ACS Publications. Most Trusted. Most Cited. Most Read
On the Incorporation Mechanism of Hydrophobic Quantum Dots in Silica Spheres by a Reverse Microemulsion Method
My Activity
    Article

    On the Incorporation Mechanism of Hydrophobic Quantum Dots in Silica Spheres by a Reverse Microemulsion Method
    Click to copy article linkArticle link copied!

    View Author Information
    Condensed Matter and Interfaces and Soft Condensed Matter, Debye Institute, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
    * Corresponding authors: e-mail [email protected] (R.K.); [email protected] (A.M.).
    ‡R.K., M.M.v.S., and J.H. have contributed equally to this work.
    †Condensed Matter and Interfaces.
    §Soft Condensed Matter.
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2008, 20, 7, 2503–2512
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm703348y
    Published March 6, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In this work, we show strong experimental evidence in favor of a proposed incorporation mechanism of hydrophobic semiconductor nanocrystals (or quantum dots, QDs) in monodisperse silica spheres (diameter ∼35 nm) by a water-in-oil (W/O) reverse microemulsion synthesis. Fluorescence spectroscopy is used to investigate the rapid ligand exchange that takes place at the QD surface upon addition of the various synthesis reactants. It is found that hydrolyzed TEOS has a high affinity for the QD surface and replaces the hydrophobic amine ligands, which enables the transfer of the QDs to the hydrophilic interior of the micelles where silica growth takes place. By hindering the ligand exchange using stronger binding thiol ligands, the position of the incorporated QDs can be controlled from centered to off-center and eventually to the surface of the silica spheres. The proposed incorporation mechanism explains how we can have high control over the incorporation of single QDs exactly in the middle of silica spheres. It is likely that the proposed mechanism also applies to the incorporation of other hydrophobic nanocrystals in silica using the same method. In conjunction with our findings, we were able to make QD/silica particles with an unprecedented quantum efficiency of 35%.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Calculation of the relative affinity and quenching rate of TEOS and NP-5 and Table S1 giving the relative amount of molecules involved in the reverse microemulsion synthesis (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 288 publications.

    1. Li Xu, Nai-Yuan Kuo, Chung-Yuan Mou, Si-Han Wu. Multishelled Hollow Silica Nanospheres with Programmable Encapsulation and Tumor-Responsive Catalytic Activities. ACS Applied Nano Materials 2025, Article ASAP.
    2. Sergio Fiorito, Matteo Silvestri, Matilde Cirignano, Andrea Marini, Francesco Di Stasio. Controlled Growth of Large SiO2 Shells onto Semiconductor Colloidal Nanocrystals: A Pathway Toward Photonic Integration. ACS Applied Nano Materials 2024, 7 (4) , 3724-3733. https://doi.org/10.1021/acsanm.3c05223
    3. Matteo Barelli, Cynthia Vidal, Sergio Fiorito, Alina Myslovska, Dimitrie Cielecki, Vincenzo Aglieri, Iwan Moreels, Riccardo Sapienza, Francesco Di Stasio. Single-Photon Emitting Arrays by Capillary Assembly of Colloidal Semiconductor CdSe/CdS/SiO2 Nanocrystals. ACS Photonics 2023, 10 (5) , 1662-1670. https://doi.org/10.1021/acsphotonics.3c00351
    4. Beatriz Rivas-Murias, Martín Testa-Anta, Alexander S. Skorikov, Miguel Comesaña-Hermo, Sara Bals, Verónica Salgueiriño. Interfaceless Exchange Bias in CoFe2O4 Nanocrystals. Nano Letters 2023, 23 (5) , 1688-1695. https://doi.org/10.1021/acs.nanolett.2c04268
    5. Qiaoli Jin, Xuhui Zhang, Lifang Zhang, Jinjie Li, Yanbing Lv, Ning Li, Lei Wang, Ruili Wu, Lin Song Li. Fabrication of CuInZnS/ZnS Quantum Dot Microbeads by a Two-Step Approach of Emulsification–Solvent Evaporation and Surfactant Substitution and Its Application for Quantitative Detection. Inorganic Chemistry 2023, 62 (8) , 3474-3484. https://doi.org/10.1021/acs.inorgchem.2c03783
