Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo ImagingClick to copy article linkArticle link copied!
Abstract

Strongly luminescent CuInS2/ZnS core/shell nanocrystals were synthesized from copper iodide, indium acetate, zinc stearate, and dodecanethiol as starting compounds in octadecene solvent. The as-prepared core/shell nanocrystals exhibit a low size distribution (<10%), and present photoluminescence in the range of 550−815 nm with a maximum fluorescence quantum yield (QY) of 60%. Time-resolved fluorescence spectroscopy revealed that the lifetimes of the different spectral components are on the order of hundreds of nanoseconds, indicating that donor−acceptor pair recombinations are at the origin of the observed emission bands. The CuInS2/ZnS nanocrystals were subsequently transferred to the aqueous phase via surface ligand exchange with dihydrolipoic acid and used as fluorescent labels for in vivo imaging. After tail vein injection into nude mice, the biodistribution of the quantum dots was monitored during 24 h using fluorescence reflectance imaging.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 652 publications.
- Adam Ćwilich, Daria Larowska-Zarych, Patrycja Kowalik, Kamil Polok, Piotr Bujak, Magdalena Duda, Tomasz Kazimierczuk, Wojciech Gadomski, Adam Pron, Łukasz Kłopotowski. Carrier Dynamics and Recombination Pathways in Ag–In–Zn–S Quantum Dots. The Journal of Physical Chemistry Letters 2024, 15
(42)
, 10479-10487. https://doi.org/10.1021/acs.jpclett.4c02126
- Patrick Mann, Simon M. Fairclough, Struan Bourke, Mary Burkitt Gray, Laura Urbano, David J. Morgan, Lea Ann Dailey, Maya Thanou, Nicholas J. Long, Mark A. Green. Interface Engineering of Water-Dispersible Near-Infrared-Emitting CuInZnS/ZnSe/ZnS Quantum Dots. Crystal Growth & Design 2024, 24
(15)
, 6275-6283. https://doi.org/10.1021/acs.cgd.4c00528
- Xiulin Xie, Jinxing Zhao, Ouyang Lin, Wentao Niu, Yu Li, Lijin Wang, Liang Li, Zhe Yin, Xu Li, Yu Zhang, Aiwei Tang. One-Pot Synthesis of Color-Tunable Narrow-Bandwidth Ag–In–Ga–Zn–S Semiconductor Nanocrystals for Quantum-Dot Light-Emitting Diodes. Nano Letters 2024, 24
(31)
, 9683-9690. https://doi.org/10.1021/acs.nanolett.4c02454
- Tatiana S. Ponomaryova, Vera V. Olomskaya, Anatolii A. Abalymov, Roman A. Anisimov, Daniil D. Drozd, Arina V. Drozd, Anastasia S. Novikova, Maria V. Lomova, Andrey M. Zakharevich, Irina Yu. Goryacheva, Olga A. Goryacheva. Visualization of 2D and 3D Tissue Models via Size-Selected Aqueous AgInS/ZnS Quantum Dots. ACS Applied Materials & Interfaces 2024, 16
(31)
, 40483-40498. https://doi.org/10.1021/acsami.4c05681
- Amanda Richardson, Jan Alster, Petro Khoroshyy, Jakub Psencik, Jan Valenta, Roman Tuma, Kevin Critchley. Direct Synthesis and Characterization of Hydrophilic Cu-Deficient Copper Indium Sulfide Quantum Dots. ACS Omega 2024, 9
(15)
, 17114-17124. https://doi.org/10.1021/acsomega.3c09531
- Parna Roy, Anshu Pandey. Enhanced Multiexciton Emission Quantum Yields in Nonblinking Interlinked Nanocrystals. The Journal of Physical Chemistry C 2024, 128
(7)
, 2948-2952. https://doi.org/10.1021/acs.jpcc.3c07631
- Anh T. Nguyen, Dustin R. Baucom, Yong Wang, Colin D. Heyes. Compact, Fast Blinking Cd-Free Quantum Dots for Super-Resolution Fluorescence Imaging. Chemical & Biomedical Imaging 2023, 1
(3)
, 251-259. https://doi.org/10.1021/cbmi.3c00018
- Ankita Bora, Josephine Lox, René Hübner, Nelli Weiß, Houman Bahmani Jalali, Francesco di Stasio, Christine Steinbach, Nikolai Gaponik, Vladimir Lesnyak. Composition-Dependent Optical Properties of Cu–Zn–In–Se Colloidal Nanocrystals Synthesized via Cation Exchange. Chemistry of Materials 2023, 35
(10)
, 4068-4077. https://doi.org/10.1021/acs.chemmater.3c00538
- Prajit Kumar Singha, Tanuja Kistwal, Anindya Datta. Single-Particle Dynamics of ZnS Shelling Induced Replenishment of Carrier Diffusion for Individual Emission Centers in CuInS2 Quantum Dots. The Journal of Physical Chemistry Letters 2023, 14
(18)
, 4289-4296. https://doi.org/10.1021/acs.jpclett.3c00467
- Long Liu, Bing Bai, Xuyong Yang, Zuliang Du, Guohua Jia. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews 2023, 123
(7)
, 3625-3692. https://doi.org/10.1021/acs.chemrev.2c00688
- Felix Thiel, Cristina Palencia, Horst Weller. Kinetic Analysis of the Cation Exchange in Nanorods from Cu2–xS to CuInS2: Influence of Djurleite’s Phase Transition Temperature on the Mechanism. ACS Nano 2023, 17
(4)
, 3676-3685. https://doi.org/10.1021/acsnano.2c10693
- Qiaoli Jin, Xuhui Zhang, Lifang Zhang, Jinjie Li, Yanbing Lv, Ning Li, Lei Wang, Ruili Wu, Lin Song Li. Fabrication of CuInZnS/ZnS Quantum Dot Microbeads by a Two-Step Approach of Emulsification–Solvent Evaporation and Surfactant Substitution and Its Application for Quantitative Detection. Inorganic Chemistry 2023, 62
(8)
, 3474-3484. https://doi.org/10.1021/acs.inorgchem.2c03783
- Yuping Xu, Peisen Zhang, Shuming Jin, Chuang Liu, Lin Yang, Zhuo Ao, Meng Qin, Kaili Nie, Yi Hou, Mingyuan Gao. Tracking How Biodegraded Microplastics Enter the Ecosystem with CuInS2@ZnS QDs. The Journal of Physical Chemistry C 2022, 126
(48)
, 20605-20612. https://doi.org/10.1021/acs.jpcc.2c05473
- Maksim Miropoltsev, K. David Wegner, Ines Häusler, Vasile-Dan Hodoroaba, Ute Resch-Genger. Influence of Hydrophilic Thiol Ligands of Varying Denticity on the Luminescence Properties and Colloidal Stability of Quaternary Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2022, 126
(47)
, 20101-20113. https://doi.org/10.1021/acs.jpcc.2c05342
- Deeptimayee Prusty, Sriram Mansingh, Newmoon Priyadarshini, K. M. Parida. Defect Control via Compositional Engineering of Zn-Cu-In-S Alloyed QDs for Photocatalytic H2O2 Generation and Micropollutant Degradation: Affecting Parameters, Kinetics, and Insightful Mechanism. Inorganic Chemistry 2022, 61
(47)
, 18934-18949. https://doi.org/10.1021/acs.inorgchem.2c02977
- Ankita Bora, Anatol Prudnikau, Ningyuan Fu, René Hübner, Konstantin B. L. Borchert, Dana Schwarz, Nikolai Gaponik, Vladimir Lesnyak. Seed-Mediated Synthesis of Photoluminescent Cu–Zn–In–S Nanoplatelets. Chemistry of Materials 2022, 34
(20)
, 9251-9260. https://doi.org/10.1021/acs.chemmater.2c02500
- Shunsuke Yamashita, Mamoru Tanabe, Takumi Araki, Michinori Shiomi, Toshio Nishi, Yoshihiro Kudo. Nanostructure–Optical Property Relationship in CuInSe2/ZnS Core/Shell Quantum Dots Revealed by Multivariate Statistical Analysis of X-ray Spectrum Images. The Journal of Physical Chemistry C 2022, 126
(34)
, 14558-14565. https://doi.org/10.1021/acs.jpcc.2c03619
- Evert Dhaene, Rohan Pokratath, Olivia Aalling-Frederiksen, Kirsten M. Ø. Jensen, Philippe F. Smet, Klaartje De Buysser, Jonathan De Roo. Monoalkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis. ACS Nano 2022, 16
(5)
, 7361-7372. https://doi.org/10.1021/acsnano.1c08966
- Parna Roy, Arpita Mukherjee, Pritha Mondal, Biswajit Bhattacharyya, Awadhesh Narayan, Anshu Pandey. Electronic Structure and Spectroscopy of I–III–VI2 Nanocrystals: A Perspective. The Journal of Physical Chemistry C 2022, 126
(17)
, 7364-7373. https://doi.org/10.1021/acs.jpcc.1c10922
- Jundiao Wang, Haoran Ning, Jun Wang, Stephen V. Kershaw, Lihong Jing, Pan Xiao. Effects of Repetitive Pressure on the Photoluminescence of Bare and ZnS-Capped CuInS2 Quantum Dots: Implications for Nanoscale Stress Sensors. ACS Applied Nano Materials 2022, 5
(4)
, 5617-5624. https://doi.org/10.1021/acsanm.2c00573
- Hongxing Hao, Jingwen Ai, Chenxiao Shi, Dexia Zhou, Lingbo Meng, Hongtao Bian, Yu Fang. Structural Dynamics of Short Ligands on the Surface of ZnSe Semiconductor Nanocrystals. The Journal of Physical Chemistry Letters 2022, 13
(14)
, 3158-3164. https://doi.org/10.1021/acs.jpclett.2c00849
- Jared Frazier, Kevin Cavey, Sydney Coil, Helene Hamo, Mengliang Zhang, P. Gregory Van Patten. Rapid and Sensitive Identification and Discrimination of Bound/Unbound Ligands on Colloidal Nanocrystals via Direct Analysis in Real-Time Mass Spectrometry. Langmuir 2021, 37
(50)
, 14703-14712. https://doi.org/10.1021/acs.langmuir.1c02548
- Yang Li, Xiaoqi Hou, Yongmiao Shen, Ning Dai, Xiaogang Peng. Tuning the Reactivity of Indium Alkanoates by Tertiary Organophosphines for the Synthesis of Indium-Based Quantum Dots. Chemistry of Materials 2021, 33
(23)
, 9348-9356. https://doi.org/10.1021/acs.chemmater.1c03219
- Chenghui Xia, Philippe Tamarat, Lei Hou, Serena Busatto, Johannes D. Meeldijk, Celso de Mello Donega, Brahim Lounis. Unraveling the Emission Pathways in Copper Indium Sulfide Quantum Dots. ACS Nano 2021, 15
(11)
, 17573-17581. https://doi.org/10.1021/acsnano.1c04909
- Swati Mukherjee, Joicy Selvaraj, Thangadurai Paramasivam. Ag-Doped ZnInS/ZnS Core/Shell Quantum Dots for Display Applications. ACS Applied Nano Materials 2021, 4
(10)
, 10228-10243. https://doi.org/10.1021/acsanm.1c01720
- Arpita Mukherjee, Pritha Mondal, Anshu Pandey, Awadhesh Narayan. Theoretical Model for Luminescence Broadening and Anomalous Carrier Dynamics in Chalcopyrite Quantum Dots. The Journal of Physical Chemistry C 2021, 125
(33)
, 18225-18233. https://doi.org/10.1021/acs.jpcc.1c02255
- Nora Eliasson, Belinda Pettersson Rimgard, Ashleigh Castner, Cheuk-Wai Tai, Sascha Ott, Haining Tian, Leif Hammarström. Ultrafast Dynamics in Cu-Deficient CuInS2 Quantum Dots: Sub-Bandgap Transitions and Self-Assembled Molecular Catalysts. The Journal of Physical Chemistry C 2021, 125
(27)
, 14751-14764. https://doi.org/10.1021/acs.jpcc.1c02468
- Xiangyang An, Yuemei Zhang, Jing Wang, De-ming Kong, Xi-wen He, Langxing Chen, Yukui Zhang. The Preparation of CuInS2-ZnS-Glutathione Quantum Dots and Their Application on the Sensitive Determination of Cytochrome c and Imaging of HeLa Cells. ACS Omega 2021, 6
(27)
, 17501-17509. https://doi.org/10.1021/acsomega.1c01983
- Deeptimayee Prusty, Lekha Paramanik, Kulamani Parida. Recent Advances on Alloyed Quantum Dots for Photocatalytic Hydrogen Evolution: A Mini-Review. Energy & Fuels 2021, 35
(6)
, 4670-4686. https://doi.org/10.1021/acs.energyfuels.0c04163
- Ranjana Yadav, Biswajit Bhattacharyya, Subham Kumar Saha, Pranab Dutta, Parna Roy, Guru Pratheep Rajasekar, Awadhesh Narayan, Anshu Pandey. Electronic Structure Insights into the Tunable Luminescence of CuAlxFe1–xS2/ZnS Nanocrystals. The Journal of Physical Chemistry C 2021, 125
(4)
, 2511-2518. https://doi.org/10.1021/acs.jpcc.0c09009
- Parth Vashishtha, Swati Bishnoi, C.-H. Angus Li, Metikoti Jagadeeswararao, Thomas J. N. Hooper, Naina Lohia, Sunil B. Shivarudraiah, Mohammed S. Ansari, Shailesh N. Sharma, Jonathan E. Halpert. Recent Advancements in Near-Infrared Perovskite Light-Emitting Diodes. ACS Applied Electronic Materials 2020, 2
(11)
, 3470-3490. https://doi.org/10.1021/acsaelm.0c00825
- Annette Delices, Davina Moodelly, Charlotte Hurot, Yanxia Hou, Wai Li Ling, Christine Saint-Pierre, Didier Gasparutto, Gilles Nogues, Peter Reiss, Kuntheak Kheng. Aqueous Synthesis of DNA-Functionalized Near-Infrared AgInS2/ZnS Core/Shell Quantum Dots. ACS Applied Materials & Interfaces 2020, 12
(39)
, 44026-44038. https://doi.org/10.1021/acsami.0c11337
- Gabriel Nagamine, Byeong Guk Jeong, Tomas A. C. Ferreira, Jun Hyuk Chang, Kyoungwon Park, Doh C. Lee, Wan Ki Bae, Lazaro A. Padilha. Efficient Optical Gain in Spherical Quantum Wells Enabled by Engineering Biexciton Interactions. ACS Photonics 2020, 7
(8)
, 2252-2264. https://doi.org/10.1021/acsphotonics.0c00812
- Anh T. Nguyen, Feng Gao, Dustin Baucom, Colin D. Heyes. CuInS2-Doped ZnS Quantum Dots Obtained via Non-Injection Cation Exchange Show Reduced but Heterogeneous Blinking and Provide Insights into Their Structure–Optical Property Relationships. The Journal of Physical Chemistry C 2020, 124
(19)
, 10744-10754. https://doi.org/10.1021/acs.jpcc.0c01933
- Tianyu Bai, Xuemin Wang, Yanyu Dong, Shanghua Xing, Zhan Shi, Shouhua Feng. One-Pot Synthesis of High-Quality AgGaS2/ZnS-based Photoluminescent Nanocrystals with Widely Tunable Band Gap. Inorganic Chemistry 2020, 59
(9)
, 5975-5982. https://doi.org/10.1021/acs.inorgchem.9b03768
- Yuto Nakamura, Yoshiki Iso, Tetsuhiko Isobe. Bandgap-Tuned CuInS2/ZnS Core/Shell Quantum Dots for a Luminescent Downshifting Layer in a Crystalline Silicon Solar Module. ACS Applied Nano Materials 2020, 3
(4)
, 3417-3426. https://doi.org/10.1021/acsanm.0c00175
- Gunjan Purohit, Aneeta Kharkwal, Diwan S. Rawat. CuIn-ethylxanthate, a “Versatile Precursor” for Photosensitization of Graphene-Quantum Dots and Nanocatalyzed Synthesis of Imidazopyridines with Ideal Green Chemistry Metrics. ACS Sustainable Chemistry & Engineering 2020, 8
(14)
, 5544-5557. https://doi.org/10.1021/acssuschemeng.9b07371
- Joshua C. Kays, Alexander M. Saeboe, Reyhaneh Toufanian, Danielle E. Kurant, Allison M. Dennis. Shell-Free Copper Indium Sulfide Quantum Dots Induce Toxicity in Vitro and in Vivo. Nano Letters 2020, 20
(3)
, 1980-1991. https://doi.org/10.1021/acs.nanolett.9b05259
- Jia Liu, Jiatao Zhang. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chemical Reviews 2020, 120
(4)
, 2123-2170. https://doi.org/10.1021/acs.chemrev.9b00443
- Addis Fuhr, Hyeong Jin Yun, Scott A. Crooker, Victor I. Klimov. Spectroscopic and Magneto-Optical Signatures of Cu1+ and Cu2+ Defects in Copper Indium Sulfide Quantum Dots. ACS Nano 2020, 14
(2)
, 2212-2223. https://doi.org/10.1021/acsnano.9b09181
- Chenghui Xia, Wentao Wang, Liang Du, Freddy T. Rabouw, Dave J. van den Heuvel, Hans C. Gerritsen, Hedi Mattoussi, Celso de Mello Donega. Förster Resonance Energy Transfer between Colloidal CuInS2/ZnS Quantum Dots and Dark Quenchers. The Journal of Physical Chemistry C 2020, 124
(2)
, 1717-1731. https://doi.org/10.1021/acs.jpcc.9b10536
- Evert Dhaene, Jonas Billet, Ellie Bennett, Isabel Van Driessche, Jonathan De Roo. The Trouble with ODE: Polymerization during Nanocrystal Synthesis. Nano Letters 2019, 19
(10)
, 7411-7417. https://doi.org/10.1021/acs.nanolett.9b03088
- Rotem Strassberg, Savas Delikanli, Yahel Barak, Joanna Dehnel, Alyssa Kostadinov, Georgy Maikov, Pedro Ludwig Hernandez-Martinez, Manoj Sharma, Hilmi Volkan Demir, Efrat Lifshitz. Persuasive Evidence for Electron–Nuclear Coupling in Diluted Magnetic Colloidal Nanoplatelets Using Optically Detected Magnetic Resonance Spectroscopy. The Journal of Physical Chemistry Letters 2019, 10
(15)
, 4437-4447. https://doi.org/10.1021/acs.jpclett.9b01999
- Dmitry Aldakov, Peter Reiss. Safer-by-Design Fluorescent Nanocrystals: Metal Halide Perovskites vs Semiconductor Quantum Dots. The Journal of Physical Chemistry C 2019, 123
(20)
, 12527-12541. https://doi.org/10.1021/acs.jpcc.8b12228
- Riccardo Marin, Alvise Vivian, Artiom Skripka, Andrea Migliori, Vittorio Morandi, Francesco Enrichi, Fiorenzo Vetrone, Paola Ceroni, Carmela Aprile, Patrizia Canton. Mercaptosilane-Passivated CuInS2 Quantum Dots for Luminescence Thermometry and Luminescent Labels. ACS Applied Nano Materials 2019, 2
(4)
, 2426-2436. https://doi.org/10.1021/acsanm.9b00317
- Amelie Heuer-Jungemann, Neus Feliu, Ioanna Bakaimi, Majd Hamaly, Alaaldin Alkilany, Indranath Chakraborty, Atif Masood, Maria F. Casula, Athanasia Kostopoulou, Eunkeu Oh, Kimihiro Susumu, Michael H. Stewart, Igor L. Medintz, Emmanuel Stratakis, Wolfgang J. Parak, Antonios G. Kanaras. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews 2019, 119
(8)
, 4819-4880. https://doi.org/10.1021/acs.chemrev.8b00733
- Suk-Young Yoon, Jong-Hoon Kim, Eun-Pyo Jang, Sun-Hyoung Lee, Dae-Yeon Jo, Yuri Kim, Young Rag Do, Heesun Yang. Systematic and Extensive Emission Tuning of Highly Efficient Cu–In–S-Based Quantum Dots from Visible to Near Infrared. Chemistry of Materials 2019, 31
(7)
, 2627-2634. https://doi.org/10.1021/acs.chemmater.9b00550
- Haipeng Lu, Gerard M. Carroll, Nathan R. Neale, Matthew C. Beard. Infrared Quantum Dots: Progress, Challenges, and Opportunities. ACS Nano 2019, 13
(2)
, 939-953. https://doi.org/10.1021/acsnano.8b09815
- Suman Mallick, Prashant Kumar, Apurba Lal Koner. Freeze-Resistant Cadmium-Free Quantum Dots for Live-Cell Imaging. ACS Applied Nano Materials 2019, 2
(2)
, 661-666. https://doi.org/10.1021/acsanm.8b02231
- Kira E. Hughes, Sarah R. Ostheller, Heidi D. Nelson, Daniel R. Gamelin. Copper’s Role in the Photoluminescence of Ag1–xCuxInS2 Nanocrystals, from Copper-Doped AgInS2 (x ∼ 0) to CuInS2 (x = 1). Nano Letters 2019, 19
(2)
, 1318-1325. https://doi.org/10.1021/acs.nanolett.8b04905
- Piotr Bujak, Zbigniew Wróbel, Mateusz Penkala, Kamil Kotwica, Angelika Kmita, Marta Gajewska, Andrzej Ostrowski, Patrycja Kowalik, Adam Pron. Highly Luminescent Ag–In–Zn–S Quaternary Nanocrystals: Growth Mechanism and Surface Chemistry Elucidation. Inorganic Chemistry 2019, 58
(2)
, 1358-1370. https://doi.org/10.1021/acs.inorgchem.8b02916
- V. Renuga, C. Neela Mohan, M. S. Mohamed Jaabir, P. Arul Prakash, M. Navaneethan. Synthesis and Surface Passivation of CuInS2/MnS/ZnS Core–Multishell Nanocrystals, Their Optical, Structural, and Morphological Characterization, and Their Bioimaging Applications. Industrial & Engineering Chemistry Research 2018, 57
(46)
, 15703-15721. https://doi.org/10.1021/acs.iecr.8b03482
- Gabriel Nagamine, Henrique B. Nunciaroni, Hunter McDaniel, Alexander L. Efros, Carlos H. de Brito Cruz, Lazaro A. Padilha. Evidence of Band-Edge Hole Levels Inversion in Spherical CuInS2 Quantum Dots. Nano Letters 2018, 18
(10)
, 6353-6359. https://doi.org/10.1021/acs.nanolett.8b02707
- Heidi
D. Nelson, Daniel R. Gamelin. Valence-Band Electronic Structures of Cu+-Doped ZnS, Alloyed Cu–In–Zn–S, and Ternary CuInS2 Nanocrystals: A Unified Description of Photoluminescence across Compositions. The Journal of Physical Chemistry C 2018, 122
(31)
, 18124-18133. https://doi.org/10.1021/acs.jpcc.8b05286
- Biswajit Bhattacharyya, Triloki Pandit, Guru Pratheep Rajasekar, Anshu Pandey. Optical Transparency Enabled by Anomalous Stokes Shift in Visible Light-Emitting CuAlS2-Based Quantum Dots. The Journal of Physical Chemistry Letters 2018, 9
(15)
, 4451-4456. https://doi.org/10.1021/acs.jpclett.8b01787
- Bomi Kim, Kangwook Kim, Yongju Kwon, Woojin Lee, Weon Ho Shin, Sungjee Kim, Jiwon Bang. CuInS2/CdS-Heterostructured Nanotetrapods by Seeded Growth and Their Photovoltaic Properties. ACS Applied Nano Materials 2018, 1
(6)
, 2449-2454. https://doi.org/10.1021/acsanm.8b00250
- Laura Trapiella-Alfonso, Thomas Pons, Nicolas Lequeux, Ludovic Leleu, Juliette Grimaldi, Mariana Tasso, Edward Oujagir, Johanne Seguin, Fanny d’Orlyé, Christian Girard, Bich-Thuy Doan, Anne Varenne. Clickable-Zwitterionic Copolymer Capped-Quantum Dots for in Vivo Fluorescence Tumor Imaging. ACS Applied Materials & Interfaces 2018, 10
(20)
, 17107-17116. https://doi.org/10.1021/acsami.8b04708
- Josephine
F. L. Lox, Zhiya Dang, Volodymyr M. Dzhagan, Daniel Spittel, Beatriz Martín-García, Iwan Moreels, Dietrich R. T. Zahn, Vladimir Lesnyak. Near-Infrared Cu–In–Se-Based Colloidal Nanocrystals via Cation Exchange. Chemistry of Materials 2018, 30
(8)
, 2607-2617. https://doi.org/10.1021/acs.chemmater.7b05187
- Pengqi Lu, Ruifeng Li, Ni Yao, Xusheng Dai, Zhenyu Ye, Kai Zheng, Weiguang Kong, Wei Fang, Shuang Li, Qinghua Xu, Huizhen Wu. Enhancement of Two-Photon Fluorescence and Low Threshold Amplification of Spontaneous Emission of Zn-processed CuInS2 Quantum Dots. ACS Photonics 2018, 5
(4)
, 1310-1317. https://doi.org/10.1021/acsphotonics.7b01255
- Anne C. Berends, Ward van der Stam, Jan P. Hofmann, Eva Bladt, Johannes D. Meeldijk, Sara Bals, Celso de Mello Donega. Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals. Chemistry of Materials 2018, 30
(7)
, 2400-2413. https://doi.org/10.1021/acs.chemmater.8b00477
- Olesya Yarema, Maksym Yarema, Vanessa Wood. Tuning the Composition of Multicomponent Semiconductor Nanocrystals: The Case of I–III–VI Materials. Chemistry of Materials 2018, 30
(5)
, 1446-1461. https://doi.org/10.1021/acs.chemmater.7b04710
- Xiaoyan Long, Fang Zhang, Yupeng He, Shifeng Hou, Bin Zhang, Guizheng Zou. Promising Anodic Electrochemiluminescence of Nontoxic Core/Shell CuInS2/ZnS Nanocrystals in Aqueous Medium and Its Biosensing Potential. Analytical Chemistry 2018, 90
(5)
, 3563-3569. https://doi.org/10.1021/acs.analchem.8b00006
- Bingkun Chen, Narayan Pradhan, and Haizheng Zhong . From Large-Scale Synthesis to Lighting Device Applications of Ternary I–III–VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. The Journal of Physical Chemistry Letters 2018, 9
(2)
, 435-445. https://doi.org/10.1021/acs.jpclett.7b03037
- Marina Gromova, Aurélie Lefrançois, Louis Vaure, Fabio Agnese, Dmitry Aldakov, Axel Maurice, David Djurado, Colette Lebrun, Arnaud de Geyer, Tobias U. Schülli, Stéphanie Pouget, and Peter Reiss . Growth Mechanism and Surface State of CuInS2 Nanocrystals Synthesized with Dodecanethiol. Journal of the American Chemical Society 2017, 139
(44)
, 15748-15759. https://doi.org/10.1021/jacs.7b07401
- Annina Moser, Maksym Yarema, Weyde M. M. Lin, Olesya Yarema, Nuri Yazdani, and Vanessa Wood . In Situ Monitoring of Cation-Exchange Reaction Shell Growth on Nanocrystals. The Journal of Physical Chemistry C 2017, 121
(43)
, 24345-24351. https://doi.org/10.1021/acs.jpcc.7b08571
- Feng Liu, Yaohong Zhang, Chao Ding, Syuusuke Kobayashi, Takuya Izuishi, Naoki Nakazawa, Taro Toyoda, Tsuyoshi Ohta, Shuzi Hayase, Takashi Minemoto, Kenji Yoshino, Songyuan Dai, and Qing Shen . Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano 2017, 11
(10)
, 10373-10383. https://doi.org/10.1021/acsnano.7b05442
- Youngsun Kim, Ho Seong Jang, Hyunki Kim, Sehoon Kim, and Duk Young Jeon . Controlled Synthesis of CuInS2/ZnS Nanocubes and Their Sensitive Photoluminescence Response toward Hydrogen Peroxide. ACS Applied Materials & Interfaces 2017, 9
(37)
, 32097-32105. https://doi.org/10.1021/acsami.7b09388
- Samrat Das Adhikari, Anirban Dutta, Gyanaranjan Prusty, Puspanjali Sahu, and Narayan Pradhan . Symmetry Break and Seeded 2D Anisotropic Growth in Ternary CuGaS2 Nanocrystals. Chemistry of Materials 2017, 29
(12)
, 5384-5393. https://doi.org/10.1021/acs.chemmater.7b01775
- Chenghui Xia, Johannes D. Meeldijk, Hans C. Gerritsen, and Celso de Mello Donega . Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots. Chemistry of Materials 2017, 29
(11)
, 4940-4951. https://doi.org/10.1021/acs.chemmater.7b01258
- Martina Sandroni, K. David Wegner, Dmitry Aldakov, and Peter Reiss . Prospects of Chalcopyrite-Type Nanocrystals for Energy Applications. ACS Energy Letters 2017, 2
(5)
, 1076-1088. https://doi.org/10.1021/acsenergylett.7b00003
- Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117
(9)
, 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
- Huidong Zang, Hongbo Li, Nikolay S. Makarov, Kirill A. Velizhanin, Kaifeng Wu, Young-Shin Park, and Victor I. Klimov . Thick-Shell CuInS2/ZnS Quantum Dots with Suppressed “Blinking” and Narrow Single-Particle Emission Line Widths. Nano Letters 2017, 17
(3)
, 1787-1795. https://doi.org/10.1021/acs.nanolett.6b05118
- Sandra Dias, Kishan Kumawat, Shinjini Biswas, and Salaru Babu Krupanidhi . Solvothermal Synthesis of Cu2SnS3 Quantum Dots and Their Application in Near-Infrared Photodetectors. Inorganic Chemistry 2017, 56
(4)
, 2198-2203. https://doi.org/10.1021/acs.inorgchem.6b02832
- Niko Hildebrandt, Christopher M. Spillmann, W. Russ Algar, Thomas Pons, Michael H. Stewart, Eunkeu Oh, Kimihiro Susumu, Sebastian A. Díaz, James B. Delehanty, and Igor L. Medintz . Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews 2017, 117
(2)
, 536-711. https://doi.org/10.1021/acs.chemrev.6b00030
- Brad A. Kairdolf, Ximei Qian, and Shuming Nie . Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. Analytical Chemistry 2017, 89
(2)
, 1015-1031. https://doi.org/10.1021/acs.analchem.6b04873
- Gaixia Xu, Shuwen Zeng, Butian Zhang, Mark T. Swihart, Ken-Tye Yong, and Paras N. Prasad . New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chemical Reviews 2016, 116
(19)
, 12234-12327. https://doi.org/10.1021/acs.chemrev.6b00290
- Ingmar Swart, Peter Liljeroth, and Daniel Vanmaekelbergh . Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chemical Reviews 2016, 116
(18)
, 11181-11219. https://doi.org/10.1021/acs.chemrev.5b00678
- Lihong Jing, Stephen V. Kershaw, Yilin Li, Xiaodan Huang, Yingying Li, Andrey L. Rogach, and Mingyuan Gao . Aqueous Based Semiconductor Nanocrystals. Chemical Reviews 2016, 116
(18)
, 10623-10730. https://doi.org/10.1021/acs.chemrev.6b00041
- Kathryn E. Knowles, Kimberly H. Hartstein, Troy B. Kilburn, Arianna Marchioro, Heidi D. Nelson, Patrick J. Whitham, and Daniel R. Gamelin . Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. Chemical Reviews 2016, 116
(18)
, 10820-10851. https://doi.org/10.1021/acs.chemrev.6b00048
- Peter Reiss, Marie Carrière, Christophe Lincheneau, Louis Vaure, and Sudarsan Tamang . Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews 2016, 116
(18)
, 10731-10819. https://doi.org/10.1021/acs.chemrev.6b00116
- Jeffrey M. Pietryga, Young-Shin Park, Jaehoon Lim, Andrew F. Fidler, Wan Ki Bae, Sergio Brovelli, and Victor I. Klimov . Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews 2016, 116
(18)
, 10513-10622. https://doi.org/10.1021/acs.chemrev.6b00169
- Metikoti Jagadeeswararao, Abhishek Swarnkar, Ganesh B. Markad, and Angshuman Nag . Defect-Mediated Electron–Hole Separation in Colloidal Ag2S–AgInS2 Hetero Dimer Nanocrystals Tailoring Luminescence and Solar Cell Properties. The Journal of Physical Chemistry C 2016, 120
(34)
, 19461-19469. https://doi.org/10.1021/acs.jpcc.6b06394
- Anne C. Berends, Freddy T. Rabouw, Frank C. M. Spoor, Eva Bladt, Ferdinand C. Grozema, Arjan J. Houtepen, Laurens D. A. Siebbeles, and Celso de Mello Donegá . Radiative and Nonradiative Recombination in CuInS2 Nanocrystals and CuInS2-Based Core/Shell Nanocrystals. The Journal of Physical Chemistry Letters 2016, 7
(17)
, 3503-3509. https://doi.org/10.1021/acs.jpclett.6b01668
- Lili Yan, Zhichun Li, Mingxing Sun, Guoqing Shen, and Liang Li . Stable and Flexible CuInS2/ZnS:Al-TiO2 Film for Solar-Light-Driven Photodegradation of Soil Fumigant. ACS Applied Materials & Interfaces 2016, 8
(31)
, 20048-20056. https://doi.org/10.1021/acsami.6b05587
- Slawomir Drozdek, Janusz Szeremeta, Lukasz Lamch, Marcin Nyk, Marek Samoc, and Kazimiera A. Wilk . Two-Photon Induced Fluorescence Energy Transfer in Polymeric Nanocapsules Containing CdSexS1–x/ZnS Core/Shell Quantum Dots and Zinc(II) Phthalocyanine. The Journal of Physical Chemistry C 2016, 120
(28)
, 15460-15470. https://doi.org/10.1021/acs.jpcc.6b04301
- Riya Bose, Ashok Bera, Manas R. Parida, Aniruddha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, and Omar F. Mohammed . Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy. Nano Letters 2016, 16
(7)
, 4417-4423. https://doi.org/10.1021/acs.nanolett.6b01553
- Victor I. Klimov, Thomas A. Baker, Jaehoon Lim, Kirill A. Velizhanin, Hunter McDaniel. Quality Factor of Luminescent Solar Concentrators and Practical Concentration Limits Attainable with Semiconductor Quantum Dots. ACS Photonics 2016, 3
(6)
, 1138-1148. https://doi.org/10.1021/acsphotonics.6b00307
- Gary Zaiats, Sachin Kinge, and Prashant V. Kamat . Origin of Dual Photoluminescence States in ZnS–CuInS2 Alloy Nanostructures. The Journal of Physical Chemistry C 2016, 120
(19)
, 10641-10646. https://doi.org/10.1021/acs.jpcc.6b01905
- Danilo H. Jara, Kevin G. Stamplecoskie, and Prashant V. Kamat . Two Distinct Transitions in CuxInS2 Quantum Dots. Bandgap versus Sub-Bandgap Excitations in Copper-Deficient Structures. The Journal of Physical Chemistry Letters 2016, 7
(8)
, 1452-1459. https://doi.org/10.1021/acs.jpclett.6b00571
- Elena S. Speranskaya, Chantal Sevrin, Sarah De Saeger, Zeger Hens, Irina Yu. Goryacheva, and Christian Grandfils . Synthesis of Hydrophilic CuInS2/ZnS Quantum Dots with Different Polymeric Shells and Study of Their Cytotoxicity and Hemocompatibility. ACS Applied Materials & Interfaces 2016, 8
(12)
, 7613-7622. https://doi.org/10.1021/acsami.5b11258
- Alice D. P. Leach and Janet E. Macdonald . Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. The Journal of Physical Chemistry Letters 2016, 7
(3)
, 572-583. https://doi.org/10.1021/acs.jpclett.5b02211
- Tatsuya Kameyama, Takuya Takahashi, Takahiro Machida, Yutaro Kamiya, Takahisa Yamamoto, Susumu Kuwabata, and Tsukasa Torimoto . Controlling the Electronic Energy Structure of ZnS–AgInS2 Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution. The Journal of Physical Chemistry C 2015, 119
(44)
, 24740-24749. https://doi.org/10.1021/acs.jpcc.5b07994
- Xuelian Yu, Jingjing Liu, Aziz Genç, Maria Ibáñez, Zhishan Luo, Alexey Shavel, Jordi Arbiol, Guangjin Zhang, Yihe Zhang, and Andreu Cabot . Cu2ZnSnS4–Ag2S Nanoscale p–n Heterostructures as Sensitizers for Photoelectrochemical Water Splitting. Langmuir 2015, 31
(38)
, 10555-10561. https://doi.org/10.1021/acs.langmuir.5b02490
- Bingkun Chen, Shuai Chang, Deyao Li, Liangliang Chen, Yongtian Wang, Tao Chen, Bingsuo Zou, Haizheng Zhong, and Andrey L. Rogach . Template Synthesis of CuInS2 Nanocrystals from In2S3 Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells. Chemistry of Materials 2015, 27
(17)
, 5949-5956. https://doi.org/10.1021/acs.chemmater.5b01971
- Zhongyun Liu, Na Chen, Chunhong Dong, Wei Li, Weisheng Guo, Hanjie Wang, Sheng Wang, Jian Tan, Yu Tu, and Jin Chang . Facile Construction of Near Infrared Fluorescence Nanoprobe with Amphiphilic Protein-Polymer Bioconjugate for Targeted Cell Imaging. ACS Applied Materials & Interfaces 2015, 7
(34)
, 18997-19005. https://doi.org/10.1021/acsami.5b05406
- Weitao Yang, Weisheng Guo, Xiaoqun Gong, Bingbo Zhang, Sheng Wang, Na Chen, Wentao Yang, Yu Tu, Xiangming Fang, and Jin Chang . Facile Synthesis of Gd–Cu–In–S/ZnS Bimodal Quantum Dots with Optimized Properties for Tumor Targeted Fluorescence/MR In Vivo Imaging. ACS Applied Materials & Interfaces 2015, 7
(33)
, 18759-18768. https://doi.org/10.1021/acsami.5b05372
- Chuanzhen Zhao, Zelong Bai, Xiangyou Liu, Yijia Zhang, Bingsuo Zou, and Haizheng Zhong . Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications. ACS Applied Materials & Interfaces 2015, 7
(32)
, 17623-17629. https://doi.org/10.1021/acsami.5b05503
- Joel van Embden, Anthony S. R. Chesman, and Jacek J. Jasieniak . The Heat-Up Synthesis of Colloidal Nanocrystals. Chemistry of Materials 2015, 27
(7)
, 2246-2285. https://doi.org/10.1021/cm5028964
- Xiaojiao Kang, Lijian Huang, Yanchun Yang, and Daocheng Pan . Scaling up the Aqueous Synthesis of Visible Light Emitting Multinary AgInS2/ZnS Core/Shell Quantum Dots. The Journal of Physical Chemistry C 2015, 119
(14)
, 7933-7940. https://doi.org/10.1021/acs.jpcc.5b00413
- Maksym V. Kovalenko, Liberato Manna, Andreu Cabot, Zeger Hens, Dmitri V. Talapin, Cherie R. Kagan, Victor I. Klimov, Andrey L. Rogach, Peter Reiss, Delia J. Milliron, Philippe Guyot-Sionnnest, Gerasimos Konstantatos, Wolfgang J. Parak, Taeghwan Hyeon, Brian A. Korgel, Christopher B. Murray, and Wolfgang Heiss . Prospects of Nanoscience with Nanocrystals. ACS Nano 2015, 9
(2)
, 1012-1057. https://doi.org/10.1021/nn506223h
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.