ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Sulfate-Based Polyanionic Compounds for Li-Ion Batteries: Synthesis, Crystal Chemistry, and Electrochemistry Aspects

View Author Information
Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC), UMR 7590 CNRS-Université Pierre et Marie Curie UPMC Univ Paris 06, 4 Place Jussieu, 75252 Paris Cedex 05, France
Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
§ Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, 33 rue Saint Leu, 80039 Amiens, France
Cite this: Chem. Mater. 2014, 26, 1, 394–406
Publication Date (Web):August 20, 2013
https://doi.org/10.1021/cm4022358
Copyright © 2013 American Chemical Society

    Article Views

    4549

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (8 MB)

    Abstract

    Abstract Image

    Electrochemical storage has become an integral part of our mobile society and great hopes are being placed in Li-ion batteries to meet future demands dictated by the upcoming electric vehicle (EV) and grid application markets. Batteries with greater autonomy and comprising materials having minimal environmental footprint need to be developed. This calls for both innovative chemistry and new concepts. Currently battery researchers are turning their attention to the design of polyanionic electrodes made up of abundant elements. Here we review recent studies which have led to the synthesis of new sulfate-based polyanionic compounds such as AMSO4X (A = Li, Na, K; M = Fe, Mn, Ni, Co; X = F, OH) and Li2M(SO4)2 (M = Fe, Co, Mn). We highlight their rich crystal chemistry, comment on structural–electrochemical relationships, and report on the feasibility of using the Fe-based compounds as positive electrodes in secondary Li-ion batteries. Additionally, we present premises for an electrochemical–magnetism correlation and offer an outlook on the future of polyanionic compounds.

    Cited By

    This article is cited by 132 publications.

    1. Marine Reynaud, Jon Serrano-Sevillano, Montse Casas-Cabanas. Imperfect Battery Materials: A Closer Look at the Role of Defects in Electrochemical Performance. Chemistry of Materials 2023, 35 (9) , 3345-3363. https://doi.org/10.1021/acs.chemmater.2c03481
    2. Jessica L. Andrews, Michael J. Brady, Eric T. McClure, Brent C. Melot. Impact of Structural Deformations on the Performance of Li-Ion Insertion Hosts. Chemistry of Materials 2022, 34 (11) , 4809-4820. https://doi.org/10.1021/acs.chemmater.2c00331
    3. Christopher Choi, David Ashby, You Rao, Elaf Anber, James L. Hart, Danielle Butts, Catrina Wilson, Emily Levin, Mitra Taheri, Maryam Ghazisaeidi, Bruce Dunn, Vicky Doan-Nguyen. Mechanistic Insight and Local Structure Evolution of NiPS3 upon Electrochemical Lithiation. ACS Applied Materials & Interfaces 2022, 14 (3) , 3980-3990. https://doi.org/10.1021/acsami.1c19963
    4. Sourav Marik, Bruno Gonano, Fabien Veillon, Denis Pelloquin, Guillaume Clet, Yohann Bréard. Low Dimensional Magnetic Lattice and Room Temperature Magneto(di)electric Effect in Polyanion Ruddlesden–Popper Iron Oxides. Inorganic Chemistry 2019, 58 (17) , 11561-11568. https://doi.org/10.1021/acs.inorgchem.9b01409
    5. Disha Gupta, Aravind Muthiah, Minh Phuong Do, Gopinathan Sankar, Timothy I. Hyde, Mark Patrick Copley, Tom Baikie, Yonghua Du, Shibo Xi, Madhavi Srinivasan, ZhiLi Dong. Electronic and Geometric Structures of Rechargeable Lithium Manganese Sulfate Li2Mn(SO4)2 Cathode. ACS Omega 2019, 4 (7) , 11338-11345. https://doi.org/10.1021/acsomega.9b00356
    6. Vadim M. Kovrugin, Diana O. Nekrasova, Oleg I. Siidra, Olivier Mentré, Christian Masquelier, Sergey Yu. Stefanovich, Marie Colmont. Mineral-Inspired Crystal Growth and Physical Properties of Na2Cu(SO4)2 and Review of Na2M(SO4)2(H2O)x (x = 0–6) Compounds. Crystal Growth & Design 2019, 19 (2) , 1233-1244. https://doi.org/10.1021/acs.cgd.8b01658