    6. Resul Ozdemir, Hannes Van Avermaet, Onur Erdem, Pieter Schiettecatte, Zeger Hens, Tangi Aubert. Quantum Dot Patterning and Encapsulation by Maskless Lithography for Display Technologies. ACS Applied Materials & Interfaces 2023, 15 (7) , 9629-9637. https://doi.org/10.1021/acsami.2c20982
    7. Jean-Marc von Mentlen, Jasper Clarysse, Annina Moser, Dhananjeya Kumaar, Olesya Yarema, Takumi Sannomiya, Maksym Yarema, Vanessa Wood. Engineering of Oxide Protected Gold Nanoparticles. The Journal of Physical Chemistry Letters 2022, 13 (25) , 5824-5830. https://doi.org/10.1021/acs.jpclett.2c01443
    8. Elsa Lu, Jothirmayanantham Pichaandi, Chandresh Kumar Rastogi, Mitchell A. Winnik. Effect of Excess Ligand on the Reverse Microemulsion Silica Coating of NaLnF4 Nanoparticles. Langmuir 2022, 38 (10) , 3316-3326. https://doi.org/10.1021/acs.langmuir.2c00372
    9. Jianpeng Zong, Xiaohui Song, Ruoxu Wang, Wenjia Xu, Weiwei Zhou, Shuaibin Li, Yuhua Feng, Hongyu Chen. Partial Silica Encapsulation of Fe3O4 Nanoparticles in Reverse Emulsion by Internal Energy Modulation. Chemistry of Materials 2021, 33 (21) , 8460-8468. https://doi.org/10.1021/acs.chemmater.1c02887
    10. Hongcheng Yang, Yizun Liu, Junjie Hao, Haodong Tang, Shihao Ding, Zhaojin Wang, Fan Fang, Dan Wu, Wenda Zhang, Haochen Liu, Bing Xu, Rui Lu, Lei Yang, Pai Liu, Kai Wang, Xiao Wei Sun. Alloyed Green-Emitting CdZnSeS/ZnS Quantum Dots with Dense Protective Layers for Stable Lighting and Display Applications. ACS Applied Materials & Interfaces 2021, 13 (27) , 32217-32225. https://doi.org/10.1021/acsami.1c07647
    11. Yanxia Xu, Yanbing Lv, Ruili Wu, Jinjie Li, Huaibin Shen, Huawei Yang, Han Zhang, Lin Song Li. Sensitive Immunoassay Based on Biocompatible and Robust Silica-Coated Cd-Free InP-Based Quantum Dots. Inorganic Chemistry 2021, 60 (9) , 6503-6513. https://doi.org/10.1021/acs.inorgchem.1c00304
    12. Yanbing Lv, Yucheng Yuan, Ning Hu, Na Jin, Dangdang Xu, Ruili Wu, Huaibin Shen, Ou Chen, Lin Song Li. Thick-Shell CdSe/ZnS/CdZnS/ZnS Core/Shell Quantum Dots for Quantitative Immunoassays. ACS Applied Nano Materials 2021, 4 (3) , 2855-2865. https://doi.org/10.1021/acsanm.0c03483
    13. Albert Grau-Carbonell, Sina Sadighikia, Tom A. J. Welling, Relinde J. A. van Dijk-Moes, Ramakrishna Kotni, Maarten Bransen, Alfons van Blaaderen, Marijn A. van Huis. In Situ Study of the Wet Chemical Etching of SiO2 and Nanoparticle@SiO2 Core–Shell Nanospheres. ACS Applied Nano Materials 2021, 4 (2) , 1136-1148. https://doi.org/10.1021/acsanm.0c02771
    14. Hongxing Xie, Enguo Chen, Yun Ye, Sheng Xu, Tailiang Guo. Highly Stabilized Gradient Alloy Quantum Dots and Silica Hybrid Nanospheres by Core Double Shells for Photoluminescence Devices. The Journal of Physical Chemistry Letters 2020, 11 (4) , 1428-1434. https://doi.org/10.1021/acs.jpclett.9b03578
    15. Amelie Heuer-Jungemann, Neus Feliu, Ioanna Bakaimi, Majd Hamaly, Alaaldin Alkilany, Indranath Chakraborty, Atif Masood, Maria F. Casula, Athanasia Kostopoulou, Eunkeu Oh, Kimihiro Susumu, Michael H. Stewart, Igor L. Medintz, Emmanuel Stratakis, Wolfgang J. Parak, Antonios G. Kanaras. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews 2019, 119 (8) , 4819-4880. https://doi.org/10.1021/acs.chemrev.8b00733
    16. Weiwei Chen, Tongchao Shi, Juan Du, Zhigang Zang, Zhiqiang Yao, Meng Li, Kuan Sun, Wei Hu, Yuxin Leng, Xiaosheng Tang. Highly Stable Silica-Wrapped Mn-Doped CsPbCl3 Quantum Dots for Bright White Light-Emitting Devices. ACS Applied Materials & Interfaces 2018, 10 (50) , 43978-43986. https://doi.org/10.1021/acsami.8b14046
    17. Robin G. Geitenbeek, Anne-Eva Nieuwelink, Thimo S. Jacobs, Bastiaan B. V. Salzmann, Joris Goetze, Andries Meijerink, and Bert M. Weckhuysen . In Situ Luminescence Thermometry To Locally Measure Temperature Gradients during Catalytic Reactions. ACS Catalysis 2018, 8 (3) , 2397-2401. https://doi.org/10.1021/acscatal.7b04154
    18. Ahmet Kertmen, Pau Torruella, Emerson Coy, Luis Yate, Grzegorz Nowaczyk, Jacek Gapiński, Carmen Vogt, Muhammet Toprak, Sonia Estradé, Francesca Peiró, Sławomir Milewski, Stefan Jurga, and Ryszard Andruszkiewicz . Acetate-Induced Disassembly of Spherical Iron Oxide Nanoparticle Clusters into Monodispersed Core–Shell Structures upon Nanoemulsion Fusion. Langmuir 2017, 33 (39) , 10351-10365. https://doi.org/10.1021/acs.langmuir.7b02743
    19. Mohammad Rejaul Kaiser, Zhaohui Ma, Xiwen Wang, Fudong Han, Tao Gao, Xiulin Fan, Jia-Zhao Wang, Hua Kun Liu, Shixue Dou, and Chunsheng Wang . Reverse Microemulsion Synthesis of Sulfur/Graphene Composite for Lithium/Sulfur Batteries. ACS Nano 2017, 11 (9) , 9048-9056. https://doi.org/10.1021/acsnano.7b03591
    20. Jacobine J. H. A. van Hest, Gerhard A. Blab, Hans C. Gerritsen, Celso de Mello Donega, and Andries Meijerink . Probing the Influence of Disorder on Lanthanide Luminescence Using Eu-Doped LaPO4 Nanoparticles. The Journal of Physical Chemistry C 2017, 121 (35) , 19373-19382. https://doi.org/10.1021/acs.jpcc.7b06549
    21. Cai-Feng Wang, Fengjia Fan, Randy P. Sabatini, Oleksandr Voznyy, Kristopher Bicanic, Xiyan Li, Daniel P. Sellan, Mayuran Saravanapavanantham, Nadir Hossain, Kefan Chen, Sjoerd Hoogland, and Edward H. Sargent . Quantum Dot Color-Converting Solids Operating Efficiently in the kW/cm2 Regime. Chemistry of Materials 2017, 29 (12) , 5104-5112. https://doi.org/10.1021/acs.chemmater.7b00164
    22. Xiao Tang, Elvira Kröger, Andreas Nielsen, Christian Strelow, Alf Mews, and Tobias Kipp . Ultrathin and Highly Passivating Silica Shells for Luminescent and Water-Soluble CdSe/CdS Nanorods. Langmuir 2017, 33 (21) , 5253-5260. https://doi.org/10.1021/acs.langmuir.7b00615
    23. Liheng Wu, Adriana Mendoza-Garcia, Qing Li, and Shouheng Sun . Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chemical Reviews 2016, 116 (18) , 10473-10512. https://doi.org/10.1021/acs.chemrev.5b00687
    24. Marı́a Acebrón, Juan F. Galisteo-López, Daniel Granados, Javier López-Ogalla, José M. Gallego, Roberto Otero, Cefe López, and Beatriz H. Juárez . Protective Ligand Shells for Luminescent SiO2-Coated Alloyed Semiconductor Nanocrystals. ACS Applied Materials & Interfaces 2015, 7 (12) , 6935-6945. https://doi.org/10.1021/acsami.5b00820
    25. Ana B. Dávila-Ibáñez, Rosalía Mariño-Fernández, Melodie Maceira-Campos, Andrés García-Lorenzo, Vicenta Martínez-Zorzano, and Verónica Salgueiriño . Nonhomogeneous Silica Promotes the Biologically Induced Delivery of Metal Ions from Silica-Coated Magnetic Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (48) , 28266-28273. https://doi.org/10.1021/jp5094228
    26. Cameron C. Crane, Jing Tao, Feng Wang, Yimei Zhu, and Jingyi Chen . Mask-Assisted Seeded Growth of Segmented Metallic Heteronanostructures. The Journal of Physical Chemistry C 2014, 118 (48) , 28134-28142. https://doi.org/10.1021/jp5094433
    27. Eline M. Hutter, Eva Bladt, Bart Goris, Francesca Pietra, Johanna C. van der Bok, Mark P. Boneschanscher, Celso de Mello Donegá, Sara Bals, and Daniël Vanmaekelbergh . Conformal and Atomic Characterization of Ultrathin CdSe Platelets with a Helical Shape. Nano Letters 2014, 14 (11) , 6257-6262. https://doi.org/10.1021/nl5025744
    28. Tangi Aubert, Stefaan J. Soenen, Daniel Wassmuth, Marco Cirillo, Rik Van Deun, Kevin Braeckmans, and Zeger Hens . Bright and Stable CdSe/CdS@SiO2 Nanoparticles Suitable for Long-Term Cell Labeling. ACS Applied Materials & Interfaces 2014, 6 (14) , 11714-11723. https://doi.org/10.1021/am502367b
    29. Douglas A. Hines and Prashant V. Kamat . Recent Advances in Quantum Dot Surface Chemistry. ACS Applied Materials & Interfaces 2014, 6 (5) , 3041-3057. https://doi.org/10.1021/am405196u
    30. Eline M. Hutter, Francesca Pietra, Relinde J. A. van Dijk - Moes, Dariusz Mitoraj, Johannes D. Meeldijk, Celso de Mello Donegá, and Daniël Vanmaekelbergh . Method To Incorporate Anisotropic Semiconductor Nanocrystals of All Shapes in an Ultrathin and Uniform Silica Shell. Chemistry of Materials 2014, 26 (5) , 1905-1911. https://doi.org/10.1021/cm404122f
    31. Mohamed F. Foda, Liang Huang, Feng Shao, and He-You Han . Biocompatible and Highly Luminescent Near-Infrared CuInS2/ZnS Quantum Dots Embedded Silica Beads for Cancer Cell Imaging. ACS Applied Materials & Interfaces 2014, 6 (3) , 2011-2017. https://doi.org/10.1021/am4050772
    32. Freddy T. Rabouw, Per Lunnemann, Relinde J. A. van Dijk-Moes, Martin Frimmer, Francesca Pietra, A. Femius Koenderink, and Daniël Vanmaekelbergh . Reduced Auger Recombination in Single CdSe/CdS Nanorods by One-Dimensional Electron Delocalization. Nano Letters 2013, 13 (10) , 4884-4892. https://doi.org/10.1021/nl4027567
    33. Francesca Pietra, Relinde J.A. van Dijk - Moes, Xiaoxing Ke, Sara Bals, Gustaaf Van Tendeloo, Celso de Mello Donega, and Daniel Vanmaekelbergh . Synthesis of Highly Luminescent Silica-Coated CdSe/CdS Nanorods. Chemistry of Materials 2013, 25 (17) , 3427-3434. https://doi.org/10.1021/cm401169t
    34. Zijie Yan, Uttam Manna, Wei Qin, Art Camire, Philippe Guyot-Sionnest, and Norbert F. Scherer . Hierarchical Photonic Synthesis of Hybrid Nanoparticle Assemblies. The Journal of Physical Chemistry Letters 2013, 4 (16) , 2630-2636. https://doi.org/10.1021/jz401007t
    35. Yu Zhang, Miao Wang, Yuan-gang Zheng, Happy Tan, Benedict You-wei Hsu, Zheng-chun Yang, Siew Yee Wong, Alex Yuang-chi Chang, Mahesh Choolani, Xu Li, and John Wang . PEOlated Micelle/Silica as Dual-Layer Protection of Quantum Dots for Stable and Targeted Bioimaging. Chemistry of Materials 2013, 25 (15) , 2976-2985. https://doi.org/10.1021/cm4005618
    36. Per Lunnemann, Freddy T. Rabouw, Relinde J. A. van Dijk-Moes, Francesca Pietra, Daniël Vanmaekelbergh, and A. Femius Koenderink . Calibrating and Controlling the Quantum Efficiency Distribution of Inhomogeneously Broadened Quantum Rods by Using a Mirror Ball. ACS Nano 2013, 7 (7) , 5984-5992. https://doi.org/10.1021/nn401683u
    37. Jothirmayanantham Pichaandi, Keith A. Abel, Noah J. J. Johnson, and Frank C. J. M. van Veggel . Long-Term Colloidal Stability and Photoluminescence Retention of Lead-Based Quantum Dots in Saline Buffers and Biological Media through Surface Modification. Chemistry of Materials 2013, 25 (10) , 2035-2044. https://doi.org/10.1021/cm304091r
    38. H. L. Ding, Y. X. Zhang, S. Wang, J. M. Xu, S. C. Xu, and G. H. Li . Fe3O4@SiO2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses. Chemistry of Materials 2012, 24 (23) , 4572-4580. https://doi.org/10.1021/cm302828d
    39. Yian Zhu, Zhen Li, Min Chen, Helen M. Cooper, Gao Qing (Max) Lu, and Zhi Ping Xu . Synthesis of Robust Sandwich-Like SiO2@CdTe@SiO2 Fluorescent Nanoparticles for Cellular Imaging. Chemistry of Materials 2012, 24 (3) , 421-423. https://doi.org/10.1021/cm2033417
    40. Ana B. Davila-Ibanez, Veronica Salgueirino, Vicenta Martinez-Zorzano, Rosalia Mariño-Fernández, Andres García-Lorenzo, Melodie Maceira-Campos, Monica Muñoz-Ubeda, Elena Junquera, Emilio Aicart, Jose Rivas, F. Javier Rodriguez-Berrocal, and Jose L. Legido . Magnetic Silica Nanoparticle Cellular Uptake and Cytotoxicity Regulated by Electrostatic Polyelectrolytes–DNA Loading at Their Surface. ACS Nano 2012, 6 (1) , 747-759. https://doi.org/10.1021/nn204231g
    41. Katrin Pechstedt Tracy Melvin . Colloidal Quantum Dots: The Opportunities and the Pitfalls for DNA Analysis Applications. 2012, 323-363. https://doi.org/10.1021/bk-2012-1113.ch013
    42. Yuan Zhao, Changlong Hao, Wei Ma, Qianqian Yong, Wenjing Yan, Hua Kuang, Libing Wang, and Chuanlai Xu . Magnetic Bead-Based Multiplex DNA Sequence Detection of Genetically Modified Organisms Using Quantum Dot-Encoded Silicon Dioxide Nanoparticles. The Journal of Physical Chemistry C 2011, 115 (41) , 20134-20140. https://doi.org/10.1021/jp206443p
    43. Nandanan Erathodiyil and Jackie Y. Ying . Functionalization of Inorganic Nanoparticles for Bioimaging Applications. Accounts of Chemical Research 2011, 44 (10) , 925-935. https://doi.org/10.1021/ar2000327
    44. Ping Yang, Masanori Ando, and Norio Murase . Highly Luminescent CdSe/CdxZn1–xS Quantum Dots Coated with Thickness-Controlled SiO2 Shell through Silanization. Langmuir 2011, 27 (15) , 9535-9540. https://doi.org/10.1021/la201213c
    45. Ping Yang, Masanori Ando, Takahisa Taguchi, and Norio Murase. Encapsulation of Multiple QDs into SiO2 Beads by Reflux without Degrading Initial Photoluminescence Properties. The Journal of Physical Chemistry C 2010, 114 (49) , 20962-20967. https://doi.org/10.1021/jp1051326
    46. Changgang Huang, Na Na, Lingyun Huang, Dacheng He, and Jin Ouyang . TEMED Enhanced Photoluminescent Imaging Detection of Proteins in Human Serum Using Quantum Dots after PAGE. Journal of Proteome Research 2010, 9 (11) , 5574-5581. https://doi.org/10.1021/pr100322z
    47. Shu Chen, Lijun Wang, Suzanne L. Duce, Stuart Brown, Stephen Lee, Andreas Melzer, Sir Alfred Cuschieri, and Pascal André . Engineered Biocompatible Nanoparticles for in Vivo Imaging Applications. Journal of the American Chemical Society 2010, 132 (42) , 15022-15029. https://doi.org/10.1021/ja106543j
    48. Xiaoge Hu and Xiaohu Gao. Silica−Polymer Dual Layer-Encapsulated Quantum Dots with Remarkable Stability. ACS Nano 2010, 4 (10) , 6080-6086. https://doi.org/10.1021/nn1017044
    49. Subramanian Tamil Selvan, Timothy Thatt Yang Tan, Dong Kee Yi and Nikhil R. Jana . Functional and Multifunctional Nanoparticles for Bioimaging and Biosensing. Langmuir 2010, 26 (14) , 11631-11641. https://doi.org/10.1021/la903512m
    50. Li Zhou, Chao Gao, Xiaozhen Hu and Weijian Xu . One-Pot Large-Scale Synthesis of Robust Ultrafine Silica-Hybridized CdTe Quantum Dots. ACS Applied Materials & Interfaces 2010, 2 (4) , 1211-1219. https://doi.org/10.1021/am9009296
    51. Haibing Li, Yuling Li and Jing Cheng. Molecularly Imprinted Silica Nanospheres Embedded CdSe Quantum Dots for Highly Selective and Sensitive Optosensing of Pyrethroids. Chemistry of Materials 2010, 22 (8) , 2451-2457. https://doi.org/10.1021/cm902856y
    52. Lihong Jing, Chunhui Yang, Ruirui Qiao, Mu Niu, Meihong Du, Dayang Wang and Mingyuan Gao . Highly Fluorescent CdTe@SiO2 Particles Prepared via Reverse Microemulsion Method. Chemistry of Materials 2010, 22 (2) , 420-427. https://doi.org/10.1021/cm9029962
    53. Rongcheng Han, Min Yu, Qiang Zheng, Lijun Wang, Yuankai Hong and Yinlin Sha. A Facile Synthesis of Small-Sized, Highly Photoluminescent, and Monodisperse CdSeS QD/SiO2 for Live Cell Imaging. Langmuir 2009, 25 (20) , 12250-12255. https://doi.org/10.1021/la9016596
    54. Timothy V. Duncan, Miguel Angel Méndez Polanco, YooJin Kim and So-Jung Park. Improving the Quantum Yields of Semiconductor Quantum Dots through Photoenhancement Assisted by Reducing Agents. The Journal of Physical Chemistry C 2009, 113 (18) , 7561-7566. https://doi.org/10.1021/jp811245r
    55. Celso de Mello Donegá and Rolf Koole. Size Dependence of the Spontaneous Emission Rate and Absorption Cross Section of CdSe and CdTe Quantum Dots. The Journal of Physical Chemistry C 2009, 113 (16) , 6511-6520. https://doi.org/10.1021/jp811329r
    56. Rolf Koole, Matti M. van Schooneveld, Jan Hilhorst, Karolien Castermans, David P. Cormode, Gustav J. Strijkers, Celso de Mello Donegá, Daniel Vanmaekelbergh, Arjan W. Griffioen, Klaas Nicolay, Zahi A. Fayad, Andries Meijerink and Willem J. M. Mulder . Paramagnetic Lipid-Coated Silica Nanoparticles with a Fluorescent Quantum Dot Core: A New Contrast Agent Platform for Multimodality Imaging. Bioconjugate Chemistry 2008, 19 (12) , 2471-2479. https://doi.org/10.1021/bc800368x
    57. Ling Li, Eugene S. G. Choo, Jiabao Yi, Jun Ding, Xiaosheng Tang and Junmin Xue. Superparamagnetic Silica Composite Nanospheres (SSCNs) with Ultrahigh Loading of Iron Oxide Nanoparticles via an Oil-in-DEG Microemulsion Route. Chemistry of Materials 2008, 20 (20) , 6292-6294. https://doi.org/10.1021/cm8012107
    58. Matti M. van Schooneveld, Esad Vucic, Rolf Koole, Yu Zhou, Joanne Stocks, David P. Cormode, Cheuk Y. Tang, Ronald E. Gordon, Klaas Nicolay, Andries Meijerink, Zahi A. Fayad and Willem J. M. Mulder . Improved Biocompatibility and Pharmacokinetics of Silica Nanoparticles by Means of a Lipid Coating: A Multimodality Investigation. Nano Letters 2008, 8 (8) , 2517-2525. https://doi.org/10.1021/nl801596a
    59. Qingzhen Liu, Jinjie Li, Xinlin Yu, Yujie Lu, Ziyi Wu, Leqian Hu. Preparation of low fluorescence loss Multishell-QDs@SiO2-COOH and its application to quantitative immunoassay. Microchemical Journal 2025, 212 , 113217. https://doi.org/10.1016/j.microc.2025.113217
    60. N. Murase, T. Sawai, R. Mori, K. Inada, D. Eguchi, N. Tamai. Preparation of green-emitting InP-based quantum dots with controlled shell thickness and their photoluminescence quantum yield upon silica encapsulation. Journal of Nanoparticle Research 2025, 27 (3) https://doi.org/10.1007/s11051-025-06258-6
    61. Keshava Jetha, Vivek P. Chavda, Amit Z. Chaudhari, Arya Vyas, Priyal Shah, Harshil Jani, Yash Patel. Theranostics inorganic nanohybrids: an expanding horizon. 2025, 293-321. https://doi.org/10.1016/B978-0-443-22044-9.00001-2
    62. Xinyu Yang, Rafal Bielas, Vincent Collière, Lionel Salmon, Azzedine Bousseksou. Various Sizes and Shapes of Mixed-Anion Fe(NH2trz)3(BF4)2−x(SiF6)x/2@SiO2 Nanohybrid Particles Undergoing Spin Crossover Just Above Room Temperature. Nanomaterials 2025, 15 (2) , 90. https://doi.org/10.3390/nano15020090
    63. Yanbing Lv, Lifang Zhang, Ruili Wu, Lin Song Li. Recent progress on eco-friendly quantum dots for bioimaging and diagnostics. Nano Research 2024, 17 (12) , 10309-10331. https://doi.org/10.1007/s12274-024-6926-5
    64. R. M. Gataullina, A. V. Leontyev, L. A. Nurtdinova, A. G. Shmelev, D. K. Zharkov, A. N. Solodov, A. T. Gubaidullin, A. F. Saifina, A. A. Khannanov, V. G. Nikiforov. Mechanism of Silanization and Its Influence on Temperature Sensitivity of Up-Conversion Luminescence of NaYF4:Yb/Ho Nanoparticles. Bulletin of the Russian Academy of Sciences: Physics 2024, 88 (S1) , S127-S134. https://doi.org/10.1134/S1062873824708900
    65. Fangfang Chen, Yihan Li, Ziwei Ma, Ning Li, Chunxia Chen, Huaibin Shen, Dangdang Xu, Min Liu, Yufeng Yuan, Lin Song Li. A sensing platform for highly sensitive immunoassay based on metal-enhanced fluorescence of CdSe@ZnS. Sensors and Actuators B: Chemical 2024, 408 , 135537. https://doi.org/10.1016/j.snb.2024.135537
    66. Jiang Ling, Zhihua Zhang, Wenqi Zhang, Di Wen, Yanjun Ding. Ultra-sensitive fluorescent detection of strychnine based on carbon dot self-assembled gold nanocage sensing probe. Analytical Methods 2024, 16 (9) , 1399-1408. https://doi.org/10.1039/D3AY01936E
    67. Hongxing Xie, Qizhong Lin, Xinyuan Chen, Sijin Liu, Xingke Zheng, Aochen Du, Zhenyu Zeng, Tianyong Guan, Yun Ye, Enguo Chen, Sheng Xu, Yang Li, Tailiang Guo. Ultrastable quantum dot composites with dense barrier layer for wide color gamut display. Ceramics International 2024, 50 (1) , 1351-1359. https://doi.org/10.1016/j.ceramint.2023.10.223
    68. Md. Mahbubor Rahman, Christian Nguyen, Zichun Yan, Mark Bolding, Olin Thompson Mefford. Synthesis of iron oxide nanocubes and their incorporation with luminescent lanthanide (Ln = Tb/ Eu)-Terephthalate complex in silica nanospheres using a reverse microemulsion method. Journal of Solid State Chemistry 2024, 329 , 124406. https://doi.org/10.1016/j.jssc.2023.124406
    69. A. Cordova-Rubio, R. Lopez-Delgado, A. Zazueta-Raynaud, A. Ayon, M. E. Alvarez-Ramos. Efficiency improvement of commercial silicon solar cells using bilayers of luminescent nanomaterials. Applied Physics A 2023, 129 (12) https://doi.org/10.1007/s00339-023-07146-3
    70. Christos Dimitriou, Pavlos Psathas, Maria Solakidou, Yiannis Deligiannakis. Advanced Flame Spray Pyrolysis (FSP) Technologies for Engineering Multifunctional Nanostructures and Nanodevices. Nanomaterials 2023, 13 (23) , 3006. https://doi.org/10.3390/nano13233006
    71. Mark J. J. Mangnus, Vincent R. M. Benning, Bettina Baumgartner, P. Tim Prins, Thomas P. van Swieten, Ayla J. H. Dekker, Alfons van Blaaderen, Bert M. Weckhuysen, Andries Meijerink, Freddy T. Rabouw. Probing nearby molecular vibrations with lanthanide-doped nanocrystals. Nanoscale 2023, 15 (41) , 16601-16611. https://doi.org/10.1039/D3NR02997B
    72. Yuri A. Vorotnikov, Natalya A. Vorotnikova, Michael A. Shestopalov. Silica-Based Materials Containing Inorganic Red/NIR Emitters and Their Application in Biomedicine. Materials 2023, 16 (17) , 5869. https://doi.org/10.3390/ma16175869
    73. Francesco Antolini. Direct Optical Patterning of Quantum Dots: One Strategy, Different Chemical Processes. Nanomaterials 2023, 13 (13) , 2008. https://doi.org/10.3390/nano13132008
    74. Jianpu Lin, Hongxing Xie, Yun Ye, Tailiang Guo. Quantum dots printing paste for display backlights: Preparation, characterization, and applications. Journal of the Society for Information Display 2023, 31 (3) , 125-132. https://doi.org/10.1002/jsid.1192
    75. Adrian Gheata, Alessandra Spada, Manon Wittwer, Ameni Dhouib, Emilie Molina, Yannick Mugnier, Sandrine Gerber-Lemaire. Modulating the Surface Properties of Lithium Niobate Nanoparticles by Multifunctional Coatings Using Water-in-Oil Microemulsions. Nanomaterials 2023, 13 (3) , 522. https://doi.org/10.3390/nano13030522
    76. Yaqian Zheng, Hongxing Xie, Yun Ye, Zhenyu Zeng, Sheng Xu, Enguo Chen, Tailiang Guo, , , , , . Preparation and properties of high stability quantum dot-silica hybrid nanospheres. 2023, 56. https://doi.org/10.1117/12.2643869
    77. Fahimeh Ghavamipour, Reza H. Sajedi. QDs-Based Chemiluminescence Biosensors. 2023, 509-529. https://doi.org/10.1007/978-3-031-24000-3_19
    78. Yanbing Lv, Panpan Wang, Jinjie Li, Ning Li, Dangdang Xu, Ruili Wu, Huaibin Shen, Lin Song Li. Establishment of a Ca(II) ion-quantum dots fluorescence signal amplification sensor for high-sensitivity biomarker detection. Analytica Chimica Acta 2023, 1237 , 340534. https://doi.org/10.1016/j.aca.2022.340534
    79. Norio Murase, Chie Hosokawa, Chunliang Li, Megumi Onishi, Toshihiro Sawai. Drastic photostability improvement of silica particles impregnated with multiple emitting CdSe quantum dots prepared through efficient surface silanization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 654 , 130084. https://doi.org/10.1016/j.colsurfa.2022.130084
    80. S. V. Fedorenko, A. S. Stepanov, O. D. Bochkova, A. R. Mustafina. Main Processes Facilitating the Formation of Composite Silica-Based Nanocolloids Doped with Complexes of d- and f-Metals and Inorganic Nanoparticles. Colloid Journal 2022, 84 (5) , 611-620. https://doi.org/10.1134/S1061933X22700077
    81. Lijiao Ao, Tao Liao, Liang Huang, Shan Lin, Kui Xu, Jiangtao Ma, Shaorong Qiu, Xiangyu Wang, Qiqing Zhang. Sensitive and simultaneous detection of multi-index lung cancer biomarkers by an NIR-Ⅱ fluorescence lateral-flow immunoassay platform. Chemical Engineering Journal 2022, 436 , 135204. https://doi.org/10.1016/j.cej.2022.135204
    82. Zhanchen Guo, Rongrong Xing, Menghuan Zhao, Ying Li, Haifeng Lu, Zhen Liu. Controllable Engineering and Functionalizing of Nanoparticles for Targeting Specific Proteins towards Biomedical Applications. Advanced Science 2021, 8 (24) https://doi.org/10.1002/advs.202101713
    83. Ernest B. van der Wee, Jantina Fokkema, Chris L. Kennedy, Marc del Pozo, D. A. Matthijs de Winter, Peter N. A. Speets, Hans C. Gerritsen, Alfons van Blaaderen. 3D test sample for the calibration and quality control of stimulated emission depletion (STED) and confocal microscopes. Communications Biology 2021, 4 (1) https://doi.org/10.1038/s42003-021-02432-3
    84. Yue Zan, Lionel Salmon, Azzedine Bousseksou. Morphological Studies of Composite Spin Crossover@SiO2 Nanoparticles. Nanomaterials 2021, 11 (12) , 3169. https://doi.org/10.3390/nano11123169
    85. Xuan-Hung Pham, Seung-Min Park, Kyeong-Min Ham, San Kyeong, Byung Sung Son, Jaehi Kim, Eunil Hahm, Yoon-Hee Kim, Sungje Bock, Wooyeon Kim, Seunho Jung, Sangtaek Oh, Sang Hun Lee, Do Won Hwang, Bong-Hyun Jun. Synthesis and Application of Silica-Coated Quantum Dots in Biomedicine. International Journal of Molecular Sciences 2021, 22 (18) , 10116. https://doi.org/10.3390/ijms221810116
    86. Leggins Abraham, Tiju Thomas, Moorthi Pichumani. Ionic amphiphile stabilized reverse micellar systems and their implications for nanoencapsulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 620 , 126591. https://doi.org/10.1016/j.colsurfa.2021.126591
    87. Qianrui Xu, Yang Wang, Pengcheng Gao, Yong Jiang. Preparation of “pomegranate”-like QD/SiO 2 /poly(St- co -MAA) fluorescent nanobeads in two steps to improve stability and biocompatibility. New Journal of Chemistry 2021, 45 (24) , 10618-10625. https://doi.org/10.1039/D1NJ00526J
    88. Elena Ureña-Horno, Maria-Eleni Kyriazi, Antonios G. Kanaras. A method for the growth of uniform silica shells on different size and morphology upconversion nanoparticles. Nanoscale Advances 2021, 3 (12) , 3522-3529. https://doi.org/10.1039/D0NA00858C
    89. Yanqi Wang, Yao Wang, Miaorong Zhang, Jixian Liu, Linjun Huang, Yanxin Wang, Tian Hao, Jie Li, Jianguo Tang. Preparation of QDs@SiO 2 -PEG-LMPET and its influence on crystallization and luminescence of polyethylene terephthalate. Nanotechnology 2021, 32 (22) , 225706. https://doi.org/10.1088/1361-6528/abd3c9
    90. Myriam Díaz-Álvarez, Antonio Martín-Esteban. Molecularly Imprinted Polymer-Quantum Dot Materials in Optical Sensors: An Overview of Their Synthesis and Applications. Biosensors 2021, 11 (3) , 79. https://doi.org/10.3390/bios11030079
    91. . Water-compatible Colloidal Nanocrystals. 2021, 47-76. https://doi.org/10.1039/9781788016568-00047
    92. Hilal Acidereli, Yaşar Karataş, Hakan Burhan, Mehmet Gülcan, Fatih Şen. Magnetic nanoparticles. 2021, 197-236. https://doi.org/10.1016/B978-0-12-820569-3.00008-6
    93. Yanbing Lv, Panpan Wang, Jinjie Li, Ning Li, Dangdang Xu, Ruili Wu, Huaibin Shen, Lin Song Li. Establishment of a Ca(Ii) Ion-Quantum Dots Fluorescence Signal Amplification Sensor for High-Sensitivity Biomarker Detection. SSRN Electronic Journal 2021, 5 https://doi.org/10.2139/ssrn.3994288
    94. Jaewan Ko, Byeong Guk Jeong, Jun Hyuk Chang, Joonyoung F. Joung, Suk-Young Yoon, Doh C. Lee, Sungnam Park, June Huh, Heesun Yang, Wan Ki Bae, Se Gyu Jang, Joona Bang. Chemically resistant and thermally stable quantum dots prepared by shell encapsulation with cross-linkable block copolymer ligands. NPG Asia Materials 2020, 12 (1) https://doi.org/10.1038/s41427-020-0200-4
    95. Jiang Wei, Xinyue Yuan, Ying Zhang, Huilin Liu, Baoguo Sun. Ionic liquid-sensitized molecularly imprinted polymers based on heteroatom co-doped quantum dots functionalized graphene for sensitive detection of λ-cyhalothrin. Analytica Chimica Acta 2020, 1136 , 9-18. https://doi.org/10.1016/j.aca.2020.08.041
    96. Hongxing Xie, Enguo Chen, Yun Ye, Sheng Xu, Tailiang Guo. Interfacial optimization of quantum dot and silica hybrid nanocomposite for simultaneous enhancement of fluorescence retention and stability. Applied Physics Letters 2020, 117 (17) https://doi.org/10.1063/5.0026314
    97. Wei Zhang, Zhengfang Liao, Xiaoqi Meng, A Erpuding Ai Niwaer, Hongyue Wang, Xinhua Li, Deming Liu, Fang Zuo. Fast coating of hydrophobic upconversion nanoparticles by NaIO4-induced polymerization of dopamine: Positively charged surfaces and in situ deposition of Au nanoparticles. Applied Surface Science 2020, 527 , 146821. https://doi.org/10.1016/j.apsusc.2020.146821
    98. Norio Murase, Chunliang Li, Takayuki Gunshi. Improved photostability of silica bead impregnated with CdSe-based quantum dots prepared through proper surface silanization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 600 , 124811. https://doi.org/10.1016/j.colsurfa.2020.124811
    99. Aiyu Zhang, Liguo Chen, Minrui Wang, Jie Li, Ling Chen, Ruixia Shi, Nannan Zhang, Ping Yang. Study on the luminescence stability of CdSe/CdxZn1-xS quantum dots during the silication process. Journal of Luminescence 2020, 219 , 116907. https://doi.org/10.1016/j.jlumin.2019.116907
    100. Ke Tao, Kang Sun. Upconversion nanoparticles. 2020, 147-176. https://doi.org/10.1016/B978-0-12-817840-9.00006-0
    Load more citations

    Chemistry of Materials

    Cite this: Chem. Mater. 2008, 20, 7, 2503–2512
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm703348y
    Published March 6, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    7530

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.