Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium-sulfur battery. Nano Energy 2016, 30 , 1-8. https://doi.org/10.1016/j.nanoen.2016.09.030
    100. Xingxing Gu, Luke Hencz, Shanqing Zhang. Recent Development of Carbonaceous Materials for Lithium–Sulphur Batteries. Batteries 2016, 2 (4) , 33. https://doi.org/10.3390/batteries2040033
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect