ACS Publications. Most Trusted. Most Cited. Most Read
Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging
My Activity
    Article

    Highly Luminescent CuInS2/ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging
    Click to copy article linkArticle link copied!

    View Author Information
    DSM/INAC/SPrAM (UMR 5819 CEA-CNRS-UJF), Laboratoire d’Electronique Moléculaire, Organique et Hybride, and DRT/LETI/DTBS/LFCM, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9, France, Equipe Matériaux à Porosité Contrôlée, Institut de Science des Matériaux de Mulhouse (IS2M), LRC CNRS 7228−UHA−ENSCMu, 3 rue Alfred Werner, F-68093 Mulhouse Cedex, France, and Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
    * Corresponding author. E-mail: [email protected]. Fax: 33 438 78 51 13. Tel: 33 438 78 97 19.
    †DSM/INAC/SPrAM (UMR 5819 CEA-CNRS-UJF), Laboratoire d’Electronique Moléculaire, Organique et Hybride, CEA Grenoble.
    ‡DRT/LETI/DTBS/LFCM, CEA Grenoble.
    §LRC CNRS 7228−UHA−ENSCMu.
    ∥Vietnam Academy of Science and Technology.
    Other Access Options

    Chemistry of Materials

    Cite this: Chem. Mater. 2009, 21, 12, 2422–2429
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm900103b
    Published May 11, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Strongly luminescent CuInS2/ZnS core/shell nanocrystals were synthesized from copper iodide, indium acetate, zinc stearate, and dodecanethiol as starting compounds in octadecene solvent. The as-prepared core/shell nanocrystals exhibit a low size distribution (<10%), and present photoluminescence in the range of 550−815 nm with a maximum fluorescence quantum yield (QY) of 60%. Time-resolved fluorescence spectroscopy revealed that the lifetimes of the different spectral components are on the order of hundreds of nanoseconds, indicating that donor−acceptor pair recombinations are at the origin of the observed emission bands. The CuInS2/ZnS nanocrystals were subsequently transferred to the aqueous phase via surface ligand exchange with dihydrolipoic acid and used as fluorescent labels for in vivo imaging. After tail vein injection into nude mice, the biodistribution of the quantum dots was monitored during 24 h using fluorescence reflectance imaging.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 652 publications.

    1. Adam Ćwilich, Daria Larowska-Zarych, Patrycja Kowalik, Kamil Polok, Piotr Bujak, Magdalena Duda, Tomasz Kazimierczuk, Wojciech Gadomski, Adam Pron, Łukasz Kłopotowski. Carrier Dynamics and Recombination Pathways in Ag–In–Zn–S Quantum Dots. The Journal of Physical Chemistry Letters 2024, 15 (42) , 10479-10487. https://doi.org/10.1021/acs.jpclett.4c02126
    2. Patrick Mann, Simon M. Fairclough, Struan Bourke, Mary Burkitt Gray, Laura Urbano, David J. Morgan, Lea Ann Dailey, Maya Thanou, Nicholas J. Long, Mark A. Green. Interface Engineering of Water-Dispersible Near-Infrared-Emitting CuInZnS/ZnSe/ZnS Quantum Dots. Crystal Growth & Design 2024, 24 (15) , 6275-6283. https://doi.org/10.1021/acs.cgd.4c00528
    3. Xiulin Xie, Jinxing Zhao, Ouyang Lin, Wentao Niu, Yu Li, Lijin Wang, Liang Li, Zhe Yin, Xu Li, Yu Zhang, Aiwei Tang. One-Pot Synthesis of Color-Tunable Narrow-Bandwidth Ag–In–Ga–Zn–S Semiconductor Nanocrystals for Quantum-Dot Light-Emitting Diodes. Nano Letters 2024, 24 (31) , 9683-9690. https://doi.org/10.1021/acs.nanolett.4c02454
    4. Tatiana S. Ponomaryova, Vera V. Olomskaya, Anatolii A. Abalymov, Roman A. Anisimov, Daniil D. Drozd, Arina V. Drozd, Anastasia S. Novikova, Maria V. Lomova, Andrey M. Zakharevich, Irina Yu. Goryacheva, Olga A. Goryacheva. Visualization of 2D and 3D Tissue Models via Size-Selected Aqueous AgInS/ZnS Quantum Dots. ACS Applied Materials & Interfaces 2024, 16 (31) , 40483-40498. https://doi.org/10.1021/acsami.4c05681
    5. Amanda Richardson, Jan Alster, Petro Khoroshyy, Jakub Psencik, Jan Valenta, Roman Tuma, Kevin Critchley. Direct Synthesis and Characterization of Hydrophilic Cu-Deficient Copper Indium Sulfide Quantum Dots. ACS Omega 2024, 9 (15) , 17114-17124. https://doi.org/10.1021/acsomega.3c09531
    6. Parna Roy, Anshu Pandey. Enhanced Multiexciton Emission Quantum Yields in Nonblinking Interlinked Nanocrystals. The Journal of Physical Chemistry C 2024, 128 (7) , 2948-2952. https://doi.org/10.1021/acs.jpcc.3c07631
    7. Anh T. Nguyen, Dustin R. Baucom, Yong Wang, Colin D. Heyes. Compact, Fast Blinking Cd-Free Quantum Dots for Super-Resolution Fluorescence Imaging. Chemical & Biomedical Imaging 2023, 1 (3) , 251-259. https://doi.org/10.1021/cbmi.3c00018
    8. Ankita Bora, Josephine Lox, René Hübner, Nelli Weiß, Houman Bahmani Jalali, Francesco di Stasio, Christine Steinbach, Nikolai Gaponik, Vladimir Lesnyak. Composition-Dependent Optical Properties of Cu–Zn–In–Se Colloidal Nanocrystals Synthesized via Cation Exchange. Chemistry of Materials 2023, 35 (10) , 4068-4077. https://doi.org/10.1021/acs.chemmater.3c00538
    9. Prajit Kumar Singha, Tanuja Kistwal, Anindya Datta. Single-Particle Dynamics of ZnS Shelling Induced Replenishment of Carrier Diffusion for Individual Emission Centers in CuInS2 Quantum Dots. The Journal of Physical Chemistry Letters 2023, 14 (18) , 4289-4296. https://doi.org/10.1021/acs.jpclett.3c00467
    10. Long Liu, Bing Bai, Xuyong Yang, Zuliang Du, Guohua Jia. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chemical Reviews 2023, 123 (7) , 3625-3692. https://doi.org/10.1021/acs.chemrev.2c00688
    11. Felix Thiel, Cristina Palencia, Horst Weller. Kinetic Analysis of the Cation Exchange in Nanorods from Cu2–xS to CuInS2: Influence of Djurleite’s Phase Transition Temperature on the Mechanism. ACS Nano 2023, 17 (4) , 3676-3685. https://doi.org/10.1021/acsnano.2c10693
    12. Qiaoli Jin, Xuhui Zhang, Lifang Zhang, Jinjie Li, Yanbing Lv, Ning Li, Lei Wang, Ruili Wu, Lin Song Li. Fabrication of CuInZnS/ZnS Quantum Dot Microbeads by a Two-Step Approach of Emulsification–Solvent Evaporation and Surfactant Substitution and Its Application for Quantitative Detection. Inorganic Chemistry 2023, 62 (8) , 3474-3484. https://doi.org/10.1021/acs.inorgchem.2c03783
    13. Yuping Xu, Peisen Zhang, Shuming Jin, Chuang Liu, Lin Yang, Zhuo Ao, Meng Qin, Kaili Nie, Yi Hou, Mingyuan Gao. Tracking How Biodegraded Microplastics Enter the Ecosystem with CuInS2@ZnS QDs. The Journal of Physical Chemistry C 2022, 126 (48) , 20605-20612. https://doi.org/10.1021/acs.jpcc.2c05473
    14. Maksim Miropoltsev, K. David Wegner, Ines Häusler, Vasile-Dan Hodoroaba, Ute Resch-Genger. Influence of Hydrophilic Thiol Ligands of Varying Denticity on the Luminescence Properties and Colloidal Stability of Quaternary Semiconductor Nanocrystals. The Journal of Physical Chemistry C 2022, 126 (47) , 20101-20113. https://doi.org/10.1021/acs.jpcc.2c05342
    15. Deeptimayee Prusty, Sriram Mansingh, Newmoon Priyadarshini, K. M. Parida. Defect Control via Compositional Engineering of Zn-Cu-In-S Alloyed QDs for Photocatalytic H2O2 Generation and Micropollutant Degradation: Affecting Parameters, Kinetics, and Insightful Mechanism. Inorganic Chemistry 2022, 61 (47) , 18934-18949. https://doi.org/10.1021/acs.inorgchem.2c02977
    16. Ankita Bora, Anatol Prudnikau, Ningyuan Fu, René Hübner, Konstantin B. L. Borchert, Dana Schwarz, Nikolai Gaponik, Vladimir Lesnyak. Seed-Mediated Synthesis of Photoluminescent Cu–Zn–In–S Nanoplatelets. Chemistry of Materials 2022, 34 (20) , 9251-9260. https://doi.org/10.1021/acs.chemmater.2c02500
    17. Shunsuke Yamashita, Mamoru Tanabe, Takumi Araki, Michinori Shiomi, Toshio Nishi, Yoshihiro Kudo. Nanostructure–Optical Property Relationship in CuInSe2/ZnS Core/Shell Quantum Dots Revealed by Multivariate Statistical Analysis of X-ray Spectrum Images. The Journal of Physical Chemistry C 2022, 126 (34) , 14558-14565. https://doi.org/10.1021/acs.jpcc.2c03619
    18. Evert Dhaene, Rohan Pokratath, Olivia Aalling-Frederiksen, Kirsten M. Ø. Jensen, Philippe F. Smet, Klaartje De Buysser, Jonathan De Roo. Monoalkyl Phosphinic Acids as Ligands in Nanocrystal Synthesis. ACS Nano 2022, 16 (5) , 7361-7372. https://doi.org/10.1021/acsnano.1c08966
    19. Parna Roy, Arpita Mukherjee, Pritha Mondal, Biswajit Bhattacharyya, Awadhesh Narayan, Anshu Pandey. Electronic Structure and Spectroscopy of I–III–VI2 Nanocrystals: A Perspective. The Journal of Physical Chemistry C 2022, 126 (17) , 7364-7373. https://doi.org/10.1021/acs.jpcc.1c10922
    20. Jundiao Wang, Haoran Ning, Jun Wang, Stephen V. Kershaw, Lihong Jing, Pan Xiao. Effects of Repetitive Pressure on the Photoluminescence of Bare and ZnS-Capped CuInS2 Quantum Dots: Implications for Nanoscale Stress Sensors. ACS Applied Nano Materials 2022, 5 (4) , 5617-5624. https://doi.org/10.1021/acsanm.2c00573
    21. Hongxing Hao, Jingwen Ai, Chenxiao Shi, Dexia Zhou, Lingbo Meng, Hongtao Bian, Yu Fang. Structural Dynamics of Short Ligands on the Surface of ZnSe Semiconductor Nanocrystals. The Journal of Physical Chemistry Letters 2022, 13 (14) , 3158-3164. https://doi.org/10.1021/acs.jpclett.2c00849
    22. Jared Frazier, Kevin Cavey, Sydney Coil, Helene Hamo, Mengliang Zhang, P. Gregory Van Patten. Rapid and Sensitive Identification and Discrimination of Bound/Unbound Ligands on Colloidal Nanocrystals via Direct Analysis in Real-Time Mass Spectrometry. Langmuir 2021, 37 (50) , 14703-14712. https://doi.org/10.1021/acs.langmuir.1c02548
    23. Yang Li, Xiaoqi Hou, Yongmiao Shen, Ning Dai, Xiaogang Peng. Tuning the Reactivity of Indium Alkanoates by Tertiary Organophosphines for the Synthesis of Indium-Based Quantum Dots. Chemistry of Materials 2021, 33 (23) , 9348-9356. https://doi.org/10.1021/acs.chemmater.1c03219
    24. Chenghui Xia, Philippe Tamarat, Lei Hou, Serena Busatto, Johannes D. Meeldijk, Celso de Mello Donega, Brahim Lounis. Unraveling the Emission Pathways in Copper Indium Sulfide Quantum Dots. ACS Nano 2021, 15 (11) , 17573-17581. https://doi.org/10.1021/acsnano.1c04909
    25. Swati Mukherjee, Joicy Selvaraj, Thangadurai Paramasivam. Ag-Doped ZnInS/ZnS Core/Shell Quantum Dots for Display Applications. ACS Applied Nano Materials 2021, 4 (10) , 10228-10243. https://doi.org/10.1021/acsanm.1c01720
    26. Arpita Mukherjee, Pritha Mondal, Anshu Pandey, Awadhesh Narayan. Theoretical Model for Luminescence Broadening and Anomalous Carrier Dynamics in Chalcopyrite Quantum Dots. The Journal of Physical Chemistry C 2021, 125 (33) , 18225-18233. https://doi.org/10.1021/acs.jpcc.1c02255
    27. Nora Eliasson, Belinda Pettersson Rimgard, Ashleigh Castner, Cheuk-Wai Tai, Sascha Ott, Haining Tian, Leif Hammarström. Ultrafast Dynamics in Cu-Deficient CuInS2 Quantum Dots: Sub-Bandgap Transitions and Self-Assembled Molecular Catalysts. The Journal of Physical Chemistry C 2021, 125 (27) , 14751-14764. https://doi.org/10.1021/acs.jpcc.1c02468
    28. Xiangyang An, Yuemei Zhang, Jing Wang, De-ming Kong, Xi-wen He, Langxing Chen, Yukui Zhang. The Preparation of CuInS2-ZnS-Glutathione Quantum Dots and Their Application on the Sensitive Determination of Cytochrome c and Imaging of HeLa Cells. ACS Omega 2021, 6 (27) , 17501-17509. https://doi.org/10.1021/acsomega.1c01983
    29. Deeptimayee Prusty, Lekha Paramanik, Kulamani Parida. Recent Advances on Alloyed Quantum Dots for Photocatalytic Hydrogen Evolution: A Mini-Review. Energy & Fuels 2021, 35 (6) , 4670-4686. https://doi.org/10.1021/acs.energyfuels.0c04163
    30. Ranjana Yadav, Biswajit Bhattacharyya, Subham Kumar Saha, Pranab Dutta, Parna Roy, Guru Pratheep Rajasekar, Awadhesh Narayan, Anshu Pandey. Electronic Structure Insights into the Tunable Luminescence of CuAlxFe1–xS2/ZnS Nanocrystals. The Journal of Physical Chemistry C 2021, 125 (4) , 2511-2518. https://doi.org/10.1021/acs.jpcc.0c09009
    31. Parth Vashishtha, Swati Bishnoi, C.-H. Angus Li, Metikoti Jagadeeswararao, Thomas J. N. Hooper, Naina Lohia, Sunil B. Shivarudraiah, Mohammed S. Ansari, Shailesh N. Sharma, Jonathan E. Halpert. Recent Advancements in Near-Infrared Perovskite Light-Emitting Diodes. ACS Applied Electronic Materials 2020, 2 (11) , 3470-3490. https://doi.org/10.1021/acsaelm.0c00825
    32. Annette Delices, Davina Moodelly, Charlotte Hurot, Yanxia Hou, Wai Li Ling, Christine Saint-Pierre, Didier Gasparutto, Gilles Nogues, Peter Reiss, Kuntheak Kheng. Aqueous Synthesis of DNA-Functionalized Near-Infrared AgInS2/ZnS Core/Shell Quantum Dots. ACS Applied Materials & Interfaces 2020, 12 (39) , 44026-44038. https://doi.org/10.1021/acsami.0c11337
    33. Gabriel Nagamine, Byeong Guk Jeong, Tomas A. C. Ferreira, Jun Hyuk Chang, Kyoungwon Park, Doh C. Lee, Wan Ki Bae, Lazaro A. Padilha. Efficient Optical Gain in Spherical Quantum Wells Enabled by Engineering Biexciton Interactions. ACS Photonics 2020, 7 (8) , 2252-2264. https://doi.org/10.1021/acsphotonics.0c00812
    34. Anh T. Nguyen, Feng Gao, Dustin Baucom, Colin D. Heyes. CuInS2-Doped ZnS Quantum Dots Obtained via Non-Injection Cation Exchange Show Reduced but Heterogeneous Blinking and Provide Insights into Their Structure–Optical Property Relationships. The Journal of Physical Chemistry C 2020, 124 (19) , 10744-10754. https://doi.org/10.1021/acs.jpcc.0c01933
    35. Tianyu Bai, Xuemin Wang, Yanyu Dong, Shanghua Xing, Zhan Shi, Shouhua Feng. One-Pot Synthesis of High-Quality AgGaS2/ZnS-based Photoluminescent Nanocrystals with Widely Tunable Band Gap. Inorganic Chemistry 2020, 59 (9) , 5975-5982. https://doi.org/10.1021/acs.inorgchem.9b03768
    36. Yuto Nakamura, Yoshiki Iso, Tetsuhiko Isobe. Bandgap-Tuned CuInS2/ZnS Core/Shell Quantum Dots for a Luminescent Downshifting Layer in a Crystalline Silicon Solar Module. ACS Applied Nano Materials 2020, 3 (4) , 3417-3426. https://doi.org/10.1021/acsanm.0c00175
    37. Gunjan Purohit, Aneeta Kharkwal, Diwan S. Rawat. CuIn-ethylxanthate, a “Versatile Precursor” for Photosensitization of Graphene-Quantum Dots and Nanocatalyzed Synthesis of Imidazopyridines with Ideal Green Chemistry Metrics. ACS Sustainable Chemistry & Engineering 2020, 8 (14) , 5544-5557. https://doi.org/10.1021/acssuschemeng.9b07371
    38. Joshua C. Kays, Alexander M. Saeboe, Reyhaneh Toufanian, Danielle E. Kurant, Allison M. Dennis. Shell-Free Copper Indium Sulfide Quantum Dots Induce Toxicity in Vitro and in Vivo. Nano Letters 2020, 20 (3) , 1980-1991. https://doi.org/10.1021/acs.nanolett.9b05259
    39. Jia Liu, Jiatao Zhang. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chemical Reviews 2020, 120 (4) , 2123-2170. https://doi.org/10.1021/acs.chemrev.9b00443
    40. Addis Fuhr, Hyeong Jin Yun, Scott A. Crooker, Victor I. Klimov. Spectroscopic and Magneto-Optical Signatures of Cu1+ and Cu2+ Defects in Copper Indium Sulfide Quantum Dots. ACS Nano 2020, 14 (2) , 2212-2223. https://doi.org/10.1021/acsnano.9b09181
    41. Chenghui Xia, Wentao Wang, Liang Du, Freddy T. Rabouw, Dave J. van den Heuvel, Hans C. Gerritsen, Hedi Mattoussi, Celso de Mello Donega. Förster Resonance Energy Transfer between Colloidal CuInS2/ZnS Quantum Dots and Dark Quenchers. The Journal of Physical Chemistry C 2020, 124 (2) , 1717-1731. https://doi.org/10.1021/acs.jpcc.9b10536
    42. Evert Dhaene, Jonas Billet, Ellie Bennett, Isabel Van Driessche, Jonathan De Roo. The Trouble with ODE: Polymerization during Nanocrystal Synthesis. Nano Letters 2019, 19 (10) , 7411-7417. https://doi.org/10.1021/acs.nanolett.9b03088
    43. Rotem Strassberg, Savas Delikanli, Yahel Barak, Joanna Dehnel, Alyssa Kostadinov, Georgy Maikov, Pedro Ludwig Hernandez-Martinez, Manoj Sharma, Hilmi Volkan Demir, Efrat Lifshitz. Persuasive Evidence for Electron–Nuclear Coupling in Diluted Magnetic Colloidal Nanoplatelets Using Optically Detected Magnetic Resonance Spectroscopy. The Journal of Physical Chemistry Letters 2019, 10 (15) , 4437-4447. https://doi.org/10.1021/acs.jpclett.9b01999
    44. Dmitry Aldakov, Peter Reiss. Safer-by-Design Fluorescent Nanocrystals: Metal Halide Perovskites vs Semiconductor Quantum Dots. The Journal of Physical Chemistry C 2019, 123 (20) , 12527-12541. https://doi.org/10.1021/acs.jpcc.8b12228
    45. Riccardo Marin, Alvise Vivian, Artiom Skripka, Andrea Migliori, Vittorio Morandi, Francesco Enrichi, Fiorenzo Vetrone, Paola Ceroni, Carmela Aprile, Patrizia Canton. Mercaptosilane-Passivated CuInS2 Quantum Dots for Luminescence Thermometry and Luminescent Labels. ACS Applied Nano Materials 2019, 2 (4) , 2426-2436. https://doi.org/10.1021/acsanm.9b00317
    46. Amelie Heuer-Jungemann, Neus Feliu, Ioanna Bakaimi, Majd Hamaly, Alaaldin Alkilany, Indranath Chakraborty, Atif Masood, Maria F. Casula, Athanasia Kostopoulou, Eunkeu Oh, Kimihiro Susumu, Michael H. Stewart, Igor L. Medintz, Emmanuel Stratakis, Wolfgang J. Parak, Antonios G. Kanaras. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews 2019, 119 (8) , 4819-4880. https://doi.org/10.1021/acs.chemrev.8b00733
    47. Suk-Young Yoon, Jong-Hoon Kim, Eun-Pyo Jang, Sun-Hyoung Lee, Dae-Yeon Jo, Yuri Kim, Young Rag Do, Heesun Yang. Systematic and Extensive Emission Tuning of Highly Efficient Cu–In–S-Based Quantum Dots from Visible to Near Infrared. Chemistry of Materials 2019, 31 (7) , 2627-2634. https://doi.org/10.1021/acs.chemmater.9b00550
    48. Haipeng Lu, Gerard M. Carroll, Nathan R. Neale, Matthew C. Beard. Infrared Quantum Dots: Progress, Challenges, and Opportunities. ACS Nano 2019, 13 (2) , 939-953. https://doi.org/10.1021/acsnano.8b09815
    49. Suman Mallick, Prashant Kumar, Apurba Lal Koner. Freeze-Resistant Cadmium-Free Quantum Dots for Live-Cell Imaging. ACS Applied Nano Materials 2019, 2 (2) , 661-666. https://doi.org/10.1021/acsanm.8b02231
    50. Kira E. Hughes, Sarah R. Ostheller, Heidi D. Nelson, Daniel R. Gamelin. Copper’s Role in the Photoluminescence of Ag1–xCuxInS2 Nanocrystals, from Copper-Doped AgInS2 (x ∼ 0) to CuInS2 (x = 1). Nano Letters 2019, 19 (2) , 1318-1325. https://doi.org/10.1021/acs.nanolett.8b04905
    51. Piotr Bujak, Zbigniew Wróbel, Mateusz Penkala, Kamil Kotwica, Angelika Kmita, Marta Gajewska, Andrzej Ostrowski, Patrycja Kowalik, Adam Pron. Highly Luminescent Ag–In–Zn–S Quaternary Nanocrystals: Growth Mechanism and Surface Chemistry Elucidation. Inorganic Chemistry 2019, 58 (2) , 1358-1370. https://doi.org/10.1021/acs.inorgchem.8b02916
    52. V. Renuga, C. Neela Mohan, M. S. Mohamed Jaabir, P. Arul Prakash, M. Navaneethan. Synthesis and Surface Passivation of CuInS2/MnS/ZnS Core–Multishell Nanocrystals, Their Optical, Structural, and Morphological Characterization, and Their Bioimaging Applications. Industrial & Engineering Chemistry Research 2018, 57 (46) , 15703-15721. https://doi.org/10.1021/acs.iecr.8b03482
    53. Gabriel Nagamine, Henrique B. Nunciaroni, Hunter McDaniel, Alexander L. Efros, Carlos H. de Brito Cruz, Lazaro A. Padilha. Evidence of Band-Edge Hole Levels Inversion in Spherical CuInS2 Quantum Dots. Nano Letters 2018, 18 (10) , 6353-6359. https://doi.org/10.1021/acs.nanolett.8b02707
    54. Heidi D. Nelson, Daniel R. Gamelin. Valence-Band Electronic Structures of Cu+-Doped ZnS, Alloyed Cu–In–Zn–S, and Ternary CuInS2 Nanocrystals: A Unified Description of Photoluminescence across Compositions. The Journal of Physical Chemistry C 2018, 122 (31) , 18124-18133. https://doi.org/10.1021/acs.jpcc.8b05286
    55. Biswajit Bhattacharyya, Triloki Pandit, Guru Pratheep Rajasekar, Anshu Pandey. Optical Transparency Enabled by Anomalous Stokes Shift in Visible Light-Emitting CuAlS2-Based Quantum Dots. The Journal of Physical Chemistry Letters 2018, 9 (15) , 4451-4456. https://doi.org/10.1021/acs.jpclett.8b01787
    56. Bomi Kim, Kangwook Kim, Yongju Kwon, Woojin Lee, Weon Ho Shin, Sungjee Kim, Jiwon Bang. CuInS2/CdS-Heterostructured Nanotetrapods by Seeded Growth and Their Photovoltaic Properties. ACS Applied Nano Materials 2018, 1 (6) , 2449-2454. https://doi.org/10.1021/acsanm.8b00250
    57. Laura Trapiella-Alfonso, Thomas Pons, Nicolas Lequeux, Ludovic Leleu, Juliette Grimaldi, Mariana Tasso, Edward Oujagir, Johanne Seguin, Fanny d’Orlyé, Christian Girard, Bich-Thuy Doan, Anne Varenne. Clickable-Zwitterionic Copolymer Capped-Quantum Dots for in Vivo Fluorescence Tumor Imaging. ACS Applied Materials & Interfaces 2018, 10 (20) , 17107-17116. https://doi.org/10.1021/acsami.8b04708
    58. Josephine F. L. Lox, Zhiya Dang, Volodymyr M. Dzhagan, Daniel Spittel, Beatriz Martín-García, Iwan Moreels, Dietrich R. T. Zahn, Vladimir Lesnyak. Near-Infrared Cu–In–Se-Based Colloidal Nanocrystals via Cation Exchange. Chemistry of Materials 2018, 30 (8) , 2607-2617. https://doi.org/10.1021/acs.chemmater.7b05187
    59. Pengqi Lu, Ruifeng Li, Ni Yao, Xusheng Dai, Zhenyu Ye, Kai Zheng, Weiguang Kong, Wei Fang, Shuang Li, Qinghua Xu, Huizhen Wu. Enhancement of Two-Photon Fluorescence and Low Threshold Amplification of Spontaneous Emission of Zn-processed CuInS2 Quantum Dots. ACS Photonics 2018, 5 (4) , 1310-1317. https://doi.org/10.1021/acsphotonics.7b01255
    60. Anne C. Berends, Ward van der Stam, Jan P. Hofmann, Eva Bladt, Johannes D. Meeldijk, Sara Bals, Celso de Mello Donega. Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS2 Nanocrystals. Chemistry of Materials 2018, 30 (7) , 2400-2413. https://doi.org/10.1021/acs.chemmater.8b00477
    61. Olesya Yarema, Maksym Yarema, Vanessa Wood. Tuning the Composition of Multicomponent Semiconductor Nanocrystals: The Case of I–III–VI Materials. Chemistry of Materials 2018, 30 (5) , 1446-1461. https://doi.org/10.1021/acs.chemmater.7b04710
    62. Xiaoyan Long, Fang Zhang, Yupeng He, Shifeng Hou, Bin Zhang, Guizheng Zou. Promising Anodic Electrochemiluminescence of Nontoxic Core/Shell CuInS2/ZnS Nanocrystals in Aqueous Medium and Its Biosensing Potential. Analytical Chemistry 2018, 90 (5) , 3563-3569. https://doi.org/10.1021/acs.analchem.8b00006
    63. Bingkun Chen, Narayan Pradhan, and Haizheng Zhong . From Large-Scale Synthesis to Lighting Device Applications of Ternary I–III–VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters. The Journal of Physical Chemistry Letters 2018, 9 (2) , 435-445. https://doi.org/10.1021/acs.jpclett.7b03037
    64. Marina Gromova, Aurélie Lefrançois, Louis Vaure, Fabio Agnese, Dmitry Aldakov, Axel Maurice, David Djurado, Colette Lebrun, Arnaud de Geyer, Tobias U. Schülli, Stéphanie Pouget, and Peter Reiss . Growth Mechanism and Surface State of CuInS2 Nanocrystals Synthesized with Dodecanethiol. Journal of the American Chemical Society 2017, 139 (44) , 15748-15759. https://doi.org/10.1021/jacs.7b07401
    65. Annina Moser, Maksym Yarema, Weyde M. M. Lin, Olesya Yarema, Nuri Yazdani, and Vanessa Wood . In Situ Monitoring of Cation-Exchange Reaction Shell Growth on Nanocrystals. The Journal of Physical Chemistry C 2017, 121 (43) , 24345-24351. https://doi.org/10.1021/acs.jpcc.7b08571
    66. Feng Liu, Yaohong Zhang, Chao Ding, Syuusuke Kobayashi, Takuya Izuishi, Naoki Nakazawa, Taro Toyoda, Tsuyoshi Ohta, Shuzi Hayase, Takashi Minemoto, Kenji Yoshino, Songyuan Dai, and Qing Shen . Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano 2017, 11 (10) , 10373-10383. https://doi.org/10.1021/acsnano.7b05442
    67. Youngsun Kim, Ho Seong Jang, Hyunki Kim, Sehoon Kim, and Duk Young Jeon . Controlled Synthesis of CuInS2/ZnS Nanocubes and Their Sensitive Photoluminescence Response toward Hydrogen Peroxide. ACS Applied Materials & Interfaces 2017, 9 (37) , 32097-32105. https://doi.org/10.1021/acsami.7b09388
    68. Samrat Das Adhikari, Anirban Dutta, Gyanaranjan Prusty, Puspanjali Sahu, and Narayan Pradhan . Symmetry Break and Seeded 2D Anisotropic Growth in Ternary CuGaS2 Nanocrystals. Chemistry of Materials 2017, 29 (12) , 5384-5393. https://doi.org/10.1021/acs.chemmater.7b01775
    69. Chenghui Xia, Johannes D. Meeldijk, Hans C. Gerritsen, and Celso de Mello Donega . Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS2/ZnS Core/Shell Colloidal Quantum Dots. Chemistry of Materials 2017, 29 (11) , 4940-4951. https://doi.org/10.1021/acs.chemmater.7b01258
    70. Martina Sandroni, K. David Wegner, Dmitry Aldakov, and Peter Reiss . Prospects of Chalcopyrite-Type Nanocrystals for Energy Applications. ACS Energy Letters 2017, 2 (5) , 1076-1088. https://doi.org/10.1021/acsenergylett.7b00003
    71. Claudia Coughlan, Maria Ibáñez, Oleksandr Dobrozhan, Ajay Singh, Andreu Cabot, and Kevin M. Ryan . Compound Copper Chalcogenide Nanocrystals. Chemical Reviews 2017, 117 (9) , 5865-6109. https://doi.org/10.1021/acs.chemrev.6b00376
    72. Huidong Zang, Hongbo Li, Nikolay S. Makarov, Kirill A. Velizhanin, Kaifeng Wu, Young-Shin Park, and Victor I. Klimov . Thick-Shell CuInS2/ZnS Quantum Dots with Suppressed “Blinking” and Narrow Single-Particle Emission Line Widths. Nano Letters 2017, 17 (3) , 1787-1795. https://doi.org/10.1021/acs.nanolett.6b05118
    73. Sandra Dias, Kishan Kumawat, Shinjini Biswas, and Salaru Babu Krupanidhi . Solvothermal Synthesis of Cu2SnS3 Quantum Dots and Their Application in Near-Infrared Photodetectors. Inorganic Chemistry 2017, 56 (4) , 2198-2203. https://doi.org/10.1021/acs.inorgchem.6b02832
    74. Niko Hildebrandt, Christopher M. Spillmann, W. Russ Algar, Thomas Pons, Michael H. Stewart, Eunkeu Oh, Kimihiro Susumu, Sebastian A. Díaz, James B. Delehanty, and Igor L. Medintz . Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications. Chemical Reviews 2017, 117 (2) , 536-711. https://doi.org/10.1021/acs.chemrev.6b00030
    75. Brad A. Kairdolf, Ximei Qian, and Shuming Nie . Bioconjugated Nanoparticles for Biosensing, in Vivo Imaging, and Medical Diagnostics. Analytical Chemistry 2017, 89 (2) , 1015-1031. https://doi.org/10.1021/acs.analchem.6b04873
    76. Gaixia Xu, Shuwen Zeng, Butian Zhang, Mark T. Swihart, Ken-Tye Yong, and Paras N. Prasad . New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine. Chemical Reviews 2016, 116 (19) , 12234-12327. https://doi.org/10.1021/acs.chemrev.6b00290
    77. Ingmar Swart, Peter Liljeroth, and Daniel Vanmaekelbergh . Scanning probe microscopy and spectroscopy of colloidal semiconductor nanocrystals and assembled structures. Chemical Reviews 2016, 116 (18) , 11181-11219. https://doi.org/10.1021/acs.chemrev.5b00678
    78. Lihong Jing, Stephen V. Kershaw, Yilin Li, Xiaodan Huang, Yingying Li, Andrey L. Rogach, and Mingyuan Gao . Aqueous Based Semiconductor Nanocrystals. Chemical Reviews 2016, 116 (18) , 10623-10730. https://doi.org/10.1021/acs.chemrev.6b00041
    79. Kathryn E. Knowles, Kimberly H. Hartstein, Troy B. Kilburn, Arianna Marchioro, Heidi D. Nelson, Patrick J. Whitham, and Daniel R. Gamelin . Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. Chemical Reviews 2016, 116 (18) , 10820-10851. https://doi.org/10.1021/acs.chemrev.6b00048
    80. Peter Reiss, Marie Carrière, Christophe Lincheneau, Louis Vaure, and Sudarsan Tamang . Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chemical Reviews 2016, 116 (18) , 10731-10819. https://doi.org/10.1021/acs.chemrev.6b00116
    81. Jeffrey M. Pietryga, Young-Shin Park, Jaehoon Lim, Andrew F. Fidler, Wan Ki Bae, Sergio Brovelli, and Victor I. Klimov . Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews 2016, 116 (18) , 10513-10622. https://doi.org/10.1021/acs.chemrev.6b00169
    82. Metikoti Jagadeeswararao, Abhishek Swarnkar, Ganesh B. Markad, and Angshuman Nag . Defect-Mediated Electron–Hole Separation in Colloidal Ag2S–AgInS2 Hetero Dimer Nanocrystals Tailoring Luminescence and Solar Cell Properties. The Journal of Physical Chemistry C 2016, 120 (34) , 19461-19469. https://doi.org/10.1021/acs.jpcc.6b06394
    83. Anne C. Berends, Freddy T. Rabouw, Frank C. M. Spoor, Eva Bladt, Ferdinand C. Grozema, Arjan J. Houtepen, Laurens D. A. Siebbeles, and Celso de Mello Donegá . Radiative and Nonradiative Recombination in CuInS2 Nanocrystals and CuInS2-Based Core/Shell Nanocrystals. The Journal of Physical Chemistry Letters 2016, 7 (17) , 3503-3509. https://doi.org/10.1021/acs.jpclett.6b01668
    84. Lili Yan, Zhichun Li, Mingxing Sun, Guoqing Shen, and Liang Li . Stable and Flexible CuInS2/ZnS:Al-TiO2 Film for Solar-Light-Driven Photodegradation of Soil Fumigant. ACS Applied Materials & Interfaces 2016, 8 (31) , 20048-20056. https://doi.org/10.1021/acsami.6b05587
    85. Slawomir Drozdek, Janusz Szeremeta, Lukasz Lamch, Marcin Nyk, Marek Samoc, and Kazimiera A. Wilk . Two-Photon Induced Fluorescence Energy Transfer in Polymeric Nanocapsules Containing CdSexS1–x/ZnS Core/Shell Quantum Dots and Zinc(II) Phthalocyanine. The Journal of Physical Chemistry C 2016, 120 (28) , 15460-15470. https://doi.org/10.1021/acs.jpcc.6b04301
    86. Riya Bose, Ashok Bera, Manas R. Parida, Aniruddha Adhikari, Basamat S. Shaheen, Erkki Alarousu, Jingya Sun, Tom Wu, Osman M. Bakr, and Omar F. Mohammed . Real-Space Mapping of Surface Trap States in CIGSe Nanocrystals Using 4D Electron Microscopy. Nano Letters 2016, 16 (7) , 4417-4423. https://doi.org/10.1021/acs.nanolett.6b01553
    87. Victor I. Klimov, Thomas A. Baker, Jaehoon Lim, Kirill A. Velizhanin, Hunter McDaniel. Quality Factor of Luminescent Solar Concentrators and Practical Concentration Limits Attainable with Semiconductor Quantum Dots. ACS Photonics 2016, 3 (6) , 1138-1148. https://doi.org/10.1021/acsphotonics.6b00307
    88. Gary Zaiats, Sachin Kinge, and Prashant V. Kamat . Origin of Dual Photoluminescence States in ZnS–CuInS2 Alloy Nanostructures. The Journal of Physical Chemistry C 2016, 120 (19) , 10641-10646. https://doi.org/10.1021/acs.jpcc.6b01905
    89. Danilo H. Jara, Kevin G. Stamplecoskie, and Prashant V. Kamat . Two Distinct Transitions in CuxInS2 Quantum Dots. Bandgap versus Sub-Bandgap Excitations in Copper-Deficient Structures. The Journal of Physical Chemistry Letters 2016, 7 (8) , 1452-1459. https://doi.org/10.1021/acs.jpclett.6b00571
    90. Elena S. Speranskaya, Chantal Sevrin, Sarah De Saeger, Zeger Hens, Irina Yu. Goryacheva, and Christian Grandfils . Synthesis of Hydrophilic CuInS2/ZnS Quantum Dots with Different Polymeric Shells and Study of Their Cytotoxicity and Hemocompatibility. ACS Applied Materials & Interfaces 2016, 8 (12) , 7613-7622. https://doi.org/10.1021/acsami.5b11258
    91. Alice D. P. Leach and Janet E. Macdonald . Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. The Journal of Physical Chemistry Letters 2016, 7 (3) , 572-583. https://doi.org/10.1021/acs.jpclett.5b02211
    92. Tatsuya Kameyama, Takuya Takahashi, Takahiro Machida, Yutaro Kamiya, Takahisa Yamamoto, Susumu Kuwabata, and Tsukasa Torimoto . Controlling the Electronic Energy Structure of ZnS–AgInS2 Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution. The Journal of Physical Chemistry C 2015, 119 (44) , 24740-24749. https://doi.org/10.1021/acs.jpcc.5b07994
    93. Xuelian Yu, Jingjing Liu, Aziz Genç, Maria Ibáñez, Zhishan Luo, Alexey Shavel, Jordi Arbiol, Guangjin Zhang, Yihe Zhang, and Andreu Cabot . Cu2ZnSnS4–Ag2S Nanoscale p–n Heterostructures as Sensitizers for Photoelectrochemical Water Splitting. Langmuir 2015, 31 (38) , 10555-10561. https://doi.org/10.1021/acs.langmuir.5b02490
    94. Bingkun Chen, Shuai Chang, Deyao Li, Liangliang Chen, Yongtian Wang, Tao Chen, Bingsuo Zou, Haizheng Zhong, and Andrey L. Rogach . Template Synthesis of CuInS2 Nanocrystals from In2S3 Nanoplates and Their Application as Counter Electrodes in Dye-Sensitized Solar Cells. Chemistry of Materials 2015, 27 (17) , 5949-5956. https://doi.org/10.1021/acs.chemmater.5b01971
    95. Zhongyun Liu, Na Chen, Chunhong Dong, Wei Li, Weisheng Guo, Hanjie Wang, Sheng Wang, Jian Tan, Yu Tu, and Jin Chang . Facile Construction of Near Infrared Fluorescence Nanoprobe with Amphiphilic Protein-Polymer Bioconjugate for Targeted Cell Imaging. ACS Applied Materials & Interfaces 2015, 7 (34) , 18997-19005. https://doi.org/10.1021/acsami.5b05406
    96. Weitao Yang, Weisheng Guo, Xiaoqun Gong, Bingbo Zhang, Sheng Wang, Na Chen, Wentao Yang, Yu Tu, Xiangming Fang, and Jin Chang . Facile Synthesis of Gd–Cu–In–S/ZnS Bimodal Quantum Dots with Optimized Properties for Tumor Targeted Fluorescence/MR In Vivo Imaging. ACS Applied Materials & Interfaces 2015, 7 (33) , 18759-18768. https://doi.org/10.1021/acsami.5b05372
    97. Chuanzhen Zhao, Zelong Bai, Xiangyou Liu, Yijia Zhang, Bingsuo Zou, and Haizheng Zhong . Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications. ACS Applied Materials & Interfaces 2015, 7 (32) , 17623-17629. https://doi.org/10.1021/acsami.5b05503
    98. Joel van Embden, Anthony S. R. Chesman, and Jacek J. Jasieniak . The Heat-Up Synthesis of Colloidal Nanocrystals. Chemistry of Materials 2015, 27 (7) , 2246-2285. https://doi.org/10.1021/cm5028964
    99. Xiaojiao Kang, Lijian Huang, Yanchun Yang, and Daocheng Pan . Scaling up the Aqueous Synthesis of Visible Light Emitting Multinary AgInS2/ZnS Core/Shell Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (14) , 7933-7940. https://doi.org/10.1021/acs.jpcc.5b00413
    100. Maksym V. Kovalenko, Liberato Manna, Andreu Cabot, Zeger Hens, Dmitri V. Talapin, Cherie R. Kagan, Victor I. Klimov, Andrey L. Rogach, Peter Reiss, Delia J. Milliron, Philippe Guyot-Sionnnest, Gerasimos Konstantatos, Wolfgang J. Parak, Taeghwan Hyeon, Brian A. Korgel, Christopher B. Murray, and Wolfgang Heiss . Prospects of Nanoscience with Nanocrystals. ACS Nano 2015, 9 (2) , 1012-1057. https://doi.org/10.1021/nn506223h
    Load more citations

    Chemistry of Materials

    Cite this: Chem. Mater. 2009, 21, 12, 2422–2429
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm900103b
    Published May 11, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    13k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.