    7. Mani Vellaisamy, Mogalahalli Venkatashamy Reddy, B. V. R. Chowdari, Nallathamby Kalaiselvi. Exploration of AVP2O7/C (A = Li, Li0.5Na0.5, and Na) for High-Rate Sodium-Ion Battery Applications. The Journal of Physical Chemistry C 2018, 122 (43) , 24609-24618. https://doi.org/10.1021/acs.jpcc.8b09451
    8. Aravind Muthiah, Tom Baikie, Mani Ulaganathan, Mark Copley, Guang Yang, Vanchiappan Aravindan, and Madhavi Srinivasan . Structural, Thermal, and Electrochemical Studies of Novel Li2CoxMn1–x(SO4)2 Bimetallic Sulfates. The Journal of Physical Chemistry C 2017, 121 (45) , 24971-24978. https://doi.org/10.1021/acs.jpcc.7b08203
    9. Shiliang Zhou, Erica S. Howard, Jue Liu, Nicholas H. Bashian, Kyle Nolan, Sankarganesh Krishnamoorthy, Geovanni M. Rangel, Moulay-Tahar Sougrati, G. K. Surya Prakash, Katharine Page, and Brent C. Melot . Hydrothermal Preparation, Crystal Chemistry, and Redox Properties of Iron Muscovite Clay. ACS Applied Materials & Interfaces 2017, 9 (39) , 34024-34032. https://doi.org/10.1021/acsami.7b08729
    10. Xiaoqi Sun, Rajesh Tripathi, Guerman Popov, Mahalingam Balasubramanian, and Linda F. Nazar . Stabilization of Lithium Transition Metal Silicates in the Olivine Structure. Inorganic Chemistry 2017, 56 (16) , 9931-9937. https://doi.org/10.1021/acs.inorgchem.7b01453
    11. Oliver Pecher, Javier Carretero-González, Kent J. Griffith, and Clare P. Grey . Materials’ Methods: NMR in Battery Research. Chemistry of Materials 2017, 29 (1) , 213-242. https://doi.org/10.1021/acs.chemmater.6b03183
    12. Edouard Boivin, Jean-Noël Chotard, Michel Ménétrier, Lydie Bourgeois, Tahya Bamine, Dany Carlier, François Fauth, Christian Masquelier, and Laurence Croguennec . Oxidation under Air of Tavorite LiVPO4F: Influence of Vanadyl-Type Defects on Its Electrochemical Properties. The Journal of Physical Chemistry C 2016, 120 (46) , 26187-26198. https://doi.org/10.1021/acs.jpcc.6b07342
    13. Laura Lander, Marine Reynaud, Juan Rodríguez-Carvajal, Jean-Marie Tarascon, and Gwenaëlle Rousse . Magnetic Structures of Orthorhombic Li2M(SO4)2 (M = Co, Fe) and LixFe(SO4)2 (x = 1, 1.5) Phases. Inorganic Chemistry 2016, 55 (22) , 11760-11769. https://doi.org/10.1021/acs.inorgchem.6b01844
    14. Musa Ali Cambaz, B. P. Vinayan, Oliver Clemens, Anji Reddy Munnangi, Venkata Sai Kiran Chakravadhanula, Christian Kübel, and Maximilian Fichtner . Vanadium Oxyfluoride/Few-Layer Graphene Composite as a High-Performance Cathode Material for Lithium Batteries. Inorganic Chemistry 2016, 55 (8) , 3789-3796. https://doi.org/10.1021/acs.inorgchem.5b02687
    15. Dong Un Lee, Jing Fu, Moon Gyu Park, Hao Liu, Ali Ghorbani Kashkooli, and Zhongwei Chen . Self-Assembled NiO/Ni(OH)2 Nanoflakes as Active Material for High-Power and High-Energy Hybrid Rechargeable Battery. Nano Letters 2016, 16 (3) , 1794-1802. https://doi.org/10.1021/acs.nanolett.5b04788
    16. Irene Munaò, Elena A. Zvereva, Olga S. Volkova, Alexander N. Vasiliev, A. Robert Armstrong, and Philip Lightfoot . NaFe3(HPO3)2((H,F)PO2OH)6: A Potential Cathode Material and a Novel Ferrimagnet. Inorganic Chemistry 2016, 55 (5) , 2558-2564. https://doi.org/10.1021/acs.inorgchem.5b02922
    17. Musa A. Cambaz, M. Anji Reddy, B. P. Vinayan, Ralf Witte, Alexander Pohl, Xiaoke Mu, Venkata Sai Kiran Chakravadhanula, Christian Kübel, and Maximilian Fichtner . Mechanical Milling Assisted Synthesis and Electrochemical Performance of High Capacity LiFeBO3 for Lithium Batteries. ACS Applied Materials & Interfaces 2016, 8 (3) , 2166-2172. https://doi.org/10.1021/acsami.5b10747
    18. Hooman Yaghoobnejad Asl, Patrick Stanley, Kartik Ghosh, and Amitava Choudhury . Iron Borophosphate as a Potential Cathode for Lithium- and Sodium-Ion Batteries. Chemistry of Materials 2015, 27 (20) , 7058-7069. https://doi.org/10.1021/acs.chemmater.5b02642
    19. Ram Seshadri (Associate Editor, Chemistry of Materials), Kristin Persson (Associate Editor, Chemistry of Materials), Prashant V. Kamat (Deputy Editor, The Journal of Physical Chemistry Letters), Yiying Wu (Associate Editor, ACS Applied Materials & Interfaces). Recent Advances in Battery Science and Technology. Chemistry of Materials 2015, 27 (13) , 4505-4506. https://doi.org/10.1021/acs.chemmater.5b02350
    20. Hooman Yaghoobnejad Asl and Amitava Choudhury . Phosphite as Polyanion-Based Cathode for Li-Ion Battery: Synthesis, Structure, and Electrochemistry of LiFe(HPO3)2. Inorganic Chemistry 2015, 54 (13) , 6566-6572. https://doi.org/10.1021/acs.inorgchem.5b00900
    21. Laurence Croguennec and M. Rosa Palacin . Recent Achievements on Inorganic Electrode Materials for Lithium-Ion Batteries. Journal of the American Chemical Society 2015, 137 (9) , 3140-3156. https://doi.org/10.1021/ja507828x
    22. Hania Ahouari, Gwenaëlle Rousse, Juan Rodríguez-Carvajal, Moulay-Tahar Sougrati, Matthieu Saubanère, Matthieu Courty, Nadir Recham, and Jean-Marie Tarascon . Unraveling the Structure of Iron(III) Oxalate Tetrahydrate and Its Reversible Li Insertion Capability. Chemistry of Materials 2015, 27 (5) , 1631-1639. https://doi.org/10.1021/cm5043149
    23. Adam Sobkowiak, Matthew R. Roberts, Lennart Häggström, Tore Ericsson, Anna M. Andersson, Kristina Edström, Torbjörn Gustafsson, and Fredrik Björefors . Identification of an Intermediate Phase, Li1/2FeSO4F, Formed during Electrochemical Cycling of Tavorite LiFeSO4F. Chemistry of Materials 2014, 26 (15) , 4620-4628. https://doi.org/10.1021/cm502104q
    24. Laura Lander, Marine Reynaud, Gwenaëlle Rousse, Moulay T. Sougrati, Christel Laberty-Robert, Robert J. Messinger, Michaël Deschamps, and Jean-Marie Tarascon . Synthesis and Electrochemical Performance of the Orthorhombic Li2Fe(SO4)2 Polymorph for Li-Ion Batteries. Chemistry of Materials 2014, 26 (14) , 4178-4189. https://doi.org/10.1021/cm5012845
    25. Christopher Eames, John M. Clark, Gwenaelle Rousse, Jean-Marie Tarascon, and M. Saiful Islam . Lithium Migration Pathways and van der Waals Effects in the LiFeSO4OH Battery Material. Chemistry of Materials 2014, 26 (12) , 3672-3678. https://doi.org/10.1021/cm5008203
    26. Prabeer Barpanda, Gosuke Oyama, Chris D. Ling, and Atsuo Yamada . Kröhnkite-Type Na2Fe(SO4)2·2H2O as a Novel 3.25 V Insertion Compound for Na-Ion Batteries. Chemistry of Materials 2014, 26 (3) , 1297-1299. https://doi.org/10.1021/cm4033226
    27. C. Sanchez, C. Boissiere, S. Cassaignon, C. Chaneac, O. Durupthy, M. Faustini, D. Grosso, C. Laberty-Robert, L. Nicole, D. Portehault, F. Ribot, L. Rozes, and C. Sassoye . Molecular Engineering of Functional Inorganic and Hybrid Materials. Chemistry of Materials 2014, 26 (1) , 221-238. https://doi.org/10.1021/cm402528b
    28. Krishnakanth Sada, Joe Darga, Arumugam Manthiram. Challenges and Prospects of Sodium‐Ion and Potassium‐Ion Batteries for Mass Production. Advanced Energy Materials 2023, 13 (39) https://doi.org/10.1002/aenm.202302321
    29. Gopalakrishnan Kothandam, Gurwinder Singh, Xinwei Guan, Jang Mee Lee, Kavitha Ramadass, Stalin Joseph, Mercy Benzigar, Ajay Karakoti, Jiabao Yi, Prashant Kumar, Ajayan Vinu. Recent Advances in Carbon‐Based Electrodes for Energy Storage and Conversion. Advanced Science 2023, 10 (18) https://doi.org/10.1002/advs.202301045
    30. Wujie Dong, Fuqiang Huang. Understanding the influence of crystal packing density on electrochemical energy storage materials. eScience 2023, 152 , 100158. https://doi.org/10.1016/j.esci.2023.100158
    31. Nellie R. Khasanova, Oleg A. Drozhzhin, Olga V. Yakubovich, Evgeny V. Antipov. Mineral inspired electrode materials for metal-ion batteries. 2023, 363-403. https://doi.org/10.1016/B978-0-12-823144-9.00145-X
