ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Cation Gating and Relocation during the Highly Selective “Trapdoor” Adsorption of CO2 on Univalent Cation Forms of Zeolite Rho

View Author Information
EaStCHEM School of Chemistry, University of St. Andrews, Purdie Building, North Haugh, St. Andrews, Fife KY16 9ST, Scotland
Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
§ Instituto de Tecnología Química (UPV-CSIC), Universidad Politécnica de Valencia, Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
Cite this: Chem. Mater. 2014, 26, 6, 2052–2061
Publication Date (Web):February 17, 2014
https://doi.org/10.1021/cm404028f
Copyright © 2014 American Chemical Society

    Article Views

    2135

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (3)»

    Abstract

    Abstract Image

    Adsorption of CO2 and CH4 has been measured on the Na-, K-, and Cs-forms of zeolite Rho (0–9 bar; 283–333 K). Although CH4 is excluded, CO2 is readily taken up, although the uptake at low pressures decreases strongly, in the order Na+ > K+ > Cs+. Structural studies by powder X-ray diffraction (PXRD) suggest that cations in intercage window sites block CH4 adsorption; however, in the presence of CO2, the cations can move enough to permit adsorption (several angstroms). Determination of time-averaged cation positions during CO2 adsorption at 298 K by Rietveld refinement against PXRD data shows that (i) in Na-Rho, there is a small relaxation of Na+ cations within single eight-ring (S8R) sites, (ii) in Cs-Rho, D8R cations move to S8R sites (remaining within windows) and two phases of Cs-Rho (I4̅3m, Imm) are present over a wide pressure range, and (iii) in K-Rho, there is relocation of some K+ cations from window sites to cage sites and two phases coexist, each with I4̅3m symmetry, over the pressure range of 0–1 bar. The final cation distributions at high PCO2 are similar for Na-, K-, and Cs-Rho, and adsorption in each case is only possible by “trapdoor”-type cation gating. Complementary studies on K-chabazite (Si/Al = 3) also show changes in time-averaged cation location during CO2 adsorption.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details of the syntheses, ion exchange conditions, calorimetric data, structural and refinement details as well as crystallographic information files and additional structural diagrams. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 87 publications.

    1. Yuto Higuchi, Sana Miyagawa, Yasunori Oumi, Satoshi Inagaki, Shunsuke Tanaka. CO2-Induced Gate-Opening Adsorption on a Chabazite/Phillipsite Composite Zeolite Transformed from a Faujasite Zeolite Using Organic Structure-Directing Agent-Free Steam-Assisted Conversion. ACS Applied Materials & Interfaces 2023, 15 (32) , 38463-38473. https://doi.org/10.1021/acsami.3c07313
    2. Edwin B. Clatworthy, Simona Moldovan, Kalthoum Nakouri, Stoyan P. Gramatikov, Francesco Dalena, Marco Daturi, Petko St. Petkov, Georgi N. Vayssilov, Svetlana Mintova. Visualizing the Flexibility of RHO Nanozeolite: Experiment and Modeling. Journal of the American Chemical Society 2023, 145 (28) , 15313-15323. https://doi.org/10.1021/jacs.3c02822
    3. Dina G. Boer, Jort Langerak, Paolo P. Pescarmona. Zeolites as Selective Adsorbents for CO2 Separation. ACS Applied Energy Materials 2023, 6 (5) , 2634-2656. https://doi.org/10.1021/acsaem.2c03605
    4. Eddy Dib, Edwin B. Clatworthy, Arnold A. Paecklar, Julien Grand, Nicolas Barrier, Svetlana Mintova. Role of Al Distribution in CO2 Adsorption Capacity in RHO Zeolites. The Journal of Physical Chemistry C 2023, 127 (1) , 3-10. https://doi.org/10.1021/acs.jpcc.2c05479
    5. Eduardo Pérez-Botella, Susana Valencia, Fernando Rey. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chemical Reviews 2022, 122 (24) , 17647-17695. https://doi.org/10.1021/acs.chemrev.2c00140
    6. Edwin B. Clatworthy, Arnold A. Paecklar, Eddy Dib, Maxime Debost, Nicolas Barrier, Philippe Boullay, Jean-Pierre Gilson, Nikolai Nesterenko, Svetlana Mintova. Engineering RHO Nanozeolite: Controlling the Particle Morphology, Al and Cation Content, Stability, and Flexibility. ACS Applied Energy Materials 2022, 5 (5) , 6032-6042. https://doi.org/10.1021/acsaem.2c00439
    7. Sajjad Ghojavand, Benoit Coasne, Edwin B. Clatworthy, Rémy Guillet-Nicolas, Philippe Bazin, Marie Desmurs, Luis Jacobo Aguilera, Valérie Ruaux, Svetlana Mintova. Alkali Metal Cations Influence the CO2 Adsorption Capacity of Nanosized Chabazite: Modeling vs Experiment. ACS Applied Nano Materials 2022, 5 (4) , 5578-5588. https://doi.org/10.1021/acsanm.2c00537
    8. Elliott L. Bruce, Veselina M. Georgieva, Maarten C. Verbraeken, Claire A. Murray, Ming-Feng Hsieh, William J. Casteel, Jr., Alessandro Turrina, Stefano Brandani, Paul A. Wright. Structural Chemistry, Flexibility, and CO2 Adsorption Performance of Alkali Metal Forms of Merlinoite with a Framework Si/Al Ratio of 4.2. The Journal of Physical Chemistry C 2021, 125 (49) , 27403-27419. https://doi.org/10.1021/acs.jpcc.1c08296
    9. Salah Eddine Boulfelfel, John M. Findley, Hanjun Fang, Alan S. S. Daou, Peter I. Ravikovitch, David S. Sholl. A Transferable Force Field for Predicting Adsorption and Diffusion of Small Molecules in Alkali Metal Exchanged Zeolites with Coupled Cluster Accuracy. The Journal of Physical Chemistry C 2021, 125 (48) , 26832-26846. https://doi.org/10.1021/acs.jpcc.1c07790
    10. Le Xu, Alexander Okrut, Gregory L. Tate, Ryohji Ohnishi, Kun-Lin Wu, Dan Xie, Ambarish Kulkarni, Takahiko Takewaki, John R. Monnier, Alexander Katz. Cs-RHO Goes from Worst to Best as Water Enhances Equilibrium CO2 Adsorption via Phase Change. Langmuir 2021, 37 (47) , 13903-13908. https://doi.org/10.1021/acs.langmuir.1c02430
    11. Veselina M. Georgieva, Elliott L. Bruce, Ruxandra G. Chitac, Magdalena M. Lozinska, Anna M. Hall, Claire A. Murray, Ronald I. Smith, Alessandro Turrina, Paul A. Wright. Cation Control of Cooperative CO2 Adsorption in Li-Containing Mixed Cation Forms of the Flexible Zeolite Merlinoite. Chemistry of Materials 2021, 33 (4) , 1157-1173. https://doi.org/10.1021/acs.chemmater.0c03773
    12. Ocean Cheung, Zoltán Bacsik, Nicolas Fil, Panagiotis Krokidas, Dariusz Wardecki, Niklas Hedin. Selective Adsorption of CO2 on Zeolites NaK-ZK-4 with Si/Al of 1.8–2.8. ACS Omega 2020, 5 (39) , 25371-25380. https://doi.org/10.1021/acsomega.0c03749
    13. Julien Grand, Nicolas Barrier, Maxime Debost, Edwin B. Clatworthy, Fabien Laine, Philippe Boullay, Nikolai Nesterenko, Jean-Pierre Dath, Jean-Pierre Gilson, Svetlana Mintova. Flexible Template-Free RHO Nanosized Zeolite for Selective CO2 Adsorption. Chemistry of Materials 2020, 32 (14) , 5985-5993. https://doi.org/10.1021/acs.chemmater.0c01016
    14. Yong Peng, Alejandra Rendón-Patiño, Antonio Franconetti, Josep Albero, Ana Primo, Hermenegildo García. Photocatalytic Overall Water Splitting Activity of Templateless Structured Graphitic Nanoparticles Obtained from Cyclodextrins. ACS Applied Energy Materials 2020, 3 (7) , 6623-6632. https://doi.org/10.1021/acsaem.0c00789
    15. Veselina M. Georgieva, Elliott L. Bruce, Maarten C. Verbraeken, Aaron R. Scott, William J. Casteel, Jr., Stefano Brandani, Paul A. Wright. Triggered Gate Opening and Breathing Effects during Selective CO2 Adsorption by Merlinoite Zeolite. Journal of the American Chemical Society 2019, 141 (32) , 12744-12759. https://doi.org/10.1021/jacs.9b05539
    16. Ilya A. Bryukhanov, Andrey A. Rybakov, Alexander V. Larin. Carbonate-Promoted Drift of Alkali Cations in Small Pore Zeolites: Ab Initio Molecular Dynamics Study of CO2 in NaKA Zeolite. The Journal of Physical Chemistry Letters 2019, 10 (9) , 2191-2195. https://doi.org/10.1021/acs.jpclett.9b00519
    17. Przemyslaw Rzepka, Zoltán Bacsik, Stef Smeets, Thomas C. Hansen, Niklas Hedin, Dariusz Wardecki. Site-Specific Adsorption of CO2 in Zeolite NaK-A. The Journal of Physical Chemistry C 2018, 122 (47) , 27005-27015. https://doi.org/10.1021/acs.jpcc.8b09405
    18. Hwajun Lee, Jiho Shin, Wanuk Choi, Hyun June Choi, Taimin Yang, Xiaodong Zou, Suk Bong Hong. PST-29: A Missing Member of the RHO family of Embedded Isoreticular Zeolites. Chemistry of Materials 2018, 30 (19) , 6619-6623. https://doi.org/10.1021/acs.chemmater.8b03311
    19. Chong Yang Chuah, Kunli Goh, Yanqin Yang, Heqing Gong, Wen Li, H. Enis Karahan, Michael D. Guiver, Rong Wang, Tae-Hyun Bae. Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews 2018, 118 (18) , 8655-8769. https://doi.org/10.1021/acs.chemrev.8b00091
    20. Xin Guo, David R. Corbin, Alexandra Navrotsky. Thermodynamics of H2O and CO2 Absorption and Guest-Induced Phase Transitions in Zeolite RHO. The Journal of Physical Chemistry C 2018, 122 (35) , 20366-20376. https://doi.org/10.1021/acs.jpcc.8b06070
    21. Lifei Zou, Xiaodong Sun, Jiaqi Yuan, Guanghua Li, Yunling Liu. Assembly of Zeolite-like Metal–Organic Framework: An Indium-ZMOF Possessing GIS Topology and High CO2 Capture. Inorganic Chemistry 2018, 57 (17) , 10679-10684. https://doi.org/10.1021/acs.inorgchem.8b01330
    22. Jianhua Zhao, Ke Xie, Ranjeet Singh, Gongkui Xiao, Qinfen Gu, Qinghu Zhao, Gang Li, Penny Xiao, Paul A. Webley. Li+/ZSM-25 Zeolite as a CO2 Capture Adsorbent with High Selectivity and Improved Adsorption Kinetics, Showing CO2-Induced Framework Expansion. The Journal of Physical Chemistry C 2018, 122 (33) , 18933-18941. https://doi.org/10.1021/acs.jpcc.8b04152
    23. Przemyslaw Rzepka, Dariusz Wardecki, Stef Smeets, Melanie Müller, Hermann Gies, Xiaodong Zou, Niklas Hedin. CO2-Induced Displacement of Na+ and K+ in Zeolite |NaK|-A. The Journal of Physical Chemistry C 2018, 122 (30) , 17211-17220. https://doi.org/10.1021/acs.jpcc.8b03899
    24. Abdalla H. Karoyo, Leila Dehabadi, Lee D. Wilson. Renewable Starch Carriers with Switchable Adsorption Properties. ACS Sustainable Chemistry & Engineering 2018, 6 (4) , 4603-4613. https://doi.org/10.1021/acssuschemeng.7b03345
    25. François-Xavier Coudert and Daniela Kohen . Molecular Insight into CO2 “Trapdoor” Adsorption in Zeolite Na-RHO. Chemistry of Materials 2017, 29 (7) , 2724-2730. https://doi.org/10.1021/acs.chemmater.6b03837
    26. Magdalena M. Lozinska, Enzo Mangano, Alex G. Greenaway, Robin Fletcher, Stephen P. Thompson, Claire A. Murray, Stefano Brandani, and Paul A. Wright . Cation Control of Molecular Sieving by Flexible Li-Containing Zeolite Rho. The Journal of Physical Chemistry C 2016, 120 (35) , 19652-19662. https://doi.org/10.1021/acs.jpcc.6b04837
    27. J. A. Arran Gibson, Enzo Mangano, Elenica Shiko, Alex G. Greenaway, Andrei V. Gromov, Magdalena M. Lozinska, Daniel Friedrich, Eleanor E. B. Campbell, Paul A. Wright, and Stefano Brandani . Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Plants: AMPGas. Industrial & Engineering Chemistry Research 2016, 55 (13) , 3840-3851. https://doi.org/10.1021/acs.iecr.5b05015
    28. Jin Shang, Gang Li, Jiaye Li, Liangchun Li, Paul A. Webley, and Jefferson Z. Liu . Density Functional Theory Computational Study of Alkali Cation-Exchanged Sodalite-like Zeolitelike Metal–Organic Framework for CO2, N2, and CH4 Adsorption. The Journal of Physical Chemistry C 2015, 119 (49) , 27449-27456. https://doi.org/10.1021/acs.jpcc.5b07833
    29. Salvador R. G. Balestra, Said Hamad, A. Rabdel Ruiz-Salvador, Virginia Domínguez−García, Patrick J. Merkling, David Dubbeldam, and Sofía Calero . Understanding Nanopore Window Distortions in the Reversible Molecular Valve Zeolite RHO. Chemistry of Materials 2015, 27 (16) , 5657-5667. https://doi.org/10.1021/acs.chemmater.5b02103
    30. Yi Li and Jihong Yu . New Stories of Zeolite Structures: Their Descriptions, Determinations, Predictions, and Evaluations. Chemical Reviews 2014, 114 (14) , 7268-7316. https://doi.org/10.1021/cr500010r
    31. Jiaxuan Shen, Xiaodong Wang, Yani Chen. Adsorbents for adsorption separation of CO 2 and CH 4 : A literature review. The Canadian Journal of Chemical Engineering 2023, 101 (12) , 7115-7133. https://doi.org/10.1002/cjce.24942
    32. Kaifei Chen, Zhi Yu, Seyed Hesam Mousavi, Ranjeet Singh, Qinfen Gu, Randall Q. Snurr, Paul A. Webley, Gang Kevin Li. Regulating adsorption performance of zeolites by pre-activation in electric fields. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-41227-4
    33. Sajjad Ghojavand, Eddy Dib, Svetlana Mintova. Flexibility in zeolites: origin, limits, and evaluation. Chemical Science 2023, 14 (44) , 12430-12446. https://doi.org/10.1039/D3SC03934J
    34. Yu Wang, Anna Ivashko, Barbara Carstensen, Stephen Cundy, Qinglin Huang. Acid-resistant zeolite RHO for deep dehydration. Separation and Purification Technology 2023, 325 , 124661. https://doi.org/10.1016/j.seppur.2023.124661
    35. Hyun June Choi, Elliott L. Bruce, Kevin S. Kencana, Jingeon Hong, Paul A. Wright, Suk Bong Hong. Highly Cooperative CO 2 Adsorption via a Cation Crowding Mechanism on a Cesium‐Exchanged Phillipsite Zeolite. Angewandte Chemie 2023, 135 (36) https://doi.org/10.1002/ange.202305816
    36. Hyun June Choi, Elliott L. Bruce, Kevin S. Kencana, Jingeon Hong, Paul A. Wright, Suk Bong Hong. Highly Cooperative CO 2 Adsorption via a Cation Crowding Mechanism on a Cesium‐Exchanged Phillipsite Zeolite. Angewandte Chemie International Edition 2023, 62 (36) https://doi.org/10.1002/anie.202305816
    37. Hongwei Chen, Binyu Wang, Bin Zhang, Jiuhong Chen, Jiabao Gui, Xiufeng Shi, Wenfu Yan, Jinping Li, Libo Li. Deep removal of trace C 2 H 2 and CO 2 from C 2 H 4 by using customized potassium-exchange mordenite. Chemical Science 2023, 14 (25) , 7068-7075. https://doi.org/10.1039/D3SC02147E
    38. Eduardo Pérez-Botella, Miguel Palomino, Gabriel B. Báfero, Heloise O. Pastore, Susana Valencia, Fernando Rey. The influence of zeolite pore topology on the separation of carbon dioxide from methane. Journal of CO2 Utilization 2023, 72 , 102490. https://doi.org/10.1016/j.jcou.2023.102490
    39. Jingyun Qian, Wenna Zhang, Xue Yang, Kexin Yan, Meikun Shen, Hongyue Pan, Hongjun Zhu, Lei Wang. Tailoring zeolite ERI aperture for efficient separation of CO2 from gas mixtures. Separation and Purification Technology 2023, 309 , 123078. https://doi.org/10.1016/j.seppur.2022.123078
    40. Qi‐Meng Sun, Jing‐Hui He, Jian‐Mei Lu. Recent advances and potential applications of flexible adsorption and separation materials: A review. Energy Science & Engineering 2023, 11 (2) , 952-973. https://doi.org/10.1002/ese3.1334
    41. Enzo Mangano, Stefano Brandani. Analysis of CO2 kinetics in Na,Cs-Rho crystals using the zero length column: a case study for slow systems. Brazilian Journal of Chemical Engineering 2022, 39 (4) , 893-901. https://doi.org/10.1007/s43153-021-00155-w
    42. Donglong Fu, Mark E. Davis. Carbon dioxide capture with zeotype materials. Chemical Society Reviews 2022, 51 (22) , 9340-9370. https://doi.org/10.1039/D2CS00508E
    43. Magdalena M. Lozinska, Elliott L. Bruce, James Mattock, Ruxandra G. Chitac, Paul A. Cox, Alessandro Turrina, Paul A. Wright. Understanding the Anion‐Templated, OSDA‐Free, Interzeolite Conversion Synthesis of High Silica Zeolite ZK‐5**. Chemistry – A European Journal 2022, 28 (56) https://doi.org/10.1002/chem.202201689
    44. Hyun June Choi, Donghui Jo, Suk Bong Hong. Effect of framework Si/Al ratio on the adsorption mechanism of CO2 on small-pore zeolites: II. Merlinoite. Chemical Engineering Journal 2022, 446 , 137100. https://doi.org/10.1016/j.cej.2022.137100
    45. Yuto Higuchi, Sana Miyagawa, Shunsuke Tanaka. OSDA-free and steam-assisted synthesis of PHI type zeolite showing a unique CO 2 adsorption behaviour. CrystEngComm 2022, 24 (21) , 3859-3864. https://doi.org/10.1039/D2CE00440B
    46. Kaifei Chen, Seyed Hesam Mousavi, Ranjeet Singh, Randall Q. Snurr, Gang Li, Paul A. Webley. Gating effect for gas adsorption in microporous materials—mechanisms and applications. Chemical Society Reviews 2022, 51 (3) , 1139-1166. https://doi.org/10.1039/D1CS00822F
    47. Grace Neilsen, Matthew S. Dickson, Peter F. Rosen, Xin Guo, Alexandra Navrotsky, Brian F. Woodfield. Heat capacity and thermodynamic functions of partially dehydrated cation-exchanged (Na+, Cs+, Cd2+, Li+, and NH4+) RHO zeolites. The Journal of Chemical Thermodynamics 2022, 164 , 106620. https://doi.org/10.1016/j.jct.2021.106620
    48. Hyun June Choi, Donghui Jo, Suk Bong Hong. Effect of Framework Si/Al Ratio on the Adsorption Mechanism of Co2 on Small-Pore Zeolites: Ii. Merlinoite. SSRN Electronic Journal 2022, 329 https://doi.org/10.2139/ssrn.4065676
    49. Satyaki Chatterjee, Sampathkumar Jeevanandham, Monalisa Mukherjee, Dai-Viet N. Vo, Vivek Mishra. Significance of re-engineered zeolites in climate mitigation – A review for carbon capture and separation. Journal of Environmental Chemical Engineering 2021, 9 (5) , 105957. https://doi.org/10.1016/j.jece.2021.105957
    50. Magdalena M. Lozinska, Sophie Jamieson, Maarten C. Verbraeken, David N. Miller, Bela E. Bode, Claire A. Murray, Stefano Brandani, Paul A. Wright. Cation Ordering and Exsolution in Copper‐Containing Forms of the Flexible Zeolite Rho (Cu,M‐Rho; M=H, Na) and Their Consequences for CO 2 Adsorption. Chemistry – A European Journal 2021, 27 (51) , 13029-13039. https://doi.org/10.1002/chem.202101664
    51. Xiaohe Wang, Nana Yan, Miao Xie, Puxu Liu, Pu Bai, Haopeng Su, Binyu Wang, Yunzheng Wang, Libo Li, Tao Cheng, Peng Guo, Wenfu Yan, Jihong Yu. The inorganic cation-tailored “trapdoor” effect of silicoaluminophosphate zeolite for highly selective CO 2 separation. Chemical Science 2021, 12 (25) , 8803-8810. https://doi.org/10.1039/D1SC00619C
    52. Dan Liang, Yunfeng Hu, Qiang Bao, Jian Zhang, Jiawei Feng, Penglai Sun, Yutong Ma, Hongsheng Zhang. A suitable zeolite Rho for separating CO2/CH4 in pressure swing adsorption (PSA) process. Inorganic Chemistry Communications 2021, 127 , 108547. https://doi.org/10.1016/j.inoche.2021.108547
    53. Stefano Brandani, Enzo Mangano. The zero length column technique to measure adsorption equilibrium and kinetics: lessons learnt from 30 years of experience. Adsorption 2021, 27 (3) , 319-351. https://doi.org/10.1007/s10450-020-00273-w
    54. Dan Liang, Yunfeng Hu, Qiang Bao, Jian Zhang, Penglai Sun, Jiawei Feng, Ming Xu, Hongsheng Zhang. Study of RHO zeolite with different cations for CO 2 /CO separation in pressure swing adsorption. Micro & Nano Letters 2021, 16 (5) , 319-326. https://doi.org/10.1049/mna2.12054
    55. Ru‐Shuai Liu, Xiao‐Dong Shi, Cheng‐Tong Wang, Yu‐Zhou Gao, Shuang Xu, Guang‐Ping Hao, Shaoyun Chen, An‐Hui Lu. Advances in Post‐Combustion CO 2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice. ChemSusChem 2021, 14 (6) , 1428-1471. https://doi.org/10.1002/cssc.202002677
    56. Chao Shi, Lin Li, Yi Li. High-throughput screening of hypothetical aluminosilicate zeolites for CO2 capture from flue gas. Journal of CO2 Utilization 2020, 42 , 101346. https://doi.org/10.1016/j.jcou.2020.101346
    57. Santosh Kumar, Rohit Srivastava, Joonseok Koh. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives. Journal of CO2 Utilization 2020, 41 , 101251. https://doi.org/10.1016/j.jcou.2020.101251
    58. Karla Quiroz-Estrada, Alessandro Pacella, Paolo Ballirano, Miguel Ángel Hernández-Espinosa, Carlos Felipe, Marcos Esparza-Schulz. Crystal Chemical and Structural Characterization of Natural and Cation-Exchanged Mexican Erionite. Minerals 2020, 10 (9) , 772. https://doi.org/10.3390/min10090772
    59. Mohamed Abatal, A. Rabdel Ruiz-Salvador, Norge Cruz Hernández. A DFT-based simulated annealing method for the optimization of global energy in zeolite framework systems: Application to natrolite, chabazite and clinoptilolite. Microporous and Mesoporous Materials 2020, 294 , 109885. https://doi.org/10.1016/j.micromeso.2019.109885
    60. P. A. Webley, D. Danaci. CO2 Capture by Adsorption Processes. 2019, 106-167. https://doi.org/10.1039/9781788012744-00106
    61. Yoshihiro Kamimura, Akira Endo. Seed-assisted, organic structure-directing agent-free synthesis of KFI-type zeolite with enhanced micropore volume and CO2 adsorption capacity. Adsorption 2019, 25 (6) , 1099-1113. https://doi.org/10.1007/s10450-019-00113-6
    62. Quanli Ke, Tianjun Sun, Xiaoli Wei, Ya Guo, Shutao Xu, Shudong Wang. Economical synthesis strategy of RHO zeolites with fine-tuned composition and porosity for enhanced trace CO2 capture. Chemical Engineering Journal 2019, 359 , 344-353. https://doi.org/10.1016/j.cej.2018.11.098
    63. Eduardo Pérez-Botella, Miguel Palomino, Susana Valencia, Fernando Rey. Zeolites and Other Adsorbents. 2019, 173-208. https://doi.org/10.1007/978-981-13-3504-4_7
    64. Xin Guo, Lili Wu, David R. Corbin, Alexandra Navrotsky. Thermochemistry of formation of ion exchanged zeolite RHO. Microporous and Mesoporous Materials 2019, 274 , 373-378. https://doi.org/10.1016/j.micromeso.2018.09.003
    65. Xin Li, Cheng Zhang, Xiaopei Zhang, Wei Li, Peng Tan, Lun Ma, Qingyan Fang, Gang Chen. Study on improving the SO2 tolerance of low-temperature SCR catalysts using zeolite membranes: NO/SO2 separation performance of aluminogermanate membranes. Chemical Engineering Journal 2018, 335 , 483-490. https://doi.org/10.1016/j.cej.2017.10.184
    66. Mai Bui, Claire S. Adjiman, André Bardow, Edward J. Anthony, Andy Boston, Solomon Brown, Paul S. Fennell, Sabine Fuss, Amparo Galindo, Leigh A. Hackett, Jason P. Hallett, Howard J. Herzog, George Jackson, Jasmin Kemper, Samuel Krevor, Geoffrey C. Maitland, Michael Matuszewski, Ian S. Metcalfe, Camille Petit, Graeme Puxty, Jeffrey Reimer, David M. Reiner, Edward S. Rubin, Stuart A. Scott, Nilay Shah, Berend Smit, J. P. Martin Trusler, Paul Webley, Jennifer Wilcox, Niall Mac Dowell. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science 2018, 11 (5) , 1062-1176. https://doi.org/10.1039/C7EE02342A
    67. Quanli Ke, Tianjun Sun, Xiaoli Wei, Ya Guo, Shudong Wang. Enhanced Trace Carbon Dioxide Capture on Heteroatom‐Substituted RHO Zeolites under Humid Conditions. ChemSusChem 2017, 10 (21) , 4207-4214. https://doi.org/10.1002/cssc.201701162
    68. Gang Li, Jin Shang, Qinfen Gu, Rohan V. Awati, Nathan Jensen, Andrew Grant, Xueying Zhang, David S. Sholl, Jefferson Z. Liu, Paul A. Webley, Eric F. May. Temperature-regulated guest admission and release in microporous materials. Nature Communications 2017, 8 (1) https://doi.org/10.1038/ncomms15777
    69. Quanli Ke, Tianjun Sun, Hao Cheng, Haijun Chen, Xiaowei Liu, Xiaoli Wei, Shudong Wang. Targeted Synthesis of Ultrastable High‐Silica RHO Zeolite Through Alkali Metal–Crown Ether Interaction. Chemistry – An Asian Journal 2017, 12 (10) , 1043-1047. https://doi.org/10.1002/asia.201700303
    70. Trong D. Pham, Matthew R. Hudson, Craig M. Brown, Raul F. Lobo. On the Structure–Property Relationships of Cation‐Exchanged ZK‐5 Zeolites for CO 2 Adsorption. ChemSusChem 2017, 10 (5) , 946-957. https://doi.org/10.1002/cssc.201601648
    71. W. H. Baur, R. X. Fischer. Crystal structure and chemical composition of compounds with CHA type zeolite frameworks. 2017, 374-388. https://doi.org/10.1007/978-3-662-54252-1_56
    72. W. H. Baur, R. X. Fischer. Crystal structure and chemical composition for the list of compounds and minerals. 2017, 506-521. https://doi.org/10.1007/978-3-662-54252-1_91
    73. Matthew D. Oleksiak, Arian Ghorbanpour, Marlon T. Conato, B. Peter McGrail, Lars C. Grabow, Radha Kishan Motkuri, Jeffrey D. Rimer. Synthesis Strategies for Ultrastable Zeolite GIS Polymorphs as Sorbents for Selective Separations. Chemistry – A European Journal 2016, 22 (45) , 16078-16088. https://doi.org/10.1002/chem.201602653
    74. Juan José Gutiérrez‐Sevillano, Sofía Calero, Said Hamad, Ricardo Grau‐Crespo, Fernando Rey, Susana Valencia, Miguel Palomino, Salvador R. G. Balestra, A. Rabdel Ruiz‐Salvador. Critical Role of Dynamic Flexibility in Ge‐Containing Zeolites: Impact on Diffusion. Chemistry – A European Journal 2016, 22 (29) , 10036-10043. https://doi.org/10.1002/chem.201600983
    75. Pankaj Sharma, Ju-Sub Song, Moon Hee Han, Churl-Hee Cho. GIS-NaP1 zeolite microspheres as potential water adsorption material: Influence of initial silica concentration on adsorptive and physical/topological properties. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep22734
    76. Chao Xu, Ermiase Dinka, Niklas Hedin. Hydrophobic Porous Polyketimines for the Capture of CO 2. ChemPlusChem 2016, 81 (1) , 58-63. https://doi.org/10.1002/cplu.201500344
    77. Nathan Bamberger, Daniela Kohen. Atomistic Simulations of CO2 During “Trapdoor” Adsorption onto Na-Rho Zeolite. 2016, 153-168. https://doi.org/10.1007/978-981-10-1128-3_10
    78. Zoltán Bacsik, Ocean Cheung, Petr Vasiliev, Niklas Hedin. Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56. Applied Energy 2016, 162 , 613-621. https://doi.org/10.1016/j.apenergy.2015.10.109
    79. Yoshihiro Kamimura, Marie Shimomura, Akira Endo. CO 2 adsorption–desorption properties of zeolite beta prepared from OSDA-free synthesis. Microporous and Mesoporous Materials 2016, 219 , 125-133. https://doi.org/10.1016/j.micromeso.2015.07.033
    80. Ana Fernández-Barquín, Clara Casado-Coterillo, Miguel Palomino, Susana Valencia, Angel Irabien. Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology 2016, 157 , 102-111. https://doi.org/10.1016/j.seppur.2015.11.032
    81. Suguru Ito, Kosuke Ono, Kohei Johmoto, Hidehiro Uekusa, Nobuharu Iwasawa. Switching of the solid-state guest selectivity: solvent-dependent selective guest inclusion in a crystalline macrocyclic boronic ester. Chemical Science 2016, 7 (9) , 5765-5769. https://doi.org/10.1039/C5SC04766H
    82. Chaehoon Kim, Hae Sung Cho, Shuai Chang, Sung June Cho, Minkee Choi. An ethylenediamine-grafted Y zeolite: a highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation. Energy & Environmental Science 2016, 9 (5) , 1803-1811. https://doi.org/10.1039/C6EE00601A
    83. J.C. Abanades, B. Arias, A. Lyngfelt, T. Mattisson, D.E. Wiley, H. Li, M.T. Ho, E. Mangano, S. Brandani. Emerging CO2 capture systems. International Journal of Greenhouse Gas Control 2015, 40 , 126-166. https://doi.org/10.1016/j.ijggc.2015.04.018
    84. Peng Guo, Jiho Shin, Alex G. Greenaway, Jung Gi Min, Jie Su, Hyun June Choi, Leifeng Liu, Paul A. Cox, Suk Bong Hong, Paul A. Wright, Xiaodong Zou. A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature 2015, 524 (7563) , 74-78. https://doi.org/10.1038/nature14575
    85. Alex G. Greenaway, Jiho Shin, Paul A. Cox, Elenica Shiko, Stephen P. Thompson, Stefano Brandani, Suk Bong Hong, Paul A. Wright. Structural changes of synthetic paulingite (Na,H-ECR-18) upon dehydration and CO 2 adsorption. Zeitschrift für Kristallographie - Crystalline Materials 2015, 230 (4) , 223-231. https://doi.org/10.1515/zkri-2014-1824
    86. Beom-Ju Kim, Pankaj Sharma, Moon-Hee Han, Churl-Hee Cho. Structure direct agent-assisted hydrothermal synthesis and small gases adsorption behavior of pure RHO zeolite. Journal of Energy Engineering 2014, 23 (4) , 141-149. https://doi.org/10.5855/ENERGY.2014.23.4.141
    87. M. Pera-Titus, M. Palomino, S. Valencia, F. Rey. Thermodynamic analysis of framework deformation in Na,Cs-RHO zeolite upon CO 2 adsorption. Phys. Chem. Chem. Phys. 2014, 16 (44) , 24391-24400. https://doi.org/10.1039/C4CP03409K

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect