ACS Publications. Most Trusted. Most Cited. Most Read
Understanding the p-Type Conduction Properties of the Transparent Conducting Oxide CuBO2: A Density Functional Theory Analysis
My Activity
    Article

    Understanding the p-Type Conduction Properties of the Transparent Conducting Oxide CuBO2: A Density Functional Theory Analysis
    Click to copy article linkArticle link copied!

    View Author Information
    School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
    Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
    *Corresponding authors. E-mail: [email protected]; [email protected]
    Other Access Options

    Chemistry of Materials

    Cite this: Chem. Mater. 2009, 21, 19, 4568–4576
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm9015113
    Published September 2, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Discovering new candidate p-type transparent conducting oxides has become a major goal for material scientists. Recently delafossite CuBO2 has been proposed as a promising candidate, showing good room temperature electrical conductivity and excellent transparency [Appl. Phys. Lett.2007, 91, 092123]. In this article we report a density functional theory investigation of CuBO2, examining the geometry and electronic structure using GGA corrected for on-site Coulomb interactions (GGA + U) and a hybrid density functional (HSE06). From analysis of the calculated band structure, density of states, and optical absorption, we predict an indirect fundamental band gap of ∼3.1 eV and a direct optical band gap of ∼3.6 eV. The hole effective mass at the valence band maximum indicates the potential for good p-type conductivity, consistent with the reported experimental results. These results are discussed in relation to other delafossite oxides.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 101 publications.

    1. Joe Willis, Romain Claes, Qi Zhou, Matteo Giantomassi, Gian-Marco Rignanese, Geoffroy Hautier, David O. Scanlon. Limits to Hole Mobility and Doping in Copper Iodide. Chemistry of Materials 2023, 35 (21) , 8995-9006. https://doi.org/10.1021/acs.chemmater.3c01628
    2. Ning Wang, Chen Shen, Zhehao Sun, Bingke Li, Haiyan Xiao, Xiaotao Zu, Hongbin Zhang, Zongyou Yin, Liang Qiao. Thermal Transport and Mechanical Properties of Layered Oxychalcogenides LaCuOX (X = S, Se, and Te). ACS Applied Energy Materials 2022, 5 (6) , 6943-6951. https://doi.org/10.1021/acsaem.2c00590
    3. João Resende, Odette Chaix-Pluchery, Mauro Rovezzi, Yoann Malier, Hubert Renevier, Ngoc Duy Nguyen, Jean-Luc Deschanvres, Carmen Jiménez. Resilience of Cuprous Oxide under Oxidizing Thermal Treatments via Magnesium Doping. The Journal of Physical Chemistry C 2019, 123 (14) , 8663-8670. https://doi.org/10.1021/acs.jpcc.9b00408
    4. Deivasigamani Umadevi, Graeme W. Watson. Quasiparticle GW Calculations on Lead-Free Hybrid Germanium Iodide Perovskite CH3NH3GeI3 for Photovoltaic Applications. ACS Omega 2019, 4 (3) , 5661-5669. https://doi.org/10.1021/acsomega.8b03291
    5. Simon J. Cassidy, Michael J. Pitcher, Jared J. K. Lim, Joke Hadermann, Jeremy P. Allen, Graeme W. Watson, Sylvia Britto, Elena J. Chong, David G. Free, Clare P. Grey, Simon J. Clarke. Layered CeSO and LiCeSO Oxide Chalcogenides Obtained via Topotactic Oxidative and Reductive Transformations. Inorganic Chemistry 2019, 58 (6) , 3838-3850. https://doi.org/10.1021/acs.inorgchem.8b03485
    6. Benjamin A. D. Williamson, John Buckeridge, Jennilee Brown, Simon Ansbro, Robert G. Palgrave, and David O. Scanlon . Engineering Valence Band Dispersion for High Mobility p-Type Semiconductors. Chemistry of Materials 2017, 29 (6) , 2402-2413. https://doi.org/10.1021/acs.chemmater.6b03306
    7. Sanjayan Sathasivam, Ranga R. Arnepalli, Davinder S. Bhachu, Yao Lu, John Buckeridge, David O. Scanlon, Bhaskar Kumar, Kaushal K. Singh, Robert J. Visser, Christopher S. Blackman, and Claire J. Carmalt . Single Step Solution Processed GaAs Thin Films from GaMe3 and tBuAsH2 under Ambient Pressure. The Journal of Physical Chemistry C 2016, 120 (13) , 7013-7019. https://doi.org/10.1021/acs.jpcc.6b00850
    8. N. F. Quackenbush, J. P. Allen, D. O. Scanlon, S. Sallis, J. A. Hewlett, A. S. Nandur, B. Chen, K. E. Smith, C. Weiland, D. A. Fischer, J. C. Woicik, B. E. White, G. W. Watson, and L. F. J. Piper . Origin of the Bipolar Doping Behavior of SnO from X-ray Spectroscopy and Density Functional Theory. Chemistry of Materials 2013, 25 (15) , 3114-3123. https://doi.org/10.1021/cm401343a
    9. F. E. Oropeza, K. H. L. Zhang, R. G. Palgrave, A. Regoutz, and R. G. Egdell , J. P. Allen, N. M. Galea, and G. W. Watson . Electronic Structure of Epitaxial Sn-Doped Anatase Grown on SrTiO3(001) by Dip Coating. The Journal of Physical Chemistry C 2013, 117 (29) , 15221-15228. https://doi.org/10.1021/jp405054t
    10. Douglas J. Temple, Aoife B. Kehoe, Jeremy P. Allen, Graeme W. Watson, and David O. Scanlon . Geometry, Electronic Structure, and Bonding in CuMCh2(M = Sb, Bi; Ch = S, Se): Alternative Solar Cell Absorber Materials?. The Journal of Physical Chemistry C 2012, 116 (13) , 7334-7340. https://doi.org/10.1021/jp300862v
    11. Haowei Peng, Jung-Hwan Song, E. Mitchell Hopper, Qimin Zhu, Thomas O. Mason, and Arthur J. Freeman . Possible n–type carrier sources in In2O3(ZnO)k. Chemistry of Materials 2012, 24 (1) , 106-114. https://doi.org/10.1021/cm202020g
    12. David O. Scanlon and Graeme W. Watson. Conductivity Limits in CuAlO2 from Screened-Hybrid Density Functional Theory. The Journal of Physical Chemistry Letters 2010, 1 (21) , 3195-3199. https://doi.org/10.1021/jz1011725
    13. David O. Scanlon and Graeme W. Watson. (Cu2S2)(Sr3Sc2O5)−A Layered, Direct Band Gap, p-Type Transparent Conducting Oxychalcogenide: A Theoretical Analysis.. Chemistry of Materials 2009, 21 (22) , 5435-5442. https://doi.org/10.1021/cm902260b
    14. Soheila Azordeh, Mehdi Asadi, Abdolali Alemi. Preparation and characterization of CuBO2-based photocatalysts and doped variants. Materials Technology Reports 2024, 2 (2) , 1699. https://doi.org/10.59400/mtr1699
    15. Zahida Malik, Sarah Broadley, Sebastian J. C. Herkelrath, Daniel W. Newbrook, Liam Kemp, George Rutt, Zoltán A. Gál, Jack N. Blandy, Joke Hadermann, Daniel W. Davies, Robert D. Smyth, David O. Scanlon, Ruomeng Huang, Simon J. Clarke, Geoffrey Hyett. Observation and enhancement through alkali metal doping of p-type conductivity in the layered oxyselenides Sr 2 ZnO 2 Cu 2 Se 2 and Ba 2 Zn 1− x O 2− x Cu 2 Se 2. Journal of Materials Chemistry C 2024, 12 (43) , 17574-17586. https://doi.org/10.1039/D4TC02458C
    16. Shamsuddeen Sani Alhassan, Aliyu Lawal Albaba. STRUCTURAL, ELECTRONIC AND MAGNETIC PROPERTIES OF VANADIUM DOPED DELAFOSSITE CUGAO2: AN AB INITIO STUDY. FUDMA JOURNAL OF SCIENCES 2024, 8 (1) , 250-254. https://doi.org/10.33003/fjs-2024-0801-2196
    17. Hyeondeok Shin, Panchapakesan Ganesh, Paul R. C. Kent, Anouar Benali, Anand Bhattacharya, Ho Nyung Lee, Olle Heinonen, Jaron T. Krogel. DFT+ U and quantum Monte Carlo study of electronic and optical properties of AgNiO 2 and AgNi 1− x Co x O 2 delafossite. Physical Chemistry Chemical Physics 2024, 26 (8) , 6967-6976. https://doi.org/10.1039/D3CP03477A
    18. Nirmalya Sankar Das, Kalyan Kumar Chattopadhyay. P-type transparent conducting oxide thin films for optoelectronic and transparent electronics applications. 2024, 340-360. https://doi.org/10.1016/B978-0-323-96020-5.00201-6
    19. Carla Rizzo, Patrizia Cancemi, Miriam Buttacavoli, Gianluca Di Cara, Cesare D’Amico, Floriana Billeci, Salvatore Marullo, Francesca D’Anna. Insights about the ability of folate based supramolecular gels to act as targeted therapeutic agents. Journal of Materials Chemistry B 2023, 11 (32) , 7721-7738. https://doi.org/10.1039/D3TB01389H
    20. Yuankai Li, Chaoquan Hu, Yao Wu, Zhenan Qiao, Yifan Cheng, Zhiqing Gu, Gang Gao, Weitao Zheng. Designing hard wear-resistant conductors by introducing high-plasma-energy heterogeneous metals into transition metal nitrides. Journal of Materials Science & Technology 2023, 157 , 213-219. https://doi.org/10.1016/j.jmst.2023.02.025
    21. Can Cui, Quanming Ding, Siyu Yu, Chenglong Yu, Dayong Jiang, Chaoquan Hu, Zhiqing Gu, Jiaqi Zhu. Strategies to break the trade-off between infrared transparency and conductivity. Progress in Materials Science 2023, 136 , 101112. https://doi.org/10.1016/j.pmatsci.2023.101112
    22. Chaoyi ZHANG, Huili TANG, Xianke LI, Qingguo WANG, Ping LUO, Feng WU, Chenbo ZHANG, Yanyan XUE, Jun XU, Jianfeng HAN, Zhanwen LU. Research Progress of ScAlMgO 4 Crystal: a Novel GaN and ZnO Substrate. Journal of Inorganic Materials 2023, 38 (3) , 228. https://doi.org/10.15541/jim20220620
    23. Sagarika Bhagade, Ajit Debnath, Dipankar Das, Biswajit Saha. Thermoelectric composite material of CuBO2 incorporated PANI powders with enhanced Seebeck coefficient. Journal of Polymer Research 2022, 29 (12) https://doi.org/10.1007/s10965-022-03306-w
    24. Guangcan Luo, Xinji Yang, Yuchen Long, Wei Li, Yinye Yang, Shengyun Luo. Enhanced performance of self-powered ultraviolet photodetectors coupled with the photovoltaic-pyroelectric effect based on ZnO/CuBO2 core-shell nanorod arrays. Journal of Alloys and Compounds 2022, 911 , 165066. https://doi.org/10.1016/j.jallcom.2022.165066
    25. Mohamed Salah, Joonseok Yoon, Mohamed M. El-Desoky, Zahid Hussain, Honglyoul Ju, Sung-Kwan Mo. Electronic structure of p-type transparent conducting oxide CuAlO2. Current Applied Physics 2022, 39 , 107-112. https://doi.org/10.1016/j.cap.2022.04.005
    26. Cheng-Liang Hsu, En-Cheng Chang, Han-Ting Hsueh, Yi-Hung Liu. Solution-synthesized p-type CuMnO2 and n-type ZnO to form the core-shell nanowires for photo and gas sensing. Journal of Alloys and Compounds 2022, 899 , 163380. https://doi.org/10.1016/j.jallcom.2021.163380
    27. Marco Moreira, Joao Afonso, Jonathan Crepelliere, Damien Lenoble, Petru Lunca-Popa. A review on the p-type transparent Cu–Cr–O delafossite materials. Journal of Materials Science 2022, 57 (5) , 3114-3142. https://doi.org/10.1007/s10853-021-06815-z
    28. Morteza Ahmadi, Masoud Abrari, Majid Ghanaatshoar. An all-sputtered photovoltaic ultraviolet photodetector based on co-doped CuCrO2 and Al-doped ZnO heterojunction. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-98273-5
    29. Mi Zhong, Wei Zeng, Fu-Sheng Liu, Bin Tang, Qi-Jun Liu. A member of p-type TCO family: Sn2TaxNb2-xO7 with a tunable band gap and controllable hole mobility. Materials Science and Engineering: B 2021, 271 , 115255. https://doi.org/10.1016/j.mseb.2021.115255
    30. Gang Gao, Lijia Tong, Lei Yang, Chunqiang Sun, Liangge Xu, Fei Xia, Fangjuan Geng, Jingjing Xue, Hao Gong, Jiaqi Zhu. A P-type mid-infrared transparent semiconductor LaSe2 film with small hole effective mass and high carrier concentration. Applied Physics Letters 2021, 118 (26) https://doi.org/10.1063/5.0055888
    31. Viet Hoang Vu, Bao Quang Tu, Quyen Xuan Phung, Vinh The Tran, Nghia Nhan Hoang, Dat Dinh Pham, Tuan Anh Mai, Hien Duy Tong, Minh Van Nguyen, Hung Quoc Nguyen, Hue Minh Nguyen, Huy Van Mai, Dung Chi Duong, Quang Minh Doan, Thuat Nguyen-Tran. Tailoring optical and resistance properties of the functional CuAlxOy semiconductor for applications as thermal infrared imagers. Journal of Science: Advanced Materials and Devices 2021, 6 (2) , 202-208. https://doi.org/10.1016/j.jsamd.2021.01.004
    32. Benjamin A.D. Williamson, Gregory J. Limburn, Graeme W. Watson, Geoffrey Hyett, David O. Scanlon. Computationally Driven Discovery of Layered Quinary Oxychalcogenides: Potential p-Type Transparent Conductors?. Matter 2020, 3 (3) , 759-781. https://doi.org/10.1016/j.matt.2020.05.020
    33. Inthuga Sinnarasa, Yohann Thimont, Antoine Barnabé, Mickael Beaudhuin, Adrien Moll, Juliano Schorne-Pinto, Philippe Tailhades, Lionel Presmanes. Microstructural and transport properties of Mg doped CuFeO2 thin films: A promising material for high accuracy miniaturized temperature sensors based on the Seebeck effect. Journal of Alloys and Compounds 2020, 827 , 154199. https://doi.org/10.1016/j.jallcom.2020.154199
    34. Mansoureh Keikhaei, Masaya Ichimura. n-type and p-type semiconducting Cu-doped Mg (OH) 2 thin films. Semiconductor Science and Technology 2020, 35 (3) , 035020. https://doi.org/10.1088/1361-6641/ab708f
    35. H. Bouda, T. Bahlagui, R. Masrour, L. Bahmad, A. El kenz, A. Benyoussef. Unexpected magnetic behavior of Ga doped CuFe1-xGaxO2 delafossite, x = 0.04: First principle calculation and Monte Carlo simulation. The European Physical Journal Plus 2019, 134 (10) https://doi.org/10.1140/epjp/i2019-12955-8
    36. Nengduo Zhang, Jian Sun, Hao Gong. Transparent p-Type Semiconductors: Copper-Based Oxides and Oxychalcogenides. Coatings 2019, 9 (2) , 137. https://doi.org/10.3390/coatings9020137
    37. Thomas Cossuet, Joao Resende, Laetitia Rapenne, Odette Chaix‐Pluchery, Carmen Jiménez, Gilles Renou, Andrew J. Pearson, Robert L. Z. Hoye, Danièle Blanc‐Pelissier, Ngoc Duy Nguyen, Estelle Appert, David Muñoz‐Rojas, Vincent Consonni, Jean‐Luc Deschanvres. ZnO/CuCrO 2 Core–Shell Nanowire Heterostructures for Self‐Powered UV Photodetectors with Fast Response. Advanced Functional Materials 2018, 28 (43) https://doi.org/10.1002/adfm.201803142
    38. Se-Yun Kim, Joon-Hyung Lee, Jeong-Joo Kim, Young-Woo Heo. Effect of Ni doping on the structural, electrical, and optical properties of transparent CuCrO2 films grown using pulsed laser deposition. Ceramics International 2018, 44 (15) , 17743-17748. https://doi.org/10.1016/j.ceramint.2018.06.241
    39. Hui Sun, Sheng-Chi Chen, Pei-Jie Chen, Sin-Liang Ou, Cheng-Yi Liu, Yan-Qing Xin. p-type conductive NiOx: Cu thin films with high carrier mobility deposited by ion beam assisted deposition. Ceramics International 2018, 44 (3) , 3291-3296. https://doi.org/10.1016/j.ceramint.2017.11.103
    40. Eduardo Schiavo, Camille Latouche, Vincenzo Barone, Orlando Crescenzi, Ana B. Muñoz-García, Michele Pavone. An ab initio study of Cu-based delafossites as an alternative to nickel oxide in photocathodes: effects of Mg-doping and surface electronic features. Physical Chemistry Chemical Physics 2018, 20 (20) , 14082-14089. https://doi.org/10.1039/C8CP00848E
    41. Tripurari Sharan Tripathi, Maarit Karppinen. Atomic Layer Deposition of p‐Type Semiconducting Thin Films: a Review. Advanced Materials Interfaces 2017, 4 (24) https://doi.org/10.1002/admi.201700300
    42. Tripurari S. Tripathi, Maarit Karppinen. Enhanced p‐Type Transparent Semiconducting Characteristics for ALD‐Grown Mg‐Substituted CuCrO 2 Thin Films. Advanced Electronic Materials 2017, 3 (6) https://doi.org/10.1002/aelm.201600341
    43. Fatwa F Abdi, Sean P Berglund. Recent developments in complex metal oxide photoelectrodes. Journal of Physics D: Applied Physics 2017, 50 (19) , 193002. https://doi.org/10.1088/1361-6463/aa6738
    44. Tran Le, Huu Phuc Dang, Quang Ho Luc, Van Hieu Le. A study of structural, electrical, and optical properties of p-type Zn-doped SnO 2 films versus deposition and annealing temperature. Journal of Physics D: Applied Physics 2017, 50 (14) , 145102. https://doi.org/10.1088/1361-6463/aa60f8
    45. Jingming Shi, Tiago F. T. Cerqueira, Wenwen Cui, Fernando Nogueira, Silvana Botti, Miguel A. L. Marques. High-throughput search of ternary chalcogenides for p-type transparent electrodes. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep43179
    46. Ajith Bandara, Kenji Murakami, Rajapakse M.G. Rajapakse, Piyankarage V.V. Jayaweera, Masaru Shimomura, Herath M.N. Bandara, D. Liyanage, Edirisinghege V.A. Premalal. Versatile synthesis of fluorine-doped tin (IV) oxide one-dimensional nanostructured thin films. Thin Solid Films 2017, 621 , 229-239. https://doi.org/10.1016/j.tsf.2016.10.066
    47. Kelvin H L Zhang, Kai Xi, Mark G Blamire, Russell G Egdell. P -type transparent conducting oxides. Journal of Physics: Condensed Matter 2016, 28 (38) , 383002. https://doi.org/10.1088/0953-8984/28/38/383002
    48. Marius Grundmann, Fabian Klüpfel, Robert Karsthof, Peter Schlupp, Friedrich-Leonhard Schein, Daniel Splith, Chang Yang, Sofie Bitter, Holger von Wenckstern. Oxide bipolar electronics: materials, devices and circuits. Journal of Physics D: Applied Physics 2016, 49 (21) , 213001. https://doi.org/10.1088/0022-3727/49/21/213001
    49. Mathieu S. Prévot, Yang Li, Néstor Guijarro, Kevin Sivula. Improving charge collection with delafossite photocathodes: a host–guest CuAlO 2 /CuFeO 2 approach. Journal of Materials Chemistry A 2016, 4 (8) , 3018-3026. https://doi.org/10.1039/C5TA06336A
    50. Malak Azmat Ali, Afzal Khan, Shah Haider Khan, T. Ouahrani, G. Murtaza, R. Khenata, S. Bin Omran. First principles study of Cu based Delafossite Transparent Conducting Oxides CuXO2 (X=Al, Ga, In, B, La, Sc, Y). Materials Science in Semiconductor Processing 2015, 38 , 57-66. https://doi.org/10.1016/j.mssp.2015.03.038
    51. Keith T. Butler. Morphological control of band offsets for transparent bipolar heterojunctions: The Bädeker diode. physica status solidi (a) 2015, 212 (7) , 1461-1465. https://doi.org/10.1002/pssa.201532004
    52. M. F. Iozzi, P. Vajeeston, R. Vidya, P. Ravindran, H. Fjellvåg. Structural and electronic properties of transparent conducting delafossite: a comparison between the AgBO 2 and CuBO 2 families (B = Al, Ga, In and Sc, Y). RSC Advances 2015, 5 (2) , 1366-1377. https://doi.org/10.1039/C3RA47531J
    53. Hieu H. Pham, Gerard T. Barkema, Lin-Wang Wang. DFT+U studies of Cu doping and p-type compensation in crystalline and amorphous ZnS. Physical Chemistry Chemical Physics 2015, 17 (39) , 26270-26276. https://doi.org/10.1039/C5CP04623H
    54. Feng Li, Yafei Li. Band gap modulation of Janus graphene nanosheets by interlayer hydrogen bonding and the external electric field: a computational study. Journal of Materials Chemistry C 2015, 3 (14) , 3416-3421. https://doi.org/10.1039/C5TC00013K
    55. A. Barnabé, Y. Thimont, M. Lalanne, L. Presmanes, P. Tailhades. p-Type conducting transparent characteristics of delafossite Mg-doped CuCrO 2 thin films prepared by RF-sputtering. Journal of Materials Chemistry C 2015, 3 (23) , 6012-6024. https://doi.org/10.1039/C5TC01070E
    56. T. S. Tripathi, Janne-Petteri Niemelä, Maarit Karppinen. Atomic layer deposition of transparent semiconducting oxide CuCrO 2 thin films. Journal of Materials Chemistry C 2015, 3 (32) , 8364-8371. https://doi.org/10.1039/C5TC01384D
    57. Aoife B. Kehoe, David O. Scanlon, Graeme W. Watson. The electronic structure of sulvanite structured semiconductors Cu 3 MCh 4 (M = V, Nb, Ta; Ch = S, Se, Te): prospects for optoelectronic applications. Journal of Materials Chemistry C 2015, 3 (47) , 12236-12244. https://doi.org/10.1039/C5TC02760H
    58. M. Soylu, Ahmed A. Al-Ghamdi, Saad Bin Omran, F. Yakuphanoglu. Rectifying structure with high voltage operation based on CuBO 2 as an UV photocatalyst. Journal of Alloys and Compounds 2014, 617 , 602-608. https://doi.org/10.1016/j.jallcom.2014.08.048
    59. Anli Yang, Osami Sakata, Ryosuke Yamauchi, Yoshio Katsuya, L.S.R. Kumara, Yoshitomo Shimada, Akifumi Matsuda, Mamoru Yoshimoto. Lattice spacings and domain sizes of room-temperature epitaxial Li x Ni 1−x O (0 ≤ x ≤ 0.48) thin films grown on ultra-smooth sapphire substrates. Applied Surface Science 2014, 320 , 787-790. https://doi.org/10.1016/j.apsusc.2014.09.154
    60. Hongliang Shi, Bayrammurad Saparov, David J. Singh, Athena S. Sefat, Mao-Hua Du. Ternary chalcogenides C s 2 Z n 3 S e 4 and C s 2 Z n 3 T e 4 : Potential p -type transparent conducting materials. Physical Review B 2014, 90 (18) https://doi.org/10.1103/PhysRevB.90.184104
    61. Qi-Jun Liu, Zheng-Tang Liu. Theoretical insights into structural–electronic relationships and relative stability of the Cu-, Al- and O-terminated CuAlO2(0001) surfaces. Vacuum 2014, 107 , 90-98. https://doi.org/10.1016/j.vacuum.2014.04.009
    62. Abdulmutta Thatribud, Teparksorn Pengpan. Electronic structure calculations of delafossite Cu-based transparent conducting oxides Cu M O 2 ( M = B , Al , Ga , In ) by quasiparticle self-consistent GW approximation and Tran-Blaha's modified Becke-Johnson exchange potential. Physical Review B 2014, 90 (11) https://doi.org/10.1103/PhysRevB.90.115150
    63. Qi-Jun Liu, Ning-Chao Zhang, Fu-Sheng Liu, Zheng-Tang Liu. Effects of chalcogen substitution on electronic properties and chemical bondings of delafossite CuAlO 2. physica status solidi (b) 2014, 251 (8) , 1630-1634. https://doi.org/10.1002/pssb.201451134
    64. Barry J. Haycock, M. Kylee Rice, James P. Lewis. High-throughput calculations of alloyed delafossite materials: Application to CuGa1−xFexO2. Computational Materials Science 2014, 86 , 155-164. https://doi.org/10.1016/j.commatsci.2014.01.024
    65. A. Thatribud, T. Tungsurat, T. Pengpan. First-principles study on electronic and optical properties of transparent conducting oxide CuBO2. Computational Materials Science 2014, 81 , 601-606. https://doi.org/10.1016/j.commatsci.2013.09.023
    66. J. M. Kahk, D. L. Sheridan, A. B. Kehoe, D. O. Scanlon, B. J. Morgan, G. W. Watson, D. J. Payne. The electronic structure of silver orthophosphate: experiment and theory. J. Mater. Chem. A 2014, 2 (17) , 6092-6099. https://doi.org/10.1039/C3TA14191H
    67. David O. Scanlon, John Buckeridge, C. Richard A. Catlow, Graeme W. Watson. Understanding doping anomalies in degenerate p-type semiconductor LaCuOSe. J. Mater. Chem. C 2014, 2 (17) , 3429-3438. https://doi.org/10.1039/C4TC00096J
    68. Steven Mudenda, Girish M. Kale, Yotamu R. S. Hara. Rapid synthesis and electrical transition in p-type delafossite CuAlO 2. J. Mater. Chem. C 2014, 2 (43) , 9233-9239. https://doi.org/10.1039/C4TC01349B
    69. Ruifeng Lu, Feng Li, Juan Salafranca, Erjun Kan, Chuanyun Xiao, Kaiming Deng. A B–C–N hybrid porous sheet: an efficient metal-free visible-light absorption material. Physical Chemistry Chemical Physics 2014, 16 (9) , 4299. https://doi.org/10.1039/c3cp54879a
    70. Mao-Sheng Miao, Sam Yarbro, Phillip T. Barton, Ram Seshadri. Electron affinities and ionization energies of Cu and Ag delafossite compounds: A hybrid functional study. Physical Review B 2014, 89 (4) https://doi.org/10.1103/PhysRevB.89.045306
    71. Chesta Ruttanapun. Optical and electronic properties of delafossite CuBO 2 p -type transparent conducting oxide. Journal of Applied Physics 2013, 114 (11) , 113108. https://doi.org/10.1063/1.4821960
    72. Tiago F. T. Cerqueira, Rafael Sarmiento-Pérez, Fabio Trani, Maximilian Amsler, Stefan Goedecker, Miguel A. L. Marques, Silvana Botti. The crystal structure of p-type transparent conductive oxide CuBO2. MRS Communications 2013, 3 (3) , 157-160. https://doi.org/10.1557/mrc.2013.21
    73. S. Santra, N.S. Das, K.K. Chattopadhyay. Wide band gap p-type nanocrystalline CuBO2 as a novel UV photocatalyst. Materials Research Bulletin 2013, 48 (7) , 2669-2677. https://doi.org/10.1016/j.materresbull.2013.03.034
    74. Jeffrey P. Bosco, David O. Scanlon, Graeme W. Watson, Nathan S. Lewis, Harry A. Atwater. Energy-band alignment of II-VI/Zn3P2 heterojunctions from x-ray photoemission spectroscopy. Journal of Applied Physics 2013, 113 (20) https://doi.org/10.1063/1.4807646
    75. S. Santra, N.S. Das, K.K. Chattopadhyay. Sol–gel synthesis and characterization of wide band gap p-type nanocrystalline CuBO2. Materials Letters 2013, 92 , 198-201. https://doi.org/10.1016/j.matlet.2012.10.094
    76. Aoife B. Kehoe, Douglas J. Temple, Graeme W. Watson, David O. Scanlon. Cu3MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory. Physical Chemistry Chemical Physics 2013, 15 (37) , 15477. https://doi.org/10.1039/c3cp52482e
    77. Jeremy P. Allen, David O. Scanlon, Louis F. J. Piper, Graeme W. Watson. Understanding the defect chemistry of tin monoxide. Journal of Materials Chemistry C 2013, 1 (48) , 8194. https://doi.org/10.1039/c3tc31863j
    78. Wen-Ting Liu, Qi-Jun Liu, Zheng-Tang Liu. First-principles studies of structural, mechanical, electronic, optical properties and pressure-induced phase transition of CuInO2 polymorph. Physica B: Condensed Matter 2012, 407 (24) , 4665-4670. https://doi.org/10.1016/j.physb.2012.08.042
    79. Mang Niu, Daojian Cheng, Lingjun Huo, Xiaohong Shao. First principles study on the p-type transparent conducting properties of rutile Ti1−xInxO2. Journal of Alloys and Compounds 2012, 539 , 221-225. https://doi.org/10.1016/j.jallcom.2012.06.023
    80. Yanwei Huang, Qun Zhang, Junhua Xi, Zhenguo Ji. Transparent conductive p-type lithium-doped nickel oxide thin films deposited by pulsed plasma deposition. Applied Surface Science 2012, 258 (19) , 7435-7439. https://doi.org/10.1016/j.apsusc.2012.04.057
    81. M J Lucero, T M Henderson, G E Scuseria. Improved semiconductor lattice parameters and band gaps from a middle-range screened hybrid exchange functional. Journal of Physics: Condensed Matter 2012, 24 (14) , 145504. https://doi.org/10.1088/0953-8984/24/14/145504
    82. Jiawang Hong, Alessandro Stroppa, Jorge Íñiguez, Silvia Picozzi, David Vanderbilt. Spin-phonon coupling effects in transition-metal perovskites: A DFT +  U and hybrid-functional study. Physical Review B 2012, 85 (5) https://doi.org/10.1103/PhysRevB.85.054417
    83. David O. Scanlon, Graeme W. Watson. On the possibility of p-type SnO2. Journal of Materials Chemistry 2012, 22 (48) , 25236. https://doi.org/10.1039/c2jm34352e
    84. Emmanuel Guilmeau, Maria Poienar, Stefan Kremer, Sylvain Marinel, Sylvie Hébert, Raymond Frésard, Antoine Maignan. Mg substitution in CuCrO2 delafossite compounds. Solid State Communications 2011, 151 (23) , 1798-1801. https://doi.org/10.1016/j.ssc.2011.08.023
    85. Fang Hou, Tian-Yi Cai, Sheng Ju, Ming-Rong Shen. Magnetic reconstruction at oxygen-deficient SrMnO3 (001) surface: A first-principle investigation. Applied Physics Letters 2011, 99 (19) https://doi.org/10.1063/1.3659492
    86. A. Dindar, J. B. Kim, C. Fuentes-Hernandez, B. Kippelen. Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates. Applied Physics Letters 2011, 99 (17) https://doi.org/10.1063/1.3656974
    87. Jeremy P. Allen, David O. Scanlon, Graeme W. Watson. Electronic structures of silver oxides. Physical Review B 2011, 84 (11) https://doi.org/10.1103/PhysRevB.84.115141
    88. Aron Walsh, Juarez L F Da Silva, Su-Huai Wei. Multi-component transparent conducting oxides: progress in materials modelling. Journal of Physics: Condensed Matter 2011, 23 (33) , 334210. https://doi.org/10.1088/0953-8984/23/33/334210
    89. Alessandro Stroppa, Domenico Di Sante, Sachio Horiuchi, Yoshinori Tokura, David Vanderbilt, Silvia Picozzi. Polar distortions in hydrogen-bonded organic ferroelectrics. Physical Review B 2011, 84 (1) https://doi.org/10.1103/PhysRevB.84.014101
    90. F. Bisti, A. Stroppa, S. Picozzi, L. Ottaviano. Fingerprints of the hydrogen bond in the photoemission spectra of croconic acid condensed phase: An x-ray photoelectron spectroscopy and ab-initio study. The Journal of Chemical Physics 2011, 134 (17) https://doi.org/10.1063/1.3586813
    91. A. Stroppa, G. Kresse, A. Continenza. Revisiting Mn-doped Ge using the Heyd-Scuseria-Ernzerhof hybrid functional. Physical Review B 2011, 83 (8) https://doi.org/10.1103/PhysRevB.83.085201
    92. David O. Scanlon, Graeme W. Watson. Band gap anomalies of the ZnM2IIIO4 (MIII = Co, Rh, Ir) spinels. Physical Chemistry Chemical Physics 2011, 13 (20) , 9667. https://doi.org/10.1039/c0cp02562c
    93. David O. Scanlon, Graeme W. Watson. Understanding the p-type defect chemistry of CuCrO2. Journal of Materials Chemistry 2011, 21 (11) , 3655. https://doi.org/10.1039/c0jm03852k
    94. Jeremy P. Allen, M. Kristin Nilsson, David O. Scanlon, Graeme W. Watson. Comparison of the defective pyrochlore and ilmenite polymorphs of AgSb O 3 using GGA and hybrid DFT. Physical Review B 2011, 83 (3) https://doi.org/10.1103/PhysRevB.83.035207
    95. David O. Scanlon, Graeme W. Watson. Stability, geometry, and electronic structure of an alternative I-III-VI2 material, CuScS2: A hybrid density functional theory analysis. Applied Physics Letters 2010, 97 (13) https://doi.org/10.1063/1.3491179
    96. Fabio Trani, Julien Vidal, Silvana Botti, Miguel A. L. Marques. Band structures of delafossite transparent conductive oxides from a self-consistent G W approach. Physical Review B 2010, 82 (8) https://doi.org/10.1103/PhysRevB.82.085115
    97. Jeremy P. Allen, David O. Scanlon, Graeme W. Watson. Electronic structure of mixed-valence silver oxide AgO from hybrid density-functional theory. Physical Review B 2010, 81 (16) https://doi.org/10.1103/PhysRevB.81.161103
    98. David O. Scanlon, Kate G. Godinho, Benjamin J. Morgan, Graeme W. Watson. Understanding conductivity anomalies in CuI-based delafossite transparent conducting oxides: Theoretical insights. The Journal of Chemical Physics 2010, 132 (2) https://doi.org/10.1063/1.3290815
    99. Kate G. Godinho, John J. Carey, Benjamin J. Morgan, David O. Scanlon, Graeme W. Watson. Understanding conductivity in SrCu 2 O 2 : stability, geometry and electronic structure of intrinsic defects from first principles. J. Mater. Chem. 2010, 20 (6) , 1086-1096. https://doi.org/10.1039/B921061J
    100. David O. Scanlon, Aron Walsh, Graeme W. Watson. ChemInform Abstract: Understanding the p‐Type Conduction Properties of the Transparent Conducting Oxide CuBO 2 : A Density Functional Theory Analysis.. ChemInform 2009, 40 (51) https://doi.org/10.1002/chin.200951013
    Load all citations

    Chemistry of Materials

    Cite this: Chem. Mater. 2009, 21, 19, 4568–4576
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm9015113
    Published September 2, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    2752

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.