    32. Jingwei Xiang, Ying Wei, Yun Zhong, Yan Yang, Hang Cheng, Lixia Yuan, Henghui Xu, Yunhui Huang. Building Practical High‐Voltage Cathode Materials for Lithium‐Ion Batteries. Advanced Materials 2022, 34 (52) https://doi.org/10.1002/adma.202200912
    33. Ajana Dutta, Diptikanta Swain, A. K. Bera, Rajamani Raghunathan, D. Samal, S. M. Yusuf, S. Ramasesha, T. N. Guru Row. Magnetic structure and properties of the vanthoffite mineral Na 6 Mn ( SO 4 ) 4 . Physical Review B 2022, 106 (9) https://doi.org/10.1103/PhysRevB.106.094419
    34. Nicholas David Schuppert, Santanu Mukherjee, Jacek B. Jasinski, Bijandra Kumar, Ayodeji Adeniran, Sam Park. The potential application of exfoliated MoS2 to aqueous lithium-ion batteries. Electrochemistry Communications 2022, 139 , 107307. https://doi.org/10.1016/j.elecom.2022.107307
    35. Shigang Chen, Soe Ring Jeong, Shanwen Tao. Key materials and future perspective for aqueous rechargeable lithium-ion batteries. Materials Reports: Energy 2022, 2 (2) , 100096. https://doi.org/10.1016/j.matre.2022.100096
    36. Lou Bernard, Alia Jouhara, Eric Quarez, Yanis Levieux-Souid, Sophie Le Caër, Pierre Tran-Van, Stéven Renault, Philippe Poizot. Influence of Polymorphism on the Electrochemical Behavior of Dilithium (2,3-Dilithium-oxy)-terephthalate vs. Li. Inorganics 2022, 10 (5) , 62. https://doi.org/10.3390/inorganics10050062
    37. D. Marinova, K. Veselinov, M. Kalapsazova, E. Zhecheva, R. Stoyanova. Structural transformation of Na2Mn2(SO4)3 alluaudite into orthorhombic Li2Mn2(SO4)3 induced after lithium intercalation. Materials Today: Proceedings 2022, 61 , 1260-1264. https://doi.org/10.1016/j.matpr.2022.02.559
    38. Nicholas David Schuppert, Santanu Mukherjee, Jacek B. Jasinski, Bijandra Kumar, SAM DANIEL PARK. The Potential Application of Exfoliated Mos2 to Aqueous Lithium-Ion Batteries. SSRN Electronic Journal 2022, 274 https://doi.org/10.2139/ssrn.4114227
    39. Oleg I. Siidra, Diana O. Nekrasova, Dmitry O. Charkin, Anatoly N. Zaitsev, Artem S. Borisov, Marie Colmont, Olivier Mentré, Darya V. Spiridonova. Anhydrous alkali copper sulfates – a promising playground for new Cu 2+ oxide complexes: new Rb-analogues of fumarolic minerals.. Mineralogical Magazine 2021, 85 (6) , 831-845. https://doi.org/10.1180/mgm.2021.73
    40. Jeevan Jyoti, Bhanu Pratap Singh, Surya Kant Tripathi. Recent advancements in development of different cathode materials for rechargeable lithium ion batteries. Journal of Energy Storage 2021, 43 , 103112. https://doi.org/10.1016/j.est.2021.103112
    41. Santhanamoorthi Nachimuthu, Han-Wen Huang, Kuan-Yu Lin, Ching Yu, Jyh-Chiang Jiang. Direct visualization of lattice oxygen evolution and related electronic properties of Li1.2Ni0.2Mn0.6O2 cathode materials. Applied Surface Science 2021, 563 , 150334. https://doi.org/10.1016/j.apsusc.2021.150334
    42. Shashwat Singh, Shubham Lochab, Lalit Sharma, Valérie Pralong, Prabeer Barpanda. An overview of hydroxy-based polyanionic cathode insertion materials for metal-ion batteries. Physical Chemistry Chemical Physics 2021, 23 (34) , 18283-18299. https://doi.org/10.1039/D1CP01741A
    43. Lian-Bang Wang, He-Shan Hu, Wei Lin, Qing-Hong Xu, Jia-Dong Gong, Wen-Kui Chai, Chao-Qi Shen. Electrochemically Inert Li2MnO3: The Key to Improving the Cycling Stability of Li-Rich Manganese Oxide Used in Lithium-Ion Batteries. Materials 2021, 14 (16) , 4751. https://doi.org/10.3390/ma14164751
    44. Y. Lokeswararao, M. Viji, Akshay Kumar Budumuru, C. Sudakar. Enabling high-rate capability by combining sol-gel synthesis and solid-state reaction with PTFE of 4.2 V cathode material LiVPO4F/C. Materials Today Communications 2021, 27 , 102435. https://doi.org/10.1016/j.mtcomm.2021.102435
    45. Xin Min, Jun Xiao, Minghao Fang, Wei (Alex) Wang, Yajing Zhao, Yangai Liu, Amr. M. Abdelkader, Kai Xi, R. Vasant Kumar, Zhaohui Huang. Potassium-ion batteries: outlook on present and future technologies. Energy & Environmental Science 2021, 14 (4) , 2186-2243. https://doi.org/10.1039/D0EE02917C
    46. Y. Lokeswararao, C. Sudarshan, C. Sudakar. Optimizing carbon coating to synthesize phase pure LiVPO4F cathode through a combined sol-gel and PTFE reaction. Materials Chemistry and Physics 2021, 263 , 124362. https://doi.org/10.1016/j.matchemphys.2021.124362
    47. Artem S. Borisov, Oleg I. Siidra, Vadim M. Kovrugin, Andrey A. Golov, Wulf Depmeier, Evgeny V. Nazarchuk, Astrid Holzheid. Expanding the family of mineral-like anhydrous alkali copper sulfate framework structures: new phases, topological analysis and evaluation of ion migration potentialities. Journal of Applied Crystallography 2021, 54 (1) , 237-250. https://doi.org/10.1107/S1600576720015824
    48. Nicola Pinna, Nicolas Goubard‐Bretesché. Fluoro(Phosphates,Sulfates) or (Phosphate,Sulfate) Fluorides: Why Does It Matter?. Advanced Energy Materials 2021, 11 (3) https://doi.org/10.1002/aenm.202002971
    49. Ashok Shukla, T. Prem Kumar. Electrochemistry: Retrospect and Prospects. Israel Journal of Chemistry 2021, 61 (1-2) , 120-151. https://doi.org/10.1002/ijch.202000064
    50. Si-Han Yang, Huaiguo Xue, Sheng-Ping Guo. Borates as promising electrode materials for rechargeable batteries. Coordination Chemistry Reviews 2021, 427 , 213551. https://doi.org/10.1016/j.ccr.2020.213551
    51. Wontae Lee, Jaeyoung Kim, Soyeong Yun, Woosung Choi, Haegyeom Kim, Won-Sub Yoon. Multiscale factors in designing alkali-ion (Li, Na, and K) transition metal inorganic compounds for next-generation rechargeable batteries. Energy & Environmental Science 2020, 13 (12) , 4406-4449. https://doi.org/10.1039/D0EE01277G
    52. Stanislav S. Fedotov, Aleksandr Sh Samarin, Evgeny V. Antipov. KTiOPO4-structured electrode materials for metal-ion batteries: A review. Journal of Power Sources 2020, 480 , 228840. https://doi.org/10.1016/j.jpowsour.2020.228840
    53. Nina V. Kosova, Alexander A. Shindrov, Artem A. Kabanov. Theoretical and experimental study of reversible intercalation of Li ions in the Jarosite NaFe3(SO4)2(OH)6 structure. Electrochimica Acta 2020, 359 , 136950. https://doi.org/10.1016/j.electacta.2020.136950
    54. Kévin Lemoine, Yoshiyuki Inaguma, Nina Heidary, Nikolay Kornienko. Mechanochemical synthesis of cobalt/copper fluorophosphate generates a multifunctional electrocatalyst. Chemical Communications 2020, 56 (65) , 9276-9279. https://doi.org/10.1039/D0CC02815K
    55. Giorgia Zampardi, Fabio La Mantia. Solid–Electrolyte Interphase at Positive Electrodes in High‐Energy Li‐Ion Batteries: Current Understanding and Analytical Tools. Batteries & Supercaps 2020, 3 (8) , 672-697. https://doi.org/10.1002/batt.201900177
    56. Nicholas D. Schuppert, Santanu Mukherjee, Alex Bates, Jacek B. Jasinski, Sang C. Lee, Sam Park. Growth and influence of a porous iron oxide nanolayer on LiMn 2 O 4 in an aqueous rechargeable lithium‐ion battery. Energy Storage 2020, 2 (4) https://doi.org/10.1002/est2.143
    57. Prashanth Sandineni, Pranal Madria, Kartik Ghosh, Amitava Choudhury. A square channel vanadium phosphite framework as a high voltage cathode for Li- and Na-ion batteries. Materials Advances 2020, 1 (4) , 698-707. https://doi.org/10.1039/D0MA00029A
    58. Simon Dühnen, Johannes Betz, Martin Kolek, Richard Schmuch, Martin Winter, Tobias Placke. Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods 2020, 4 (7) https://doi.org/10.1002/smtd.202000039
    59. Ting Jin, Huangxu Li, Kunjie Zhu, Peng-Fei Wang, Pei Liu, Lifang Jiao. Polyanion-type cathode materials for sodium-ion batteries. Chemical Society Reviews 2020, 49 (8) , 2342-2377. https://doi.org/10.1039/C9CS00846B
