ACS Publications. Most Trusted. Most Cited. Most Read
Cobaltocene-Doped Viologen as Functional Components in Organic Electronics
My Activity
    Article

    Cobaltocene-Doped Viologen as Functional Components in Organic Electronics
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical Engineering and
    Department of Chemistry
    Princeton University, Princeton, New Jersey 08544
    *To whom correspondence should be addressed. E-mail: [email protected]
    §Present address: Chemistry Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213.
    Other Access Options

    Chemistry of Materials

    Cite this: Chem. Mater. 2009, 21, 19, 4583–4588
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm901579h
    Published September 4, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Given the energy level alignment between viologen and cobaltocene, cobaltocene readily transfers electrons to the intrinsically insulating viologen, resulting in the formation of an electron transfer complex with high electron density. When cobaltocene−viologen is incorporated as active layers in organic thin-film transistors, the output current of devices scales with increasing cobaltocene concentrations. We further demonstrate that cobaltocene−viologen makes effective electron transport layers in inverted polymer solar cells.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 43 publications.

    1. Keaton V. Prather, Emily Y. Tsui. Photoinduced Ligand-to-Metal Charge Transfer of Cobaltocene: Radical Release and Catalytic Cyclotrimerization. Inorganic Chemistry 2023, 62 (5) , 2128-2134. https://doi.org/10.1021/acs.inorgchem.2c03779
    2. Kavitha Pandi, Karthik Peramaiah, Bernaurdshaw Neppolian. A Light Soaking Free Solution Processable Metal Oxide Cathode Interfacial Layer Enables High Efficiency in Bulk Heterojunction Polymer Solar Cells. ACS Applied Energy Materials 2021, 4 (10) , 11480-11487. https://doi.org/10.1021/acsaem.1c02227
    3. Jian Lin, Zhixing Fu, Jiaxu Zhang, Yujia Zhu, Dandan Hu, Dongsheng Li, and Tao Wu . Substituent-Modulated Assembly Formation: An Approach to Enhancing the Photostability of Photoelectric-Sensitive Chalcogenide-Based Ion-Pair Hybrids. Inorganic Chemistry 2017, 56 (6) , 3119-3122. https://doi.org/10.1021/acs.inorgchem.6b03061
    4. Marco Frasconi, Isurika R. Fernando, Yilei Wu, Zhichang Liu, Wei-Guang Liu, Scott M. Dyar, Gokhan Barin, Michael R. Wasielewski, William A. Goddard, III, and J. Fraser Stoddart . Redox Control of the Binding Modes of an Organic Receptor. Journal of the American Chemical Society 2015, 137 (34) , 11057-11068. https://doi.org/10.1021/jacs.5b05618
    5. Jiuyang Zhang, Lixia Ren, Christopher G. Hardy, and Chuanbing Tang . Cobaltocenium-Containing Methacrylate Homopolymers, Block Copolymers, and Heterobimetallic Polymers via RAFT Polymerization. Macromolecules 2012, 45 (17) , 6857-6863. https://doi.org/10.1021/ma3012784
    6. Julian Burschka, Amalie Dualeh, Florian Kessler, Etienne Baranoff, Ngoc-Lê Cevey-Ha, Chenyi Yi, Mohammad K. Nazeeruddin, and Michael Grätzel . Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2011, 133 (45) , 18042-18045. https://doi.org/10.1021/ja207367t
    7. Jong Bok Kim, Kathryn Allen, Soong Ju Oh, Stephanie Lee, Michael F. Toney, Youn Sang Kim, Cherie R. Kagan, Colin Nuckolls, and Yueh-Lin Loo . Small-Molecule Thiophene-C60 Dyads As Compatibilizers in Inverted Polymer Solar Cells. Chemistry of Materials 2010, 22 (20) , 5762-5773. https://doi.org/10.1021/cm102126a
    8. Leila Motiei, Yan Yao, Joyanta Choudhury, He Yan, Tobin J. Marks, Milko E. van der Boom and Antonio Facchetti . Self-Propagating Molecular Assemblies as Interlayers for Efficient Inverted Bulk-Heterojunction Solar Cells. Journal of the American Chemical Society 2010, 132 (36) , 12528-12530. https://doi.org/10.1021/ja104695p
    9. Tomoki Ogoshi, Yoko Nishida, Tada-aki Yamagishi and Yoshiaki Nakamoto. High Yield Synthesis of Polyrotaxane Constructed from Pillar[5]arene and Viologen Polymer and Stabilization of Its Radical Cation. Macromolecules 2010, 43 (17) , 7068-7072. https://doi.org/10.1021/ma101320z
    10. Hailiang Liu, Sajjad Hussain, Zulfqar Ali Sheikh, Sikandar Aftab, K. Karuppasamy, Abdullah M. Al-Enizi, T. Maiyalagan, Akram Alfantazi, Hyun-Seok Kim, Jongwan Jung, Deok-Kee Kim, Dhanasekaran Vikraman, Jungwon Kang. Tuning the hole transporting layer using the NiO@X2C (X = W or Mo) composites for polymer solar cells and X-ray detectors. Surfaces and Interfaces 2024, 53 , 105027. https://doi.org/10.1016/j.surfin.2024.105027
    11. Gunel Huseynova, Joan Ràfols-Ribé, Etienne Auroux, Ping Huang, Shi Tang, Christian Larsen, Ludvig Edman. Chemical doping to control the in-situ formed doping structure in light-emitting electrochemical cells. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-38006-y
    12. Gunel Huseynova, Joan Rafols-Ribe, Etienne Auroux, Ping Huang, Shi Tang, Christian Larsen, Ludvig Edman. Chemical Doping to Control the In-Situ Formed Doping Structure in Light-Emitting Electrochemical Cells. 2023https://doi.org/10.21203/rs.3.rs-2743669/v1
    13. Gunel Huseynova, Nabeen K. Shrestha, Yong Xu, Eul-Yong Shin, Won-Tae Park, Dongseob Ji, Yong-Young Noh. Benzyl viologen as an n-type dopant for organic semiconductors. Organic Electronics 2018, 62 , 572-580. https://doi.org/10.1016/j.orgel.2018.06.033
    14. Haijuan Du, Yaru Li, Manman Xu, Yunyin Niu, Hongwei Hou. Studies on crystal structures, optical and electrical properties of viologen cation salts of d10 metal halide anions. Journal of Molecular Structure 2017, 1133 , 101-110. https://doi.org/10.1016/j.molstruc.2016.11.092
    15. Yu Yan, Feilong Cai, Liyan Yang, Jinghai Li, Yiwei Zhang, Fei Qin, Chuanxi Xiong, Yinhua Zhou, David G. Lidzey, Tao Wang. Light‐Soaking‐Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Low‐Temperature‐Processed TiO 2 Electron‐Transport Layer. Advanced Materials 2017, 29 (1) https://doi.org/10.1002/adma.201604044
    16. Bhushan Gadgil, Pia Damlin, Evgenia Dmitrieva, Timo Ääritalo, Carita Kvarnström. Exploring amide linkage in a polyviologen derivative towards simultaneous voltammetric determination of Pb(II), Cu(II) and Hg(II) ions. Electrochimica Acta 2016, 192 , 482-488. https://doi.org/10.1016/j.electacta.2016.02.006
    17. Haijuan Du, Wenli Zhang, Chaohai Wang, Yunyin Niu, Hongwei Hou. A new nanocrystalline inorganic–organic hybrid exhibiting semiconducting properties and applications. Dalton Transactions 2016, 45 (6) , 2624-2628. https://doi.org/10.1039/C5DT04508H
    18. Rambabu Sydam, Arnab Ghosh, Melepurath Deepa. Enhanced electrochromic write–erase efficiency of a device with a novel viologen: 1,1′-bis(2-(1H-indol-3-yl)ethyl)-4,4′-bipyridinium diperchlorate. Organic Electronics 2015, 17 , 33-43. https://doi.org/10.1016/j.orgel.2014.11.012
    19. Chang-Zhi Li, Hin-Lap Yip, Alex K.-Y. Jen. Interfacial Materials for Efficient Solution Processable Organic Photovoltaic Devices. 2015, 273-297. https://doi.org/10.1007/978-3-662-45509-8_9
    20. Stephan Rossbauer, Christian Müller, Thomas D. Anthopoulos. Comparative Study of the N‐Type Doping Efficiency in Solution‐processed Fullerenes and Fullerene Derivatives. Advanced Functional Materials 2014, 24 (45) , 7116-7124. https://doi.org/10.1002/adfm.201401842
    21. Xianyu Deng, Riming Nie, Aiyuan Li, Huaixin Wei, Shizhao Zheng, Wenbo Huang, Yueqi Mo, Yaorong Su, Qiankun Wang, Yanqing Li, Jianxin Tang, Jianbin Xu, King‐young Wong. Ultra‐Low Work Function Transparent Electrodes Achieved by Naturally Occurring Biomaterials for Organic Optoelectronic Devices. Advanced Materials Interfaces 2014, 1 (7) https://doi.org/10.1002/admi.201400215
    22. Paul M. S. Monk, David R. Rosseinsky, Roger J. Mortimer. Electrochromic Materials and Devices Based on Viologens. 2013, 57-90. https://doi.org/10.1002/9783527679850.ch3
    23. Ai-Li Shi, Yan-Qing Li, Zai-Quan Xu, Fu-Zhou Sun, Jian Li, Xiao-Bo Shi, Huai-Xin Wei, Shuit-Tong Lee, Satoshi Kera, Nobuo Ueno, Jian-Xin Tang. Inverted polymer solar cells integrated with small molecular electron collection layer. Organic Electronics 2013, 14 (7) , 1844-1851. https://doi.org/10.1016/j.orgel.2013.04.029
    24. Bhushan Gadgil, Pia Damlin, Timo Ääritalo, Jouko Kankare, Carita Kvarnström. Electrosynthesis and characterization of viologen cross linked thiophene copolymer. Electrochimica Acta 2013, 97 , 378-385. https://doi.org/10.1016/j.electacta.2013.03.002
    25. Myungkwan Song, Jae-Wook Kang, Dong-Ho Kim, Jung-Dae Kwon, Sung-Gyu Park, Sanggil Nam, Sungjin Jo, Seung Yoon Ryu, Chang Su Kim. Self-assembled monolayer as an interfacial modification material for highly efficient and air-stable inverted organic solar cells. Applied Physics Letters 2013, 102 (14) https://doi.org/10.1063/1.4802086
    26. Nianxing Wang, Pia Damlin, Beatriz Meana Esteban, Timo Ääritalo, Jouko Kankare, Carita Kvarnström. Electrochemical synthesis and characterization of copolyviologen films. Electrochimica Acta 2013, 90 , 171-178. https://doi.org/10.1016/j.electacta.2012.11.131
    27. Ziqi Liang, Brian A. Gregg. Compensating Poly(3‐hexylthiophene) Reveals Its Doping Density and Its Strong Exciton Quenching by Free Carriers. Advanced Materials 2012, 24 (24) , 3258-3262. https://doi.org/10.1002/adma.201201157
    28. Dae Sung You, Chang Su Kim, Yong Jin Kang, Kyounga Lim, Sunghoon Jung, Do-Geun Kim, Jong-Kuk Kim, Sungjin Jo, Joo Hyun Kim, Jae-Wook Kang. Annealing-free Poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester-based organic solar cells. Current Applied Physics 2012, 12 (3) , 908-910. https://doi.org/10.1016/j.cap.2011.12.007
    29. Thomas H. Reilly, Alexander W. Hains, Hsiang‐Yu Chen, Brian A. Gregg. A Self‐Doping , O 2 ‐Stable , n‐Type Interfacial Layer for Organic Electronics. Advanced Energy Materials 2012, 2 (4) , 455-460. https://doi.org/10.1002/aenm.201100446
    30. Zai-Quan Xu, Jin-Peng Yang, Fu-Zhou Sun, Shuit-Tong Lee, Yan-Qing Li, Jian-Xin Tang. Efficient inverted polymer solar cells incorporating doped organic electron transporting layer. Organic Electronics 2012, 13 (4) , 697-704. https://doi.org/10.1016/j.orgel.2012.01.009
    31. Nicola Beaumont, Sang Wan Cho, Paul Sullivan, David Newby, Kevin E. Smith, Tim. S. Jones. Boron Subphthalocyanine Chloride as an Electron Acceptor for High‐Voltage Fullerene‐Free Organic Photovoltaics. Advanced Functional Materials 2012, 22 (3) , 561-566. https://doi.org/10.1002/adfm.201101782
    32. Veronica‐Alina Constantin, Dirk Bongard, Lorenz Walder. Triply Branched Viologen Stars: Synthesis and Polymerization by Peripheral Benzyl Coupling. European Journal of Organic Chemistry 2012, 2012 (5) , 913-921. https://doi.org/10.1002/ejoc.201101586
    33. Jun-Jun Zhu, Guo-Qiang Fan, Huai-Xin Wei, Yan-Qing Li, Shuit-Tong Lee, Jian-Xin Tang. Solution-processed inverted polymer solar cells using chemical bath deposited CdS films as electron collecting layer. CrystEngComm 2012, 14 (23) , 8090. https://doi.org/10.1039/c2ce25698c
    34. Hin-Lap Yip, Alex K.-Y. Jen. Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy & Environmental Science 2012, 5 (3) , 5994. https://doi.org/10.1039/c2ee02806a
    35. Jun-Jun Zhu, Zai-Quan Xu, Guo-Qiang Fan, Shuit-Tong Lee, Yan-Qing Li, Jian-Xin Tang. Inverted polymer solar cells with atomic layer deposited CdS film as an electron collection layer. Organic Electronics 2011, 12 (12) , 2151-2158. https://doi.org/10.1016/j.orgel.2011.09.007
    36. Zai-Quan Xu, Fu-Zhou Sun, Jian Li, Shuit-Tong Lee, Yan-Qing Li, Jian-Xin Tang. Irradiation-induced molecular dipole reorientation in inverted polymer solar cell using small molecular electron collection layer. Applied Physics Letters 2011, 99 (20) https://doi.org/10.1063/1.3663548
    37. Namchul Cho, Hin‐Lap Yip, Joshua A. Davies, Peter D. Kazarinoff, David F. Zeigler, Matthew M. Durban, Yukari Segawa, Kevin M. O'Malley, Christine K. Luscombe, Alex K.‐Y. Jen. In‐situ Crosslinking and n‐Doping of Semiconducting Polymers and Their Application as Efficient Electron‐Transporting Materials in Inverted Polymer Solar Cells. Advanced Energy Materials 2011, 1 (6) , 1148-1153. https://doi.org/10.1002/aenm.201100429
    38. Mirko Seri, Assunta Marrocchi, Diego Bagnis, Rocio Ponce, Aldo Taticchi, Tobin J. Marks, Antonio Facchetti. Molecular‐Shape‐Controlled Photovoltaic Performance Probed via Soluble π‐Conjugated Arylacetylenic Semiconductors. Advanced Materials 2011, 23 (33) , 3827-3831. https://doi.org/10.1002/adma.201101700
    39. Shengsheng Zhang, Hong-Lei Wang, Meng Chen, Dong-Jin Qian. Monolayers and Langmuir–Blodgett films of Fe2+-mediated polyelectrolyte with viologen derivatives as linkers at the air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 384 (1-3) , 561-569. https://doi.org/10.1016/j.colsurfa.2011.05.016
    40. Yang Chen, Zhou Yang, Xin-Yi Wu, Chun-Yan Ni, Zhi-Gang Ren, Hui-Fang Wang, Jian-Ping Lang. Iodobismuthates with N-alkyl- or N,N′-dialkyl-4,4′-bipyridinium: syntheses, structures and dielectric properties. Physical Chemistry Chemical Physics 2011, 13 (13) , 5659. https://doi.org/10.1039/c0cp02431g
    41. Yang Chen, Zhou Yang, Cheng‐Xin Guo, Chun‐Yan Ni, Zhi‐Gang Ren, Hong‐Xi Li, Jian‐Ping Lang. Iodine‐Induced Solvothermal Formation of Viologen Iodobismuthates. European Journal of Inorganic Chemistry 2010, 2010 (33) , 5326-5333. https://doi.org/10.1002/ejic.201000755
    42. Wei Zhao, Yabing Qi, Tissa Sajoto, Stephen Barlow, Seth R. Marder, Antoine Kahn. Remote doping of a pentacene transistor: Control of charge transfer by molecular-level engineering. Applied Physics Letters 2010, 97 (12) https://doi.org/10.1063/1.3491429
    43. Enrique D. Gomez, Yueh-Lin Loo. Engineering the organic semiconductor-electrode interface in polymer solar cells. Journal of Materials Chemistry 2010, 20 (32) , 6604. https://doi.org/10.1039/c000718h
    44. Jong Bok Kim, Chang Su Kim, Youn Sang Kim, Yueh-Lin Loo. Oxidation of silver electrodes induces transition from conventional to inverted photovoltaic characteristics in polymer solar cells. Applied Physics Letters 2009, 95 (18) , 183301. https://doi.org/10.1063/1.3257361

    Chemistry of Materials

    Cite this: Chem. Mater. 2009, 21, 19, 4583–4588
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm901579h
    Published September 4, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    2630

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.