ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Enhanced Thermoelectric Performance of Synthetic Tetrahedrites

View Author Information
Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
*(D.A.K.) E-mail: [email protected]
Cite this: Chem. Mater. 2014, 26, 6, 2047–2051
Publication Date (Web):February 14, 2014
https://doi.org/10.1021/cm404026k
Copyright © 2014 American Chemical Society

    Article Views

    2547

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Electrical and thermal transport properties of synthetic tetrahedrites Cu10TM2Sb4S13 (TM = Mn, Fe, Co, Ni, Zn) and the solid solution Cu12–xMnxSb4S13 (0 ≤ x ≤ 2) have been studied in the context of thermoelectric performance. Among these materials, the parent compound Cu12Sb4S13 exhibits the highest power factor, which is primarily derived from a high electrical conductivity. All substituted derivatives display a significant and uniform reduction in thermal conductivity. Within the TM series, the Mn-substituted sample displays the highest ZT (0.8 at 575 K). Changing the Mn concentration to Cu11MnSb4S13 produces the highest ZT, i.e., 1.13 at 575 K. The relatively high value derives from a favorable balance of low thermal conductivity and a relatively high power factor.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    XRD patterns, thermal diffusivity, specific heat, magnetic susceptibility, low-temperature resistivity, and optical bandgap from diffuse reflectance. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 168 publications.

    1. Jacob E. Daniel, Christian M. Jesby, Katherine E. Plass, Mary E. Anderson. Multinary Tetrahedrite (Cu12–x–yMxNySb4S13) Nanoparticles: Tailoring Thermal and Optical Properties with Copper-Site Dopants. Chemistry of Materials 2024, 36 (7) , 3246-3258. https://doi.org/10.1021/acs.chemmater.3c03110
    2. Maxim Grauer, Lennart Staab, Katharina Ueltzen, Christopher Benndorf, Carsten Paulmann, Oliver Oeckler. Incommensurately Modulated Cu0.9Pb1.2Sb2.9Se6 in the Lillianite Structure Type. Inorganic Chemistry 2023, 62 (51) , 20874-20887. https://doi.org/10.1021/acs.inorgchem.3c03160
    3. Chao Yang, Luping Qu, Yong Luo, Yafen Xia, Cong Li, Xie Li, Jiaolin Cui. Electronic Structure- and Entropy-Driven Design of Thermoelectric Chalcogenide Cu5Sn2Se7 Leading to the Optimization of Carrier Concentration and Reduction in Thermal Conductivity. ACS Applied Energy Materials 2023, 6 (10) , 5388-5395. https://doi.org/10.1021/acsaem.3c00410
    4. Maria Zubair, Vasily A. Lebedev, Mohini Mishra, Temilade Esther Adegoke, Ibrahim Saana Amiinu, Yu Zhang, Andreu Cabot, Shalini Singh, Kevin M. Ryan. Precursor-Mediated Colloidal Synthesis of Compositionally Tunable Cu–Sb–M–S (M = Zn, Co, and Ni) Nanocrystals and Their Transport Properties. Chemistry of Materials 2022, 34 (23) , 10528-10537. https://doi.org/10.1021/acs.chemmater.2c02605
    5. Cheryl Sturm, Natalie Boccalon, Abdeljalil Assoud, Tianze Zou, Jan Kycia, Holger Kleinke. Thermoelectric Properties of Hot-Pressed Ba3Cu14−δTe12. Inorganic Chemistry 2021, 60 (17) , 12781-12789. https://doi.org/10.1021/acs.inorgchem.1c00925
    6. Chen Zhu, Quan Chen, Hongwei Ming, Xiaoying Qin, Yong Yang, Jian Zhang, Di Peng, Tao Chen, Di Li, Yoshiyuki Kawazoe. Improved Thermoelectric Performance of Cu12Sb4S13 through Gd-Substitution Induced Enhancement of Electronic Density of States and Phonon Scattering. ACS Applied Materials & Interfaces 2021, 13 (21) , 25092-25101. https://doi.org/10.1021/acsami.1c03493
    7. R. Viennois, D. Bérardan, C. Popescu. Crystal Structure, Lattice Dynamics, and Thermodynamic Properties of a Thermoelectric Orthorhombic BaCu2Se2 Compound. The Journal of Physical Chemistry C 2020, 124 (25) , 13627-13638. https://doi.org/10.1021/acs.jpcc.0c03964