    60. Mohamed K Abdel-Sattar, Mohamed Taha. Electronic structures and optoelectronic properties of ATiOPO 4 (A = H, Li, Na, K, Rb, Cs, Fr, NH 4 , Ag) compounds and their applications in water splitting, CO 2 reduction, and photo-degradation. Materials Research Express 2020, 7 (4) , 045901. https://doi.org/10.1088/2053-1591/ab8338
    61. Aleksandr V. Ivanishchev, Nelly A. Gridina, Kirill S. Rybakov, Irina A. Ivanishcheva, Ambesh Dixit. Structural and electrochemical investigation of lithium ions insertion processes in polyanionic compounds of lithium and transition metals. Journal of Electroanalytical Chemistry 2020, 860 , 113894. https://doi.org/10.1016/j.jelechem.2020.113894
    62. Wontae Lee, Shoaib Muhammad, Chernov Sergey, Hayeon Lee, Jaesang Yoon, Yong‐Mook Kang, Won‐Sub Yoon. Kathodenmaterialien für wiederaufladbare Lithiumbatterien. Angewandte Chemie 2020, 132 (7) , 2598-2626. https://doi.org/10.1002/ange.201902359
    63. Wontae Lee, Shoaib Muhammad, Chernov Sergey, Hayeon Lee, Jaesang Yoon, Yong‐Mook Kang, Won‐Sub Yoon. Advances in the Cathode Materials for Lithium Rechargeable Batteries. Angewandte Chemie International Edition 2020, 59 (7) , 2578-2605. https://doi.org/10.1002/anie.201902359
    64. Radha Shivaramaiah, Sindhoora Tallapragada, G.P. Nagabhushana, Alexandra Navrotsky. Synthesis and thermodynamics of transition metal oxide based sodium ion cathode materials. Journal of Solid State Chemistry 2019, 280 , 121011. https://doi.org/10.1016/j.jssc.2019.121011
    65. Ahmed Souamti, Massoud Kahlaoui, Ramzi Fezai, Antonio Diego Lozano-Gorrín, Dalila Ben Hassen Chehimi. Synthesis, characterization and electrical properties of Na6M(SO4)4 (M = Co, Ni, Cu) vanthoffite materials. Materials Science and Engineering: B 2019, 244 , 56-64. https://doi.org/10.1016/j.mseb.2019.04.024
    66. Baskar Senthilkumar, Chinnasamy Murugesan, Lalit Sharma, Shubham Lochab, Prabeer Barpanda. An Overview of Mixed Polyanionic Cathode Materials for Sodium‐Ion Batteries. Small Methods 2019, 3 (4) https://doi.org/10.1002/smtd.201800253
    67. Radostina Stoyanova, Violeta Koleva, Antonia Stoyanova. Lithium versus Mono/Polyvalent Ion Intercalation: Hybrid Metal Ion Systems for Energy Storage. The Chemical Record 2019, 19 (2-3) , 474-501. https://doi.org/10.1002/tcr.201800081
    68. Xiaohao Liu, Linbin Tang, Qunjie Xu, Haimei Liu, YongGang Wang. Ultrafast and ultrastable high voltage cathode of Na2+2xFe2-x(SO4)3 microsphere scaffolded by graphene for sodium ion batteries. Electrochimica Acta 2019, 296 , 345-354. https://doi.org/10.1016/j.electacta.2018.11.064
    69. Jiebing Wu, Youlong Xu, Yanjun Chen, Long Li, Hui Wang, Jing Zhao. Towards a high-rate and long-life LiVPO4F/C cathode material for lithium ion batteries by potassium and zirconium co-doping. Journal of Power Sources 2018, 401 , 142-148. https://doi.org/10.1016/j.jpowsour.2018.08.072
    70. Su Jin Kim, Boeun Lee, Kwan-Young Lee, Byung Won Cho, Si Hyoung Oh. Facile topotactic synthesis of tavorite LiFeSO 4 F using supercritical methanol. Journal of Power Sources 2018, 398 , 27-33. https://doi.org/10.1016/j.jpowsour.2018.07.047
    71. Jinying Shao, Xinran Li, Jilei Wei, Huan Pang, Changyun Chen. Synthesis of Iron Phosphate and Their Composites for Lithium/Sodium Ion Batteries. Advanced Sustainable Systems 2018, 2 (8-9) https://doi.org/10.1002/adsu.201700154
    72. Sudip Chakraborty, Amitava Banerjee, Teeraphat Watcharatharapong, Rafael B Araujo, Rajeev Ahuja. Current computational trends in polyanionic cathode materials for Li and Na batteries. Journal of Physics: Condensed Matter 2018, 30 (28) , 283003. https://doi.org/10.1088/1361-648X/aac62d
    73. Prabeer Barpanda, Laura Lander, Shin‐ichi Nishimura, Atsuo Yamada. Polyanionic Insertion Materials for Sodium‐Ion Batteries. Advanced Energy Materials 2018, 8 (17) https://doi.org/10.1002/aenm.201703055
    74. Oier Arcelus, Sergey Nikolaev, Javier Carrasco, Igor Solovyev. Magnetism of NaFePO 4 and related polyanionic compounds. Physical Chemistry Chemical Physics 2018, 20 (19) , 13497-13507. https://doi.org/10.1039/C8CP01961D
    75. Ting-Ting Ruan, Wen-Wen Wang, Chun-Li Hu, Xiang Xu, Jiang-Gao Mao. Pb4(BO3)2(SO4) and Pb2[(BO2)(OH)](SO4): New lead(II) borate-sulfate mixed-anion compounds with two types of 3D network structures. Journal of Solid State Chemistry 2018, 260 , 39-45. https://doi.org/10.1016/j.jssc.2018.01.013
    76. M Jayachandran, G Durai, T Vijayakumar. Synthesis and characterization of prospective polyanionic electrode materials for high performance energy storage applications. Materials Research Express 2018, 5 (4) , 044002. https://doi.org/10.1088/2053-1591/aaba59
    77. L.L. Driscoll, E. Kendrick, K.S. Knight, A.J. Wright, P.R. Slater. Investigation into the dehydration of selenate doped Na2M(SO4)2·2H2O (M = Mn, Fe, Co and Ni): Stabilisation of the high Na content alluaudite phases Na3M1.5(SO4)3-1.5x(SeO4)1.5x (M = Mn, Co and Ni) through selenate incorporation. Journal of Solid State Chemistry 2018, 258 , 64-71. https://doi.org/10.1016/j.jssc.2017.09.025
    78. Abir Bejaoui, Ahmed Souamti, Massoud Kahlaoui, Antonio Diego Lozano-Gorrín, Dalila Ben Hassen Chehimi. Synthesis, electrical and dielectrical properties of (LixNa1–x)6Mg(SO4)4 vanthoffite ceramics as new attractive electrode materials for Li- and Na-ion batteries. Materials Science and Engineering: B 2018, 228 , 224-233. https://doi.org/10.1016/j.mseb.2017.12.001
    79. Hui (Claire) Xiong, Eric J. Dufek, Kevin L. Gering. 2.20 Batteries. 2018, 629-662. https://doi.org/10.1016/B978-0-12-809597-3.00245-5
    80. Stanislav S. Fedotov, Natalya A. Kabanova, Artem A. Kabanov, Vladislav A. Blatov, Nellie R. Khasanova, Evgeny V. Antipov. Crystallochemical tools in the search for cathode materials of rechargeable Na-ion batteries and analysis of their transport properties. Solid State Ionics 2018, 314 , 129-140. https://doi.org/10.1016/j.ssi.2017.11.008
    81. D. M. Marinova, V. V. Kostov, R. P. Nikolova, R. R. Kukeva, E. N. Zhecheva, R. K. Stoyanova. Redox properties of alluaudite sodium cobalt manganese sulfates as high-voltage electrodes for rechargeable batteries. Chemical Communications 2018, 54 (43) , 5466-5469. https://doi.org/10.1039/C8CC01922C
    82. Ehsan Mahboubi, Amin Yourdkhani, Reza Poursalehi. Liquid phase deposition of iron phosphate thin films. CrystEngComm 2018, 20 (35) , 5256-5268. https://doi.org/10.1039/C8CE00632F
    83. Delyana M. Marinova, Rosica R. Kukeva, Ekaterina N. Zhecheva, Radostina K. Stoyanova. Selective sodium intercalation into sodium nickel–manganese sulfate for dual Na–Li-ion batteries. Physical Chemistry Chemical Physics 2018, 20 (18) , 12755-12766. https://doi.org/10.1039/C8CP01667D
    84. Jing Liang, Yuhan Li, Xiaoying Hou, Fengdi Wang, Wanqiao Zhang, Jingping Zhang, Shuwei Tang, Hao Sun. Insight into electrochemical and elastic properties in AFe1-M SO4F (A = Li, Na; M = Co, Ni, Mg) cathode materials: A first principle study. Electrochimica Acta 2017, 251 , 316-323. https://doi.org/10.1016/j.electacta.2017.08.123
    85. Pallab Bhattacharya, Manikantan Kota, Dong Hoon Suh, Kwang Chul Roh, Ho Seok Park. Biomimetic Spider‐Web‐Like Composites for Enhanced Rate Capability and Cycle Life of Lithium Ion Battery Anodes. Advanced Energy Materials 2017, 7 (17) https://doi.org/10.1002/aenm.201700331
    86. Hao Chen, Zhenjiang He, Zimo Huang, Liubin Song, Chensi Shen, Jianshe Liu. The effects of multifunctional coating on Li-rich cathode material with hollow spherical structure for Li ion battery. Ceramics International 2017, 43 (12) , 8616-8624. https://doi.org/10.1016/j.ceramint.2017.03.175
    87. A. K. Arof, M. Z. Kufian, N. Aziz, N. A. Mat Nor, K. H. Arifin. Electrochemical properties of LiMn2O4 prepared with tartaric acid chelating agent. Ionics 2017, 23 (7) , 1663-1674. https://doi.org/10.1007/s11581-017-1997-x
    88. Hamdi Ben Yahia, Masahiro Shikano, Ilias Belharouak. Synthesis, structural characterization, and hydrogen bonds of Co 9 (OH) 14 [SO 4 ] 2. Zeitschrift für Naturforschung B 2017, 72 (7) , 505-510. https://doi.org/10.1515/znb-2017-0046
    89. Paul E. Pearce, Arnaud J. Perez, Gwenaelle Rousse, Mathieu Saubanère, Dmitry Batuk, Dominique Foix, Eric McCalla, Artem M. Abakumov, Gustaaf Van Tendeloo, Marie-Liesse Doublet, Jean-Marie Tarascon. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nature Materials 2017, 16 (5) , 580-586. https://doi.org/10.1038/nmat4864
    90. C. P. Grey, J. M. Tarascon. Sustainability and in situ monitoring in battery development. Nature Materials 2017, 16 (1) , 45-56. https://doi.org/10.1038/nmat4777
    91. Wangda Li, Bohang Song, Arumugam Manthiram. High-voltage positive electrode materials for lithium-ion batteries. Chemical Society Reviews 2017, 46 (10) , 3006-3059. https://doi.org/10.1039/C6CS00875E
    92. Plousia Vassilaras, Deok-Hwang Kwon, Stephen T. Dacek, Tan Shi, Dong-Hwa Seo, Gerbrand Ceder, Jae Chul Kim. Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel. Journal of Materials Chemistry A 2017, 5 (9) , 4596-4606. https://doi.org/10.1039/C6TA09220A
    93. Aravind Muthiah, Tom Baikie, Shashwat Shukla, Sarah Ball, Mark Copley, Timothy I. Hyde, Yonghua Du, Gopinathan Sankar, Vanchiappan Aravindan, Madhavi Srinivasan. Ex situ XAS investigation of effect of binders on electrochemical performance of Li 2 Fe(SO 4 ) 2 cathode. Journal of Materials Chemistry A 2017, 5 (37) , 19963-19971. https://doi.org/10.1039/C7TA06806A
    94. Radha Shivaramaiah, Laura Lander, G. P. Nagabhushana, Gwenaëlle Rousse, Jean‐Marie Tarascon, Alexandra Navrotsky. Thermodynamic Properties of Polymorphs of Fluorosulfate Based Cathode Materials with Exchangeable Potassium Ions. ChemPhysChem 2016, 17 (21) , 3365-3368. https://doi.org/10.1002/cphc.201600960
    95. Hyungsub Kim, Haegyeom Kim, Zhang Ding, Myeong Hwan Lee, Kyungmi Lim, Gabin Yoon, Kisuk Kang. Recent Progress in Electrode Materials for Sodium‐Ion Batteries. Advanced Energy Materials 2016, 6 (19) https://doi.org/10.1002/aenm.201600943
    96. Prashanth Sandineni, Hooman Yaghoobnejad Asl, Amitava Choudhury. Kagomé lattices as cathode: Effect of particle size and fluoride substitution on electrochemical lithium insertion in sodium- and ammonium Jarosites. Journal of Solid State Chemistry 2016, 242 , 78-86. https://doi.org/10.1016/j.jssc.2016.02.022
    97. Stanislav S. Fedotov, Sergey M. Kuzovchikov, Nellie R. Khasanova, Oleg A. Drozhzhin, Dmitriy S. Filimonov, Olesia M. Karakulina, Joke Hadermann, Artem M. Abakumov, Evgeny V. Antipov. Synthesis, structure and electrochemical properties of LiNaCo0.5Fe0.5PO4F fluoride-phosphate. Journal of Solid State Chemistry 2016, 242 , 70-77. https://doi.org/10.1016/j.jssc.2016.02.042
    98. L.L. Driscoll, E. Kendrick, A.J. Wright, P.R. Slater. Investigation into the effect on structure of oxoanion doping in Na2M(SO4)2·2H2O. Journal of Solid State Chemistry 2016, 242 , 103-111. https://doi.org/10.1016/j.jssc.2016.07.004
    99. Hamdi Ben Yahia, Masahiro Shikano, Yoichi Yamaguchi. Li2CuVO4: A high capacity positive electrode material for Li-ion batteries. Journal of Power Sources 2016, 320 , 43-48. https://doi.org/10.1016/j.jpowsour.2016.04.065
    100. Jiechen Lu, Atsuo Yamada. Ionic and Electronic Transport in Alluaudite Na 2+2 x Fe 2− x (SO 4 ) 3. ChemElectroChem 2016, 3 (6) , 902-905. https://doi.org/10.1002/celc.201500535
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect