Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Synthesis of Eccentric Titania−Silica Core−Shell and Composite Particles

View Author Information
Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics and Astronomy, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
* Corresponding authors. E-mail [email protected], tel. +31 30 253 2315, fax +31 30 253 2706 (A.F.D.); E-mail [email protected], tel +31 30 253 2423 (A.I.).
Cite this: Chem. Mater. 2009, 21, 6, 979–984
Publication Date (Web):February 25, 2009
https://doi.org/10.1021/cm803250w
Copyright © 2009 American Chemical Society

    Article Views

    4626

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We describe a novel method to synthesize colloidal particles with an eccentric core−shell structure. Titania−silica core−shell particles were synthesized by silica coating of porous titania particles under Stöber (Stöber et al. J. Colloid Interface Sci.1968, 26, 62) conditions. We can control access of silica to the pores in the titania, allowing us to produce either core−shell or composite particles. Calcination of the core−shell particles gives unique eccentric core−shell structures, as a result of extensive shrinkage of the highly porous titania core with respect to the silica shell. However, when the titania particles are silica treated prior to drying they result in composite titania−silica spheres, where two materials are mixed uniformly. These spheres are interesting for catalysis, (switchable) photonic crystal applications, optical tweezing, and new titiana based materials. We demonstrate photocatalytic activity of the eccentric spheres where the silica layer acts as a size selective membrane.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    EDX graph of eccentric particles and XRD of calcined particles (PDF). This information is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 58 publications.

    1. Jeong-Bin Moon, Seung-Jea Lee, Seung-Hyun Kim, Yechan Chang, Hyerim Hwang, Gi-Ra Yi. Mie-Resonant Rutile TiO2 Nanospheres for Unclonable Structural Colors. Chemistry of Materials 2022, 34 (17) , 7897-7905. https://doi.org/10.1021/acs.chemmater.2c01616
    2. Tom A. J. Welling, Kanako Watanabe, Albert Grau-Carbonell, Joost de Graaf, Daisuke Nagao, Arnout Imhof, Marijn A. van Huis, Alfons van Blaaderen. Tunability of Interactions between the Core and Shell in Rattle-Type Particles Studied with Liquid-Cell Electron Microscopy. ACS Nano 2021, 15 (7) , 11137-11149. https://doi.org/10.1021/acsnano.1c03140
    3. Qiang Sun, Kishan Dholakia, Andrew D. Greentree. Optical Forces and Torques on Eccentric Nanoscale Core–Shell Particles. ACS Photonics 2021, 8 (4) , 1103-1111. https://doi.org/10.1021/acsphotonics.0c01825
    4. Marlous Kamp, Bart de Nijs, Marjolein N. van der Linden, Isja de Feijter, Merel J. Lefferts, Antonio Aloi, Jack Griffiths, Jeremy J. Baumberg, Ilja K. Voets, Alfons van Blaaderen. Multivalent Patchy Colloids for Quantitative 3D Self-Assembly Studies. Langmuir 2020, 36 (9) , 2403-2418. https://doi.org/10.1021/acs.langmuir.9b03863
    5. Suganya Josephine G. A. and Sivasamy Arumugam . Rare-Earth-Based MIS Type Core–Shell Nanospheres with Visible-Light-Driven Photocatalytic Activity through an Electron Hopping–Trapping Mechanism. ACS Omega 2018, 3 (1) , 1090-1101. https://doi.org/10.1021/acsomega.7b01607
    6. Yitong Li and Bing Liu . Core–Shell SiO2-PS Colloids with Controlled Eccentric Ratio. ACS Macro Letters 2017, 6 (11) , 1315-1319. https://doi.org/10.1021/acsmacrolett.7b00629
    7. Ernesto Jiménez-Villar, Iran F. da Silva, Valdeci Mestre, Niklaus U. Wetter, Cefe Lopez, Paulo C. de Oliveira, Wagner M. Faustino, and Gilberto F. de Sá . Random Lasing at Localization Transition in a Colloidal Suspension (TiO2@Silica). ACS Omega 2017, 2 (6) , 2415-2421. https://doi.org/10.1021/acsomega.7b00086
    8. Yilong Wang, Jianghong Wen, Suling Zhao, Zhihong Chen, Ke Ren, Jie Sun, and Jianguo Guan . Surface Thiolation of Al Microspheres to Deposite Thin and Compact Ag Shells for High Conductivity. Langmuir 2015, 31 (49) , 13441-13451. https://doi.org/10.1021/acs.langmuir.5b03590
    9. Kanako Watanabe, Daisuke Nagao, Haruyuki Ishii, and Mikio Konno . Rattle-Type Colloidal Crystals Composed of Spherical Hollow Particles Containing an Anisotropic, Movable Core. Langmuir 2015, 31 (19) , 5306-5310. https://doi.org/10.1021/acs.langmuir.5b01148
    10. Daniel Scheid, Gennady Cherkashinin, Emanuel Ionescu, and Markus Gallei . Single-Source Magnetic Nanorattles By Using Convenient Emulsion Polymerization Protocols. Langmuir 2014, 30 (5) , 1204-1209. https://doi.org/10.1021/la404285c
    11. Ayako Okada, Daisuke Nagao, Takuya Ueno, Haruyuki Ishii, and Mikio Konno . Colloidal Polarization of Yolk/Shell Particles by Reconfiguration of Inner Cores Responsive to an External Magnetic Field. Langmuir 2013, 29 (28) , 9004-9009. https://doi.org/10.1021/la401646t
    12. Xiangcun Li, Vijay T. John, Jingjing Zhan, Gaohong He, Jibao He, and Leonard Spinu . The Synthesis of Mesoporous TiO2/SiO2/Fe2O3 Hybrid Particles Containing Micelle- Induced Macropores through an Aerosol Based Process. Langmuir 2011, 27 (10) , 6252-6259. https://doi.org/10.1021/la105149p
    13. Ahmet Faik Demirörs, Anita Jannasch, Peter D. J. van Oostrum, Erik Schäffer, Arnout Imhof, and Alfons van Blaaderen . Seeded Growth of Titania Colloids with Refractive Index Tunability and Fluorophore-Free Luminescence. Langmuir 2011, 27 (5) , 1626-1634. https://doi.org/10.1021/la103717m
    14. Yuan Ren, Min Chen, Yang Zhang and Limin Wu. Fabrication of Rattle-Type TiO2/SiO2 Core/Shell Particles with Both High Photoactivity and UV-Shielding Property. Langmuir 2010, 26 (13) , 11391-11396. https://doi.org/10.1021/la1008413
    15. Ahmet Faik Demirörs, Alfons van Blaaderen and Arnout Imhof. A General Method to Coat Colloidal Particles with Titania. Langmuir 2010, 26 (12) , 9297-9303. https://doi.org/10.1021/la100188w
    16. Daisuke Nagao, Carlos M. van Kats, Kentaro Hayasaka, Maki Sugimoto, Mikio Konno, Arnout Imhof and Alfons van Blaaderen . Synthesis of Hollow Asymmetrical Silica Dumbbells with a Movable Inner Core. Langmuir 2010, 26 (7) , 5208-5212. https://doi.org/10.1021/la903673j
    17. Ahmet Faik Demirörs and Arnout Imhof. BaTiO3, SrTiO3, CaTiO3, and BaxSr1−xTiO3 Particles: A General Approach for Monodisperse Colloidal Perovskites. Chemistry of Materials 2009, 21 (13) , 3002-3007. https://doi.org/10.1021/cm900693r
    18. Jinhua Liang, Lan Wu, Zhenhua Li, Yang Liu, Nana Ding, Zhengping Dong. Preparation of core–shell catalyst for the tandem reaction of amino compounds with aldehydes. RSC Advances 2023, 13 (8) , 5186-5196. https://doi.org/10.1039/D2RA08016H
    19. Sanja J. Armaković, Maria M. Savanović, Stevan Armaković. Titanium Dioxide as the Most Used Photocatalyst for Water Purification: An Overview. Catalysts 2023, 13 (1) , 26. https://doi.org/10.3390/catal13010026
    20. Jakub M. Gac. Numerical Modelling of Formation of Highly Ordered Structured Micro- and Nanoparticles – A Review. KONA Powder and Particle Journal 2022, 39 (0) , 45-61. https://doi.org/10.14356/kona.2022019
    21. Ernest B. van der Wee, Jantina Fokkema, Chris L. Kennedy, Marc del Pozo, D. A. Matthijs de Winter, Peter N. A. Speets, Hans C. Gerritsen, Alfons van Blaaderen. 3D test sample for the calibration and quality control of stimulated emission depletion (STED) and confocal microscopes. Communications Biology 2021, 4 (1) https://doi.org/10.1038/s42003-021-02432-3
    22. Eric Zhang, Yuriy Bandera, Ashley Dickey, Isabell Foulger, Joseph W. Kolis, Stephen H. Foulger. Development of dispersible radioluminescent silicate nanoparticles through a sacrificial layer approach. Journal of Colloid and Interface Science 2021, 582 , 1128-1135. https://doi.org/10.1016/j.jcis.2020.07.125
    23. Jaswinder Sharma, Georgios Polizos. Hollow Silica Particles: Recent Progress and Future Perspectives. Nanomaterials 2020, 10 (8) , 1599. https://doi.org/10.3390/nano10081599
    24. Babita Jamwal, Manpreet Kaur, Harsha Sharma, Chhavi Khajuria, Satya Paul, J. H. Clark. Diamines as interparticle linkers for silica–titania supported PdCu bimetallic nanoparticles in Chan–Lam and Suzuki cross-coupling reactions. New Journal of Chemistry 2019, 43 (12) , 4919-4928. https://doi.org/10.1039/C8NJ05050C
    25. Wei Li, Ahmed Elzatahry, Dhaifallah Aldhayan, Dongyuan Zhao. Core–shell structured titanium dioxide nanomaterials for solar energy utilization. Chemical Society Reviews 2018, 47 (22) , 8203-8237. https://doi.org/10.1039/C8CS00443A
    26. Nesrin Ozmen, Sema Erdemoglu, Abbas Gungordu, Meltem Asilturk, Duygu Ozhan Turhan, Emrah Akgeyik, Stacey L. Harper, Murat Ozmen. Photocatalytic degradation of azo dye using core@shell nano-TiO2 particles to reduce toxicity. Environmental Science and Pollution Research 2018, 25 (29) , 29493-29504. https://doi.org/10.1007/s11356-018-2942-x
    27. Ernesto Jimenez-Villar, M. C. S. Xavier, Niklaus U. Wetter, Valdeci Mestre, Weliton S. Martins, Gabriel F. Basso, V. A. Ermakov, F. C. Marques, Gilberto F. de Sá. Anomalous transport of light at the phase transition to localization: strong dependence with incident angle. Photonics Research 2018, 6 (10) , 929. https://doi.org/10.1364/PRJ.6.000929
    28. Yuqing Zhang, Yanhua Hu, Yunge Zhang, Shaomin Liu. TiO 2 /void/porous Al 2 O 3 shell embedded in polyvinylidene fluoride film for cleaning wastewater. Advanced Powder Technology 2018, 29 (7) , 1582-1590. https://doi.org/10.1016/j.apt.2018.03.023
    29. Yuye Cao, Yangdong Cui, Yu Yang, Jie Hua, Zheng-Mei Song, Haifang Wang, Yuanfang Liu, Aoneng Cao. Silica nanoparticle with a single His-tag for addressable functionalization, reversible assembly, and recycling. Nano Research 2018, 11 (5) , 2512-2522. https://doi.org/10.1007/s12274-017-1876-9
    30. Hyuk Joon Jung, So-Hwang Kye, Hyeo Ji Kang, Hee Jung Yang, Jung Bo Yoo, Kyu Hyung Lee, Nam Hwi Hur. Sustainable photocatalytic activities of visible-light sensitive N-doped TiO2 microspheres with permeable silica shells. Applied Catalysis A: General 2018, 558 , 9-17. https://doi.org/10.1016/j.apcata.2018.03.009
    31. Juan Carlos Cordova, Dana N. Reinemann, Daniel J. Laky, William R. Hesse, Sophie K. Tushak, Zane L. Weltman, Kelsea B. Best, Rizia Bardhan, Matthew J. Lang. Bioconjugated Core–Shell Microparticles for High‐Force Optical Trapping. Particle & Particle Systems Characterization 2018, 35 (3) https://doi.org/10.1002/ppsc.201700448
    32. Xiaobing Wei, Cairong Gong, Xujuan Chen, Guoliang Fan, Xinhua Xu. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance. Frontiers of Materials Science 2017, 11 (1) , 33-41. https://doi.org/10.1007/s11706-017-0366-z
    33. K. Shiba, T. Takei, G. Yoshikawa, M. Ogawa. Deposition of a titania layer on spherical porous silica particles and their nanostructure-induced vapor sensing properties. Nanoscale 2017, 9 (43) , 16791-16799. https://doi.org/10.1039/C7NR06086F
    34. Yasutaka Kuwahara, Yuki Sumida, Kensei Fujiwara, Hiromi Yamashita. Facile Synthesis of Yolk–Shell Nanostructured Photocatalyst with Improved Adsorption Properties and Molecular‐Sieving Properties. ChemCatChem 2016, 8 (17) , 2781-2788. https://doi.org/10.1002/cctc.201600505
    35. Roman Morozov, Igor Krivtsov, Viacheslav Avdin, Zakariae Amghouz, Sergey A. Khainakov, José R. García. Peroxo method for preparation of composite silica–titania spheres. Journal of Non-Crystalline Solids 2016, 435 , 8-16. https://doi.org/10.1016/j.jnoncrysol.2015.12.024
    36. Ernesto Jimenez-Villar, Iran F. da Silva, Valdeci Mestre, Paulo C. de Oliveira, Wagner M. Faustino, Gilberto F. de Sá. Anderson localization of light in a colloidal suspension (TiO 2 @silica). Nanoscale 2016, 8 (21) , 10938-10946. https://doi.org/10.1039/C5NR07540H
    37. Kota Shiba, Toshiaki Takei, Makoto Ogawa. Mesoporous silica coated silica–titania spherical particles: from impregnation to core–shell formation. Dalton Transactions 2016, 45 (46) , 18742-18749. https://doi.org/10.1039/C6DT03524H
    38. Xiaoman Wang, Hongling Chen. A new approach to preparation of TiO2@void@SiO2 rattle type core shell structure nanoparticles via titanyl oxalate complex. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2015, 485 , 25-33. https://doi.org/10.1016/j.colsurfa.2015.08.036
    39. Maryam Kari, Mehdi Montazeri-Pour, Masoud Rajabi, Vahide Tizjang, Shahab Moghadas. Maximum SiO2 layer thickness by utilizing polyethylene glycol as the surfactant in synthesis of core/shell structured TiO2–SiO2 nano-composites. Journal of Materials Science: Materials in Electronics 2014, 25 (12) , 5560-5569. https://doi.org/10.1007/s10854-014-2344-x
    40. Renlong Ji, Chuanbao Cao. Cobalt ferrite sphere-coated buckhorn-like barium titanate: Fabrication, characterization, its dielectric resonance, and microwave attenuation properties. Journal of Applied Physics 2014, 116 (14) https://doi.org/10.1063/1.4897368
    41. Reinaldo G. Digigow, Jean-François Dechézelles, Hervé Dietsch, Isabelle Geissbühler, Dimitri Vanhecke, Christoph Geers, Ann M. Hirt, Barbara Rothen-Rutishauser, Alke Petri-Fink. Preparation and characterization of functional silica hybrid magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 2014, 362 , 72-79. https://doi.org/10.1016/j.jmmm.2014.03.026
    42. Weiwei Zhang, Yunqing Wang, Xiuyan Sun, Wenhai Wang, Lingxin Chen. Mesoporous titania based yolk–shell nanoparticles as multifunctional theranostic platforms for SERS imaging and chemo-photothermal treatment. Nanoscale 2014, 6 (23) , 14514-14522. https://doi.org/10.1039/C4NR04864D
    43. Zewu Zhang, Yuming Zhou, Yiwei Zhang, Xiaoli Sheng, Shijian Zhou, Sanming Xiang. Anisotropic growth of SiO 2 and TiO 2 mixed oxides onto Au nanostructures: highly thermal stability and enhanced reaction activity. RSC Adv. 2014, 4 (75) , 40078-40084. https://doi.org/10.1039/C4RA06218C
    44. Ying Cong, Tian Xia, Miao Zou, Zhenni Li, Bo Peng, Dingzong Guo, Ziwei Deng. Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. J. Mater. Chem. B 2014, 2 (22) , 3450-3461. https://doi.org/10.1039/C4TB00460D
    45. Junho Ahn, Sung Ho Jung, Ji Ha Lee, Ki-Young Kwon, Jong Hwa Jung. Control of the Shell Thickness of TiO 2 @SiO 2 Particles and Its Surface Functionalization. Bulletin of the Korean Chemical Society 2013, 34 (11) , 3456-3458. https://doi.org/10.5012/bkcs.2013.34.11.3456
    46. Ji Bong Joo, Ilkeun Lee, Michael Dahl, Geon Dae Moon, Francisco Zaera, Yadong Yin. Controllable Synthesis of Mesoporous TiO 2 Hollow Shells: Toward an Efficient Photocatalyst. Advanced Functional Materials 2013, 23 (34) , 4246-4254. https://doi.org/10.1002/adfm.201300255
    47. Qingnan Meng, Siyuan Xiang, Wei Cheng, Qiaonan Chen, Pengfei Xue, Kai Zhang, Hongchen Sun, Bai Yang. Facile synthesis of manganese oxide loaded hollow silica particles and their application for methylene blue degradation. Journal of Colloid and Interface Science 2013, 405 , 28-34. https://doi.org/10.1016/j.jcis.2013.05.025
    48. Kexin Li, Tong Chen, Liushui Yan, Yuhua Dai, Zhimin Huang, Jingjing Xiong, Dongyang Song, Ying Lv, Zhenxing Zeng. Design of graphene and silica co-doped titania composites with ordered mesostructure and their simulated sunlight photocatalytic performance towards atrazine degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 422 , 90-99. https://doi.org/10.1016/j.colsurfa.2013.01.039
    49. A. Golubović, B. Abramović, M. Šćepanović, M. Grujić-Brojčin, S. Armaković, I. Veljković, B. Babić, Z. Dohčević-Mitrović, Z.V. Popović. Improved efficiency of sol–gel synthesized mesoporous anatase nanopowders in photocatalytic degradation of metoprolol. Materials Research Bulletin 2013, 48 (4) , 1363-1371. https://doi.org/10.1016/j.materresbull.2012.11.098
    50. Ji Bong Joo, Qiao Zhang, Michael Dahl, Francisco Zaera, Yadong Yin. Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells. Journal of Materials Research 2013, 28 (3) , 362-368. https://doi.org/10.1557/jmr.2012.280
    51. Kritapas Laohhasurayotin, Duangkamon Viboonratanasri. Preparation and characterization of titania-entrapped silica hollow particles: effective dye removal and evidence of selectivity. Physical Chemistry Chemical Physics 2013, 15 (24) , 9626. https://doi.org/10.1039/c3cp50872b
    52. Dong Li, Bijo Mathew, Chuanbin Mao. Biotemplated Synthesis of Hollow Double‐Layered Core/Shell Titania/Silica Nanotubes under Ambient Conditions. Small 2012, 8 (23) , 3691-3697. https://doi.org/10.1002/smll.201200421
    53. Yuqing Zhang, Guodong Zhang, Shaomin Liu, Chao Zhang, Xuemin Xu. “Naked” TiO2 capsulated in nanovoid microcapsule of poly(vinylidene fluoride) supporter with enhanced photocatalytic activity. Chemical Engineering Journal 2012, 204-206 , 217-224. https://doi.org/10.1016/j.cej.2012.07.124
    54. Yunqing Wang, Lingxin Chen, Ping Liu. Biocompatible Triplex Ag@SiO 2 @mTiO 2 Core–Shell Nanoparticles for Simultaneous Fluorescence‐SERS Bimodal Imaging and Drug Delivery. Chemistry – A European Journal 2012, 18 (19) , 5935-5943. https://doi.org/10.1002/chem.201103571
    55. Liangzhuan Wu, Yuan Yu, Yuan Zhang, Yuzhen Li, Yang Zhang, Jinfang Zhi. Large scale fabrication of highly monodispersed rattle-type TiO2@void@SiO2 spheres via synthesis-cum-organization process. Journal of Colloid and Interface Science 2012, 369 (1) , 179-183. https://doi.org/10.1016/j.jcis.2011.12.030
    56. Harrison S. Kibombo, Rui Peng, Shivatharsiny Rasalingam, Ranjit T. Koodali. Versatility of heterogeneous photocatalysis: synthetic methodologies epitomizing the role of silica support in TiO2 based mixed oxides. Catalysis Science & Technology 2012, 2 (9) , 1737. https://doi.org/10.1039/c2cy20247f
    57. Meng Yao, Weimeng Chen, Xia Fan, Chenmin Liu, Xiangmin Meng, Lin Guo, Chinping Chen. Wet chemical synthesis and magnetic properties of core–shell nanocolumns of Ni(OH)2@Co(OH)2 and their oxides. CrystEngComm 2011, 13 (7) , 2593. https://doi.org/10.1039/c0ce00836b
    58. Lingyun Chen, Zhengxiong Xu, Hong Dai, Shengtao Zhang. Facile synthesis and magnetic properties of monodisperse Fe3O4/silica nanocomposite microspheres with embedded structures via a direct solution-based route. Journal of Alloys and Compounds 2010, 497 (1-2) , 221-227. https://doi.org/10.1016/j.jallcom.2010.03.016