    8. Haihua Hu, Fu-Hua Sun, Jinfeng Dong, Hua-Lu Zhuang, Bowen Cai, Jun Pei, Jing-Feng Li. Nanostructure Engineering and Performance Enhancement in Fe2O3-Dispersed Cu12Sb4S13 Thermoelectric Composites with Earth-Abundant Elements. ACS Applied Materials & Interfaces 2020, 12 (15) , 17852-17860. https://doi.org/10.1021/acsami.0c01229
    9. Lulu Huang, Yuan Kong, Jian Zhang, Chen Zhu, Jinhua Zhang, Yuanyue Li, Di Li, Hongxing Xin, Zhaoming Wang, Xiaoying Qin. Effects of Sb Deviation from Its Stoichiometric Ratio on the Micro- and Electronic Structures and Thermoelectric Properties of Cu12Sb4S13. ACS Applied Materials & Interfaces 2020, 12 (12) , 14145-14153. https://doi.org/10.1021/acsami.0c00094
    10. Takeshi Nakada, Mari Takahashi, Chiko Shijimaya, Koichi Higashimine, Wei Zhou, Pratibha Dwivedi, Michihiro Ohta, Hiroshi Takida, Takeo Akatsuka, Masanobu Miyata, Shinya Maenosono. Gram-Scale Synthesis of Tetrahedrite Nanoparticles and Their Thermoelectric Properties. Langmuir 2019, 35 (49) , 16335-16340. https://doi.org/10.1021/acs.langmuir.9b03003
    11. Lulu Huang, Yuan Kong, Jian Zhang, Rui Xu, Chen Zhu, Jie Wu, Bushra Jabbar, Di Li, Zhaoming Wang, Xiaoying Qin. Achieving a High Thermoelectric Performance of Tetrahedrites by Adjusting the Electronic Density of States and Enhancing Phonon Scattering. ACS Applied Materials & Interfaces 2019, 11 (26) , 23361-23371. https://doi.org/10.1021/acsami.9b06463
    12. Subhendu Jana, Mohd Ishtiyak, Adel Mesbah, Sébastien Lebègue, Jai Prakash, Christos D. Malliakas, James A. Ibers. Synthesis and Characterization of Ba2Ag2Se2(Se2). Inorganic Chemistry 2019, 58 (12) , 7837-7844. https://doi.org/10.1021/acs.inorgchem.9b00506
    13. Nader Ghassemi, Xu Lu, Yefan Tian, Emily Conant, Yanci Yan, Xiaoyuan Zhou, Joseph H. Ross, Jr.. Structure Change and Rattling Dynamics in Cu12Sb4S13 Tetrahedrite: an NMR Study. ACS Applied Materials & Interfaces 2018, 10 (42) , 36010-36017. https://doi.org/10.1021/acsami.8b13646
    14. Michelle D. Regulacio, Yong Wang, Zhi Wei Seh, Ming-Yong Han. Tailoring Porosity in Copper-Based Multinary Sulfide Nanostructures for Energy, Biomedical, Catalytic, and Sensing Applications. ACS Applied Nano Materials 2018, 1 (7) , 3042-3062. https://doi.org/10.1021/acsanm.8b00639
    15. Quansheng Guo, Jean-Baptiste Vaney, Raymond Virtudazo, Ryunosuke Minami, Yuichi Michiue, Yoko Yamabe-Mitarai, Takao Mori. Thermoelectric Properties of Variants of Cu4Mn2Te4 with Spinel-Related Structure. Inorganic Chemistry 2018, 57 (9) , 5258-5266. https://doi.org/10.1021/acs.inorgchem.8b00301
    16. Sebastian O. J. Long, Anthony V. Powell, Paz Vaqueiro, and Stephen Hull . High Thermoelectric Performance of Bornite through Control of the Cu(II) Content and Vacancy Concentration. Chemistry of Materials 2018, 30 (2) , 456-464. https://doi.org/10.1021/acs.chemmater.7b04436
    17. Jürgen Nuss, Ulrich Wedig, Wenjie Xie, Petar Yordanov, Jan Bruin, Ralph Hübner, Anke Weidenkaff, and Hidenori Takagi . Phosphide–Tetrahedrite Ag6Ge10P12: Thermoelectric Performance of a Long-Forgotten Silver-Cluster Compound. Chemistry of Materials 2017, 29 (16) , 6956-6965. https://doi.org/10.1021/acs.chemmater.7b02474
    18. Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117 (9) , 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
    19. Paz Vaqueiro, Gabin Guélou, Andreas Kaltzoglou, Ronald I. Smith, Tristan Barbier, Emmanuel Guilmeau, and Anthony V. Powell . The Influence of Mobile Copper Ions on the Glass-Like Thermal Conductivity of Copper-Rich Tetrahedrites. Chemistry of Materials 2017, 29 (9) , 4080-4090. https://doi.org/10.1021/acs.chemmater.7b00891
    20. Alexey V. Sobolev, Igor A. Presniakov, Daria I. Nasonova, Valeriy Yu. Verchenko, and Andrei V. Shevelkov . Thermally Activated Electron Exchange in Cu12–xFexSb4S13 (x = 1.3, 1.5) Tetrahedrites: A Mössbauer Study. The Journal of Physical Chemistry C 2017, 121 (8) , 4548-4557. https://doi.org/10.1021/acs.jpcc.6b12779
    21. Daniel P. Weller, Daniel L. Stevens, Grace E. Kunkel, Andrew M. Ochs, Cameron F. Holder, Donald T. Morelli, and Mary E. Anderson . Thermoelectric Performance of Tetrahedrite Synthesized by a Modified Polyol Process. Chemistry of Materials 2017, 29 (4) , 1656-1664. https://doi.org/10.1021/acs.chemmater.6b04950
    22. Kan Chen, Baoli Du, Nicola Bonini, Cedric Weber, Haixue Yan, and Mike J. Reece . Theory-Guided Synthesis of an Eco-Friendly and Low-Cost Copper Based Sulfide Thermoelectric Material. The Journal of Physical Chemistry C 2016, 120 (48) , 27135-27140. https://doi.org/10.1021/acs.jpcc.6b09379
    23. Daria I. Nasonova, Valeriy Yu. Verchenko, Alexander A. Tsirlin, and Andrei V. Shevelkov . Low-Temperature Structure and Thermoelectric Properties of Pristine Synthetic Tetrahedrite Cu12Sb4S13. Chemistry of Materials 2016, 28 (18) , 6621-6627. https://doi.org/10.1021/acs.chemmater.6b02720
    24. Xu Lu, Donald T. Morelli, Yuxing Wang, Wei Lai, Yi Xia, and Vidvuds Ozolins . Phase Stability, Crystal Structure, and Thermoelectric Properties of Cu12Sb4S13–xSex Solid Solutions. Chemistry of Materials 2016, 28 (6) , 1781-1786. https://doi.org/10.1021/acs.chemmater.5b04796
    25. Y. Bouyrie, C. Candolfi, A. Dauscher, B. Malaman, and B. Lenoir . Exsolution Process as a Route toward Extremely Low Thermal Conductivity in Cu12Sb4–xTexS13 Tetrahedrites. Chemistry of Materials 2015, 27 (24) , 8354-8361. https://doi.org/10.1021/acs.chemmater.5b03785
    26. Derak J. James, Xu Lu, Donald T. Morelli, and Stephanie L. Brock . Solvothermal Synthesis of Tetrahedrite: Speeding Up the Process of Thermoelectric Material Generation. ACS Applied Materials & Interfaces 2015, 7 (42) , 23623-23632. https://doi.org/10.1021/acsami.5b07141
    27. Xu Lu, Donald T. Morelli, Yi Xia, and Vidvuds Ozolins . Increasing the Thermoelectric Figure of Merit of Tetrahedrites by Co-Doping with Nickel and Zinc. Chemistry of Materials 2015, 27 (2) , 408-413. https://doi.org/10.1021/cm502570b
    28. Abhigyan Ojha, Anirudh R, Sivaiah Bathula. Augmentation in the thermoelectric performance by integrating the natural minerals with synthetic tetrahedrite compounds. Materials Science in Semiconductor Processing 2024, 180 , 108562. https://doi.org/10.1016/j.mssp.2024.108562
    29. Krishna Prakash, Naga Jyothi Valeti, Bodem Indraja, Monoj Kumar Singha. Modeling and optimization of numerical studies on CuSbS2 thin film solar cell with ∼ 15% efficiency. Optik 2024, 300 , 171632. https://doi.org/10.1016/j.ijleo.2024.171632
    30. Adrianna Lis, Karolina Zazakowny, Oleksandr Cherniushok, Janusz Tobola, Marta Gajewska, Taras Parashchuk, Krzysztof T. Wojciechowski. Nanostructured Cu12+Sb4S13 tetrahedrites prepared by solvothermal synthesis in 1-(2-aminoethyl)piperazine for efficient thermal energy harvesting. Journal of Alloys and Compounds 2024, 977 , 173337. https://doi.org/10.1016/j.jallcom.2023.173337
    31. Alexey O. Polevik, Anastasia S. Efimova, Alexey V. Sobolev, Iana S. Soboleva, Igor A. Presniakov, Valeriy Yu. Verchenko, Konstantin A. Lyssenko, Yurii A. Teterin, Anton Yu. Teterin, Konstantin I. Maslakov, Andrei V. Shevelkov. Atomic distribution, electron transfer, and charge compensation in artificial iron-bearing colusites Cu26-xFexTa2-γSn6S32. Journal of Alloys and Compounds 2024, 976 , 173280. https://doi.org/10.1016/j.jallcom.2023.173280
    32. Xinyi He, Shigeru Kimura, Takayoshi Katase, Terumasa Tadano, Satoru Matsuishi, Makoto Minohara, Hidenori Hiramatsu, Hiroshi Kumigashira, Hideo Hosono, Toshio Kamiya. Inverse‐Perovskite Ba 3 B O ( B = Si and Ge) as a High Performance Environmentally Benign Thermoelectric Material with Low Lattice Thermal Conductivity. Advanced Science 2024, 11 (10) https://doi.org/10.1002/advs.202307058
    33. Khak Ho Lim, Mingquan Li, Yu Zhang, Yue Wu, Qimin Zhou, Qingyue Wang, Xuan Yang, Pingwei Liu, Wen-Jun Wang, Ka Wai Wong, Ka Ming Ng, Yu Liu, Andreu Cabot. Modulation doping of p-type Cu12Sb4S13 toward improving thermoelectric performance. Journal of Materials Science & Technology 2024, 171 , 71-79. https://doi.org/10.1016/j.jmst.2023.07.008
    34. Holger KLEINKE. Thermoelectric Copper and Silver Chalcogenides. 2024, 71-92. https://doi.org/10.1002/9781394256419.ch3
    35. Sweta Yadav, Jai Prakash. Synthesis and crystal structure of Ba 2 Y 0.87(1) Mn 1.71(1) Te 5. Acta Crystallographica Section C Structural Chemistry 2024, 80 (1) , 9-14. https://doi.org/10.1107/S2053229623011099
    36. Fu-Hua Sun, Hezhang Li, Jun Tan, Lingmei Zhao, Xinyu Wang, Haihua Hu, Chao Wang, Takao Mori. Review of current ZT > 1 thermoelectric sulfides. Journal of Materiomics 2024, 10 (1) , 218-233. https://doi.org/10.1016/j.jmat.2023.05.011
    37. Akira Nagaoka, Katsuma Nagatomo, Koki Nakashima, Yuichi Hirai, Yasuyuki Ota, Kenji Yoshino, Kensuke Nishioka. Thermoelectric Conversion Efficiency of 4% in Environmental-Friendly Kesterite Single Crystal. MATERIALS TRANSACTIONS 2023, 64 (10) , 2535-2541. https://doi.org/10.2320/matertrans.MT-E2023002
    38. Jin Liu, Qiutong Liu, Shuping Lin, Man Yui Leung, Yuan Ma, Xiaoming Tao. Wearable Thermoelectric Generators: Materials, Structures, Fabrications, and Applications. physica status solidi (RRL) – Rapid Research Letters 2023, 17 (7) https://doi.org/10.1002/pssr.202200502
    39. Mian Liu, Changsong Liu, Xiaoying Qin. The effects of Zn doping on the thermoelectric performance of Cu 12 Sb 4 S 13. Emerging Materials Research 2023, 12 (2) , 176-181. https://doi.org/10.1680/jemmr.21.00144
    40. Alexey O. Polevik, Alexey V. Sobolev, Iana S. Glazkova, Igor A. Presniakov, Valeriy Yu. Verchenko, Joosep Link, Raivo Stern, Andrei V. Shevelkov. Interplay between Fe(II) and Fe(III) and Its Impact on Thermoelectric Properties of Iron-Substituted Colusites Cu26−xFexV2Sn6S32. Compounds 2023, 3 (2) , 348-364. https://doi.org/10.3390/compounds3020027
    41. Robert J. Quinn, Jan-Willem G. Bos. Recent progress in phosphide materials for thermoelectric conversion. Journal of Materials Chemistry A 2023, 11 (16) , 8453-8469. https://doi.org/10.1039/D3TA00620D
    42. Duarte Moço, José F. Malta, Luís F. Santos, Elsa B. Lopes, António P. Gonçalves. Thermoelectric Properties of Nickel and Selenium Co-Doped Tetrahedrite. Materials 2023, 16 (3) , 898. https://doi.org/10.3390/ma16030898
    43. Chen Zhu, Hongwei Ming, Jian Zhang, Di Li, Tao Chen, Xiaoying Qin. Ultralow Lattice Thermal Conductivity and High Thermoelectric Figure of Merit in Dually Substituted Cu 12 Sb 4 S 13 Tetrahedrites. Advanced Electronic Materials 2022, 8 (10) https://doi.org/10.1002/aelm.202200110
    44. Krzysztof Kapera, Andrzej Koleżyński. First-principles study of structural disorder, site preference, chemical bonding and transport properties of Mg-doped tetrahedrite. Computational Materials Science 2022, 213 , 111681. https://doi.org/10.1016/j.commatsci.2022.111681
    45. M. Atowar Rahman. Numerical modeling of ultra-thin CuSbS 2 heterojunction solar cell with TiO 2 electron transport and CuAlO 2 :Mg BSF layers. Optical Materials Express 2022, 12 (8) , 2954. https://doi.org/10.1364/OME.465498
    46. Yi-Xin Zhang, Qing Lou, Zhen-Hua Ge, Shi-Wei Gu, Jun-Xuan Yang, Jun Guo, Yu-Ke Zhu, Ying Zhou, Xiao-Hua Yu, Jing Feng, Jiaqing He. Excellent thermoelectric properties and stability realized in copper sulfides based composites via complex nanostructuring. Acta Materialia 2022, 233 , 117972. https://doi.org/10.1016/j.actamat.2022.117972
    47. Min-Cheol Kwon, Il-Ho Kim. Preparation and Thermoelectric Properties of Si-Doped Tetrahedrites Cu12Sb4-ySiyS13. Korean Journal of Metals and Materials 2022, 60 (6) , 440-447. https://doi.org/10.3365/KJMM.2022.60.6.440
    48. Jian Wang, Tong Wang, Jingjing Zhang, Bingguo Liu, Lanjie Wang, Wen Gu, Baofu Hu, Jian Xu, Baoli Du. Preparation and thermoelectric properties of Co/Ni stabilized cubic Cu3SbS3 compounds. Journal of Solid State Chemistry 2022, 310 , 123014. https://doi.org/10.1016/j.jssc.2022.123014
    49. Juliusz Leszczyński, Krzysztof Kapera, Adrian Mizera, Paweł Nieroda, Andrzej Koleżyński. Experimental and Theoretical Studies on Possibility of Void Filling by Magnesium in Mg-Doped Tetrahedrites. Materials 2022, 15 (12) , 4115. https://doi.org/10.3390/ma15124115
    50. Daniel P. Weller, Donald T. Morelli. Tetrahedrite Thermoelectrics: From Fundamental Science to Facile Synthesis. Frontiers in Electronic Materials 2022, 2 https://doi.org/10.3389/femat.2022.913280
    51. Paulina Kamińska, Cédric Bourgès, Raju Chetty, Daniel Gutiérrez-Del-Río, Piotr Śpiewak, Wojciech Święszkowski, Toshiyuki Nishimura, Takao Mori. Insight into the preponderant role of the lattice size in Sn-based colusites for promoting a high power factor. Journal of Materials Chemistry A 2022, 10 (19) , 10701-10714. https://doi.org/10.1039/D2TA01210C
    52. Koki Kamimizutaru, Akira Nagaoka, Yusuke Shigeeda, Kensuke Nishioka, Tomohiro Higashi, Shintaro Yasui, Kenji Yoshino. Chimney-ladder sulfide Sr9Ti8S24 as a thermoelectric material with low thermal conductivity. Journal of Physics and Chemistry of Solids 2022, 163 , 110589. https://doi.org/10.1016/j.jpcs.2022.110589
    53. Karolina Zazakowny, Artur Kosonowski, Adrianna Lis, Oleksandr Cherniushok, Taras Parashchuk, Janusz Tobola, Krzysztof T. Wojciechowski. Phase Analysis and Thermoelectric Properties of Cu-Rich Tetrahedrite Prepared by Solvothermal Synthesis. Materials 2022, 15 (3) , 849. https://doi.org/10.3390/ma15030849
    54. Mian Liu, Xiaoying Qin, Changsong Liu. Substitution Site Selection and Thermoelectric Performance‐Enhancing Mechanism of Cu 12 Sb 4 S 13 Doped with Pb/Ge/Sn. physica status solidi (b) 2022, 259 (1) https://doi.org/10.1002/pssb.202100275
    55. Yi-Xin Zhang, Qing Lou, Zhenhua Ge, Shi-Wei Gu, Jun-Xuan Yang, Jun Guo, Yu-Ke Zhu, Ying Zhou, Xiao-Hua Yu, Jing Feng, Jiaqing He. Excellent Thermoelectric Properties and Stability Realized in Copper Sulfides Based Composites Via Complex Nanostructuring. SSRN Electronic Journal 2022, 321 https://doi.org/10.2139/ssrn.4050252
    56. Tahani Alqahtani, Malik Dilshad Khan, David J. Lewis, Xiang Li Zhong, Paul O’Brien. Scalable synthesis of Cu–Sb–S phases from reactive melts of metal xanthates and effect of cationic manipulation on structural and optical properties. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-020-80951-5
    57. Rosnita Md Aspan, Noshin Fatima, Ramizi Mohamed, Ubaidah Syafiq, Mohd Adib Ibrahim. An Overview of the Strategies for Tin Selenide Advancement in Thermoelectric Application. Micromachines 2021, 12 (12) , 1463. https://doi.org/10.3390/mi12121463
    58. Michelle D. Regulacio, Jerry Z. X. Heng, Yongming Toh, Karen Yuanting Tang, Ming Lin, Enyi Ye. Gram‐Scale Production of Photothermally Active Tetrahedrite Nanoparticles for Solar‐Driven Water Evaporation. Chemistry – An Asian Journal 2021, 16 (21) , 3326-3330. https://doi.org/10.1002/asia.202100894
    59. Olga Caballero‐Calero, José R. Ares, Marisol Martín‐González. Environmentally Friendly Thermoelectric Materials: High Performance from Inorganic Components with Low Toxicity and Abundance in the Earth. Advanced Sustainable Systems 2021, 5 (11) https://doi.org/10.1002/adsu.202100095
    60. Tingwei Li, Qiang Sun, Puru Jena. Thermal and Thermoelectric Properties of Cluster‐based Materials. 2021, 317-348. https://doi.org/10.1002/9781119619574.ch11
    61. Haihua Hu, Hua‐Lu Zhuang, Yilin Jiang, Jianlei Shi, Jing‐Wei Li, Bowen Cai, Zhanran Han, Jun Pei, Bin Su, Zhen‐Hua Ge, Bo‐Ping Zhang, Jing‐Feng Li. Thermoelectric Cu 12 Sb 4 S 13 ‐Based Synthetic Minerals with a Sublimation‐Derived Porous Network. Advanced Materials 2021, 33 (43) https://doi.org/10.1002/adma.202103633
    62. Mohd Ishtiyak, Subhendu Jana, R. Karthikeyan, M. Ramesh, Bikash Tripathy, Sairam K. Malladi, Manish K. Niranjan, Jai Prakash. Syntheses of five new layered quaternary chalcogenides SrScCuSe 3 , SrScCuTe 3 , BaScCuSe 3 , BaScCuTe 3 , and BaScAgTe 3 : crystal structures, thermoelectric properties, and electronic structures. Inorganic Chemistry Frontiers 2021, 8 (17) , 4086-4101. https://doi.org/10.1039/D1QI00717C
    63. Luke T. Menezes, Zoltan W. Richter-Bisson, Abdeljalil Assoud, Holger Kleinke. La 12 Sb 9 S 38 : a new semiconducting lanthanum antimony polysulfide with a mixed La/Sb site. Journal of Materials Chemistry C 2021, 9 (20) , 6553-6559. https://doi.org/10.1039/D1TC00984B
    64. Cheryl Sturm, Leilane R. Macario, Takao Mori, Holger Kleinke. Thermoelectric properties of zinc-doped Cu 5 Sn 2 Se 7 and Cu 5 Sn 2 Te 7. Dalton Transactions 2021, 50 (19) , 6561-6567. https://doi.org/10.1039/D1DT00615K
    65. A. P. Novitskii, V. V. Khovaylo, T. Mori. Recent Developments and Progress on BiCuSeO Based Thermoelectric Materials. Nanobiotechnology Reports 2021, 16 (3) , 294-307. https://doi.org/10.1134/S2635167621030150
    66. Andrzej Mikuła, Krzysztof Mars, Paweł Nieroda, Paweł Rutkowski. Copper Chalcogenide–Copper Tetrahedrite Composites—A New Concept for Stable Thermoelectric Materials Based on the Chalcogenide System. Materials 2021, 14 (10) , 2635. https://doi.org/10.3390/ma14102635
    67. Alexey A. Yaroslavzev, Alexey N. Kuznetsov, Alexander P. Dudka, Andrei V. Mironov, Sergey G. Buga, Vladimir V. Denisov. Laves polyhedra in synthetic tennantite, Cu 12 As 4 S 13 , and its lattice dynamics. Journal of Solid State Chemistry 2021, 297 , 122061. https://doi.org/10.1016/j.jssc.2021.122061
    68. Jingjing Zhang, Lanjie Wang, Ming Liu, Jian Wang, Ke Sun, Yang Yang, Baofu Hu, Jian Xu, Taichao Su, Baoli Du. Preparation and thermoelectric performance of tetrahedrite-like cubic Cu3SbS3 compound. Journal of Materials Science: Materials in Electronics 2021, 32 (8) , 10789-10802. https://doi.org/10.1007/s10854-021-05737-5
    69. Hai Yang, Tong Xing, Qingfeng Song, Jinhui Fan, Xiaoya Li. Influence of Sb self-doping on thermoelectric performance of Cu12Sb4S13. Materials Letters 2021, 288 , 129314. https://doi.org/10.1016/j.matlet.2021.129314
    70. Luke T. Menezes, Zoltan W. Richter‐Bisson, Abdeljalil Assoud, Bryan A. Kuropatwa, Holger Kleinke. Crystal Structure and Physical Properties of the Lanthanum Chalcoantimonate TlLa 2 Sb 3 Se 9. Zeitschrift für anorganische und allgemeine Chemie 2021, 647 (2-3) , 81-85. https://doi.org/10.1002/zaac.202000386
    71. Slavko Bernik. Oxide thermoelectric materials: Compositional, structural, microstructural, and processing challenges to realize their potential. 2021, 269-302. https://doi.org/10.1016/B978-0-12-818535-3.00016-5
    72. Akira Nagaoka, Manato Takeuchi, Yusuke Shigeeda, Koki Kamimizutaru, Kenji Yoshino, Kensuke Nishioka. Chalcostibite Single-Crystal CuSbS2 as High-Performance Thermoelectric Material. MATERIALS TRANSACTIONS 2020, 61 (12) , 2407-2411. https://doi.org/10.2320/matertrans.E-M2020850
    73. Christine D. Fasana, Mitchel S. Jensen, Graciela E. García Ponte, Tyler R. MacAlister, Grace E. Kunkel, John P. Rogers, Andrew M. Ochs, Daniel L. Stevens, Daniel P. Weller, Donald T. Morelli, Mary E. Anderson. Synthetic versatility, reaction pathway, and thermal stability of tetrahedrite nanoparticles. Journal of Materials Chemistry C 2020, 8 (40) , 14219-14229. https://doi.org/10.1039/D0TC03599H
    74. Yuqi Chen, Liang Li, Qianjun Zhang, Congzheng Zhang, Shinji Hirai. The influence of self-doping of stibnite ore with impurities on the preparation, heat capacity, magnetic and transport properties of tetrahedrite Cu 12 Sb 4 S 13. Materials Science-Poland 2020, 38 (3) , 484-492. https://doi.org/10.2478/msp-2020-0049
    75. Rodrigo Coelho, Elli Symeou, Theodora Kyratsi, António Pereira Gonçalves. Tetrahedrite Sintering Conditions: The Cu11Mn1Sb4S13 Case. Journal of Electronic Materials 2020, 49 (8) , 5077-5083. https://doi.org/10.1007/s11664-020-08250-3
    76. Yi Xia, Vidvuds Ozoliņš, Chris Wolverton. Microscopic Mechanisms of Glasslike Lattice Thermal Transport in Cubic Cu 12 Sb 4 S 13 Tetrahedrites. Physical Review Letters 2020, 125 (8) https://doi.org/10.1103/PhysRevLett.125.085901
    77. Xianxiu Qiu, Pengfei Qiu, Tingting Deng, Hui Huang, Xiaolong Du, Xun Shi, Lidong Chen. Thermoelectric Properties of Nano‐grained Mooihoekite Cu 9 Fe 9 S 16. Zeitschrift für anorganische und allgemeine Chemie 2020, 646 (14) , 1116-1121. https://doi.org/10.1002/zaac.202000017
    78. Cono Di Paola, Francesco Macheda, Savio Laricchia, Cedric Weber, Nicola Bonini. First-principles study of electronic transport and structural properties of Cu 12 Sb 4 S 13 in its high-temperature phase. Physical Review Research 2020, 2 (3) https://doi.org/10.1103/PhysRevResearch.2.033055
    79. Yohan Bouyrie, Raju Chetty, Koichiro Suekuni, Noriyuki Saitou, Priyanka Jood, Noriko Yoshizawa, Toshiro Takabatake, Michihiro Ohta. Enhancement of the thermoelectric power factor by tuning the carrier concentration in Cu-rich and Ge-poor colusites Cu 26+x Nb 2 Ge 6−x S 32. Journal of Materials Chemistry C 2020, 8 (19) , 6442-6449. https://doi.org/10.1039/D0TC00508H
    80. Ji-Hee Pi, Go-Eun Lee, Il-Ho Kim. Thermal Stability, Mechanical Properties and Thermoelectric Performance of Cu11TrSb4S13 (Tr = Mn, Fe, Co, Ni, Cu, and Zn). Journal of Electronic Materials 2020, 49 (5) , 2710-2718. https://doi.org/10.1007/s11664-019-07570-3
    81. Go-Eun Lee, Il-Ho Kim. Effects of Zn/Bi Double Doping on the Charge Transport and Thermoelectric Properties of Tetrahedrites Cu12−xZnxSb4−yBiyS13. Journal of Electronic Materials 2020, 49 (5) , 2768-2774. https://doi.org/10.1007/s11664-019-07717-2
    82. Peter Baláž, Emanuel Guilmeau, Nina Daneu, Oleksandr Dobrozhan, Matej Baláž, Michal Hegedus, Tristan Barbier, Marcela Achimovičová, Mária Kaňuchová, Jaroslav Briančin. Tetrahedrites synthesized via scalable mechanochemical process and spark plasma sintering. Journal of the European Ceramic Society 2020, 40 (5) , 1922-1930. https://doi.org/10.1016/j.jeurceramsoc.2020.01.023
    83. Aakash Yadav, PC Deshmukh, Ken Roberts, NM Jisrawi, SR Valluri. An analytic study of the Wiedemann–Franz law and the thermoelectric figure of merit. Journal of Physics Communications 2019, 3 (10) , 105001. https://doi.org/10.1088/2399-6528/ab444a
    84. Anthony V. Powell. Recent developments in Earth-abundant copper-sulfide thermoelectric materials. Journal of Applied Physics 2019, 126 (10) https://doi.org/10.1063/1.5119345
    85. Alexey A. Yaroslavzev, Andrei V. Mironov, Alexey N. Kuznetsov, Alexander P. Dudka, Olga N. Khrykina. Tennantite: multi-temperature crystal structure, phase transition and electronic structure of synthetic Cu 12 As 4 S 13. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 2019, 75 (4) , 634-642. https://doi.org/10.1107/S2052520619007595
    86. Gabin P. L. Guélou, Anthony V. Powell, Ronald I. Smith, Paz Vaqueiro. The impact of manganese substitution on the structure and properties of tetrahedrite. Journal of Applied Physics 2019, 126 (4) https://doi.org/10.1063/1.5110696
    87. Rafiq Mulla, Mohammad Hussain Kasim Rabinal. Copper Sulfides: Earth‐Abundant and Low‐Cost Thermoelectric Materials. Energy Technology 2019, 7 (7) https://doi.org/10.1002/ente.201800850
    88. A. Bharwdaj, K. Singh Jat, S. Patnaik, Yu. N. Parkhomenko, Y. Nishino, V. V. Khovaylo. Current Research and Future Prospective of Iron-Based Heusler Alloys as Thermoelectric Materials. Nanotechnologies in Russia 2019, 14 (7-8) , 281-289. https://doi.org/10.1134/S1995078019040049
    89. Michihiro Ohta, Priyanka Jood, Masayuki Murata, Chul‐Ho Lee, Atsushi Yamamoto, Haruhiko Obara. An Integrated Approach to Thermoelectrics: Combining Phonon Dynamics, Nanoengineering, Novel Materials Development, Module Fabrication, and Metrology. Advanced Energy Materials 2019, 9 (23) https://doi.org/10.1002/aenm.201801304
    90. Chunmei Tang, Doudou Liang, Hezhang Li, Kun Luo, Boping Zhang. Preparation and thermoelectric properties of Cu1.8S/CuSbS2 composites. Journal of Advanced Ceramics 2019, 8 (2) , 209-217. https://doi.org/10.1007/s40145-018-0306-0
    91. Ji-Hee Pi, Go-Eun Lee, Il-Ho Kim. Effects of Aging on Thermoelectric Properties of Tetrahedrite Cu12Sb4S13. Journal of the Korean Physical Society 2019, 74 (9) , 865-870. https://doi.org/10.3938/jkps.74.865
    92. Sung-Yoon Kim, Go-Eun Lee, Il-Ho Kim. Thermoelectric Properties of Mechanically-Alloyed and Hot-Pressed Cu12−xCoxSb4S13 Tetrahedrites. Journal of the Korean Physical Society 2019, 74 (10) , 967-971. https://doi.org/10.3938/jkps.74.967
    93. Ji-Hee Pi, Sung-Gyu Kwak, Sung-Yoon Kim, Go-Eun Lee, Il-Ho Kim. Thermal Stability and Mechanical Properties of Thermoelectric Tetrahedrite Cu12Sb4S13. Journal of Electronic Materials 2019, 48 (4) , 1991-1997. https://doi.org/10.1007/s11664-018-06883-z
    94. K. Knížek, P. Levinský, J. Hejtmánek. $${\hbox {LDA}}+{\hbox {U}}$$ LDA + U Calculation of Electronic and Thermoelectric Properties of Doped Tetrahedrite $${\hbox {Cu}}_{12}{\hbox {Sb}}_{4}{\hbox {S}}_{13}$$ Cu 12 Sb 4 S 13. Journal of Electronic Materials 2019, 48 (4) , 2018-2021. https://doi.org/10.1007/s11664-019-06960-x
    95. Daria I. Nasonova, Alexei V. Sobolev, Igor A. Presniakov, Ksenia D. Andreeva, Andrei V. Shevelkov. Position and oxidation state of tin in Sn-bearing tetrahedrites Cu12-xSnxSb4S13. Journal of Alloys and Compounds 2019, 778 , 774-778. https://doi.org/10.1016/j.jallcom.2018.11.168
    96. Fu-Hua Sun, Jinfeng Dong, Huaichao Tang, Peng-Peng Shang, Hua-Lu Zhuang, Haihua Hu, Chao-Feng Wu, Yu Pan, Jing-Feng Li. Enhanced performance of thermoelectric nanocomposites based on Cu12Sb4S13 tetrahedrite. Nano Energy 2019, 57 , 835-841. https://doi.org/10.1016/j.nanoen.2018.12.090
    97. Petr Levinsky, Christophe Candolfi, Anne Dauscher, Janusz Tobola, Jiří Hejtmánek, Bertrand Lenoir. Thermoelectric properties of the tetrahedrite–tennantite solid solutions Cu 12 Sb 4−x As x S 13 and Cu 10 Co 2 Sb 4−y As y S 13 (0 ≤ x , y ≤ 4). Physical Chemistry Chemical Physics 2019, 21 (8) , 4547-4555. https://doi.org/10.1039/C9CP00213H
    98. Krishna Veni Selvan, Md Nazibul Hasan, Mohamed Sultan Mohamed Ali. State-of-the-Art Reviews and Analyses of Emerging Research Findings and Achievements of Thermoelectric Materials over the Past Years. Journal of Electronic Materials 2019, 48 (2) , 745-777. https://doi.org/10.1007/s11664-018-06838-4
    99. Yixuan Shi, Cheryl Sturm, Holger Kleinke. Chalcogenides as thermoelectric materials. Journal of Solid State Chemistry 2019, 270 , 273-279. https://doi.org/10.1016/j.jssc.2018.10.049
    100. António Pereira Gonçalves, Elsa Branco Lopes, Gaëlle Delaizir. Glass for Thermoelectric Applications. 2019, 1677-1696. https://doi.org/10.1007/978-3-319-93728-1_49
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect