ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Self-Assembly of Monolayers of Semiconductor Nanocrystallites

View Author Information
Department of Chemistry, University College Dublin, Dublin 4, Ireland
School of Physical Sciences, Dublin City University, Dublin 9, Ireland
Dipartimento di Scienze Chimiche, Universita' di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
Department of Interface Physics, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
Cite this: Chem. Mater. 1997, 9, 12, 2969–2982
Publication Date (Web):December 16, 1997
https://doi.org/10.1021/cm970349u
Copyright © 1997 American Chemical Society

    Article Views

    351

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Described is the self-assembly of a monolayer of TiO2 nanocrystallites on a gold substrate by two related methods. In the first of these methods, a crystalline monolayer of the functionalized thiol HS−(CH2)10−COOH is self-assembled at an annealed gold substrate by adsorption from ethanolic solution. The modified gold substrate is then immersed in an ethanolic TiO2 colloid. TiO2 nanocrystallites are adsorbed at the terminal −COOH group of the molecules constituting the monolayer. In the second of these methods, an ethanolic colloid of TiO2 nanocrystallites is prepared in the presence of the functionalized thiol HS−(CH2)10−COOH. The modified nanocrystallites are adsorbed at the surface of an annealed gold substrate. For each method, there is some evidence for short-range ordering of the nanocrystallites constituting the close-packed monolayer adsorbed at the gold substrate. Some potential applications of these methods are considered.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     To whom correspondence should be addressed.

     Abstract published in Advance ACS Abstracts, October 1, 1997.

    Cited By

    This article is cited by 53 publications.

    1. Benoit P. Pichon, Cedric Leuvey, Dris Ihawakrim, Pierre Bernard, Guy Schmerber, and Sylvie Begin-Colin . Magnetic Properties of Mono- and Multilayer Assemblies of Iron Oxide Nanoparticles Promoted by SAMs. The Journal of Physical Chemistry C 2014, 118 (7) , 3828-3837. https://doi.org/10.1021/jp412174k
    2. Wei-Ting Chien Ching-Ching Yu Chien-Fu Liang Chian-Hui Lai Po-Chiao Lin Chun-Cheng Lin . Functionalized Glyconanoparticles for the Study of Glycobiology. 2011, 15-36. https://doi.org/10.1021/bk-2011-1091.ch002
    3. Benoît P. Pichon, Arnaud Demortière, Matthias Pauly, Karin Mougin, Alain Derory and Sylvie Bégin-Colin . 2D Assembling of Magnetic Iron Oxide Nanoparticles Promoted by SAMs Used as Well-Addressed Surfaces. The Journal of Physical Chemistry C 2010, 114 (19) , 9041-9048. https://doi.org/10.1021/jp101872u
    4. Kallol Mohanta,, Swarup K. Majee,, Sudip K. Batabyal, and, Amlan J. Pal. Electrical Bistability in Electrostatic Assemblies of CdSe Nanoparticles. The Journal of Physical Chemistry B 2006, 110 (37) , 18231-18235. https://doi.org/10.1021/jp0639795
    5. Yasushi Umemura,, Emi Shinohara,, Akihiro Koura,, Terumichi Nishioka, and, Takayoshi Sasaki. Photocatalytic Decomposition of an Alkylammonium Cation in a Langmuir−Blodgett Film of a Titania Nanosheet. Langmuir 2006, 22 (8) , 3870-3877. https://doi.org/10.1021/la0530743
    6. Kazuko Saruwatari,, Hisako Sato,, Tomochika Idei,, Jun Kameda,, Akihiko Yamagishi,, Atsushi Takagaki, and, Kazunari Domen. Photoconductive Properties of Organic−Inorganic Hybrid Films of Layered Perovskite-Type Niobate. The Journal of Physical Chemistry B 2005, 109 (25) , 12410-12416. https://doi.org/10.1021/jp0505476
    7. Jan Marwan,, Tania Addou, and, Daniel Bélanger. Functionalization of Glassy Carbon Electrodes with Metal-Based Species. Chemistry of Materials 2005, 17 (9) , 2395-2403. https://doi.org/10.1021/cm047871i
    8. Anand Gole,, Christopher J. Orendorff, and, Catherine J. Murphy. Immobilization of Gold Nanorods onto Acid-Terminated Self-Assembled Monolayers via Electrostatic Interactions. Langmuir 2004, 20 (17) , 7117-7122. https://doi.org/10.1021/la049051q
    9. Declan Ryan,, Lorraine Nagle, and, Donald Fitzmaurice. Light-Patterned and Recognition-Directed Adsorption of Nanoparticles at a Silicon Wafer Substrate. Nano Letters 2004, 4 (4) , 573-575. https://doi.org/10.1021/nl0351340
    10. K. Murali Mayya,, Anand Gole,, Nirmesh Jain,, Sumant Phadtare,, Dominique Langevin, and, Murali Sastry. Time-Dependent Complexation of Cysteine-Capped Gold Nanoparticles with Octadecylamine Langmuir Monolayers at the Air−Water Interface. Langmuir 2003, 19 (22) , 9147-9154. https://doi.org/10.1021/la0346797
    11. Takayoshi Sasaki,, Yasuo Ebina,, Katsutoshi Fukuda,, Tomohiro Tanaka,, Masaru Harada, and, Mamoru Watanabe. Titania Nanostructured Films Derived from a Titania Nanosheet/Polycation Multilayer Assembly via Heat Treatment and UV Irradiation. Chemistry of Materials 2002, 14 (8) , 3524-3530. https://doi.org/10.1021/cm0202456
    12. Seung-Yeop Kwak and, Sung Ho Kim, , Soon Sik Kim. Hybrid Organic/Inorganic Reverse Osmosis (RO) Membrane for Bactericidal Anti-Fouling. 1. Preparation and Characterization of TiO2 Nanoparticle Self-Assembled Aromatic Polyamide Thin-Film-Composite (TFC) Membrane. Environmental Science & Technology 2001, 35 (11) , 2388-2394. https://doi.org/10.1021/es0017099
    13. Herwig Döllefeld,, Horst Weller, and, Alexander Eychmüller. Particle−Particle Interactions in Semiconductor Nanocrystal Assemblies. Nano Letters 2001, 1 (5) , 267-269. https://doi.org/10.1021/nl015524r
    14. Wen-Hua Zhang,, Jian-Lin Shi,, Hang-Rong Chen,, Zi-Le Hua, and, Dong-Sheng Yan. Synthesis and Characterization of Nanosized ZnS Confined in Ordered Mesoporous Silica. Chemistry of Materials 2001, 13 (2) , 648-654. https://doi.org/10.1021/cm000621r
    15. Alexander Eychmüller. Structure and Photophysics of Semiconductor Nanocrystals. The Journal of Physical Chemistry B 2000, 104 (28) , 6514-6528. https://doi.org/10.1021/jp9943676
    16. Anand Gole,, S. R. Sainkar, and, Murali Sastry. Electrostatically Controlled Organization of Carboxylic Acid Derivatized Colloidal Silver Particles on Amine-Terminated Self-Assembled Monolayers. Chemistry of Materials 2000, 12 (5) , 1234-1239. https://doi.org/10.1021/cm990439u
    17. Cornelis J. Kleverlaan,, M. Teresa Indelli,, Carlo A. Bignozzi,, Luiz Pavanin,, Franco Scandola,, Georg M. Hasselman, and, Gerald J. Meyer. Stepwise Charge Separation in Heterotriads. Binuclear Ru(II)−Rh(III) Complexes on Nanocrystalline Titanium Dioxide. Journal of the American Chemical Society 2000, 122 (12) , 2840-2849. https://doi.org/10.1021/ja992755f
    18. Thierry Cassagneau,, Janos H. Fendler, and, Thomas E. Mallouk. Optical and Electrical Characterizations of Ultrathin Films Self-Assembled from 11-Aminoundecanoic Acid Capped TiO2 Nanoparticles and Polyallylamine Hydrochloride. Langmuir 2000, 16 (1) , 241-246. https://doi.org/10.1021/la990776h
    19. Tsukasa Torimoto,, Naohiro Tsumura,, Masahide Miyake,, Matsuhiko Nishizawa,, Takao Sakata,, Hirotaro Mori, and, Hiroshi Yoneyama. Preparation and Photoelectrochemical Properties of Two-Dimensionally Organized CdS Nanoparticle Thin Films. Langmuir 1999, 15 (5) , 1853-1858. https://doi.org/10.1021/la9811721
    20. Shelly D. Burnside,, Valery Shklover,, Christophe Barbé,, Pascal Comte,, Francine Arendse,, Keith Brooks, and, Michael Grätzel. Self-Organization of TiO2 Nanoparticles in Thin Films. Chemistry of Materials 1998, 10 (9) , 2419-2425. https://doi.org/10.1021/cm980702b
    21. Sheshanath Bhosale, Tianyu Wang, Sidhanath Bhosale, Jürgen-Hinrich Fuhrhop. Photochemistry of Colloidal Particles. 2016, 5472-5490. https://doi.org/10.1081/E-ESCS3-120023358
    22. Ulrich Siggel, Guangtao Li, Jürgen-Hinrich Fuhrhop. Membrane-Coated Nanoparticles: Photochemistry. 2014, 2310-2326. https://doi.org/10.1081/E-ENN3-120009101
    23. Sara Pourjafar, Mohsen Jahanshahi, Ahmad Rahimpour. Optimization of TiO2 modified poly(vinyl alcohol) thin film composite nanofiltration membranes using Taguchi method. Desalination 2013, 315 , 107-114. https://doi.org/10.1016/j.desal.2012.08.029
    24. Law Yong Ng, Abdul Wahab Mohammad, Choe Peng Leo, Nidal Hilal. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308 , 15-33. https://doi.org/10.1016/j.desal.2010.11.033
    25. Jang Mee Lee, In Young Kim, Song Yi Han, Tae Woo Kim, Seong‐Ju Hwang. Graphene Nanosheets as a Platform for the 2D Ordering of Metal Oxide Nanoparticles: Mesoporous 2D Aggregate of Anatase TiO 2 Nanoparticles with Improved Electrode Performance. Chemistry – A European Journal 2012, 18 (43) , 13800-13809. https://doi.org/10.1002/chem.201200551
    26. Law Ng, Abdul Mohammad, Nidal Hilal. Modifications of Polymeric Membranes by Incorporating Metal/Metal Oxide Nanoparticles. 2012, 77-118. https://doi.org/10.1201/b12160-5
    27. Yaron Paz. Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications. Beilstein Journal of Nanotechnology 2011, 2 , 845-861. https://doi.org/10.3762/bjnano.2.94
    28. Xing Yi Ling, David N. Reinhoudt, Jurriaan Huskens. Chemically Directed Self‐Assembly of Nanoparticle Structures on Surfaces. 2010, 405-431. https://doi.org/10.1002/9780470552704.ch13
    29. Zhihui Yu, Jia Xie, Jie Bai, Mi Tian, Dingguo Xia. Preparation and electrocatalytic property of Au-Pt/SnO2/GC composite electrode. Rare Metals 2009, 28 (4) , 350-354. https://doi.org/10.1007/s12598-009-0069-4
    30. Jingfang Zhou, John Ralston, Rossen Sedev, David A. Beattie. Functionalized gold nanoparticles: Synthesis, structure and colloid stability. Journal of Colloid and Interface Science 2009, 331 (2) , 251-262. https://doi.org/10.1016/j.jcis.2008.12.002
    31. Hirotaka Natori, Koichi Kobayashi, Masashi Takahashi. Fabrication and Photocatalytic Activity of TiO2/MoO3 Particulate Films. Journal of Oleo Science 2009, 58 (4) , 203-211. https://doi.org/10.5650/jos.58.203
    32. Hongqi Wan, Lei Chen, Jianmin Chen, Huidi Zhou, Dingjun Zhang, Liu Liu. Synthesis and Fluorescence Property of the Gold Nanoparticles Modified with 9-Methyl-9-(8-thiooctyl)-fluorene. Journal of Dispersion Science and Technology 2008, 29 (7) , 999-1002. https://doi.org/10.1080/01932690701809955
    33. Sachin Kinge, Mercedes Crego‐Calama, David N. Reinhoudt. Self‐Assembling Nanoparticles at Surfaces and Interfaces. ChemPhysChem 2008, 9 (1) , 20-42. https://doi.org/10.1002/cphc.200700475
    34. Nkengafeh Asong, Faith Dukes, Chuan-yi Wang, Mary Jane Shultz. The effect of iron doping on the adsorption of methanol on TiO2 probed by sum frequency generation. Chemical Physics 2007, 339 (1-3) , 86-93. https://doi.org/10.1016/j.chemphys.2007.06.029
    35. A.M. Bittner. Clusters on soft matter surfaces. Surface Science Reports 2006, 61 (9) , 383-428. https://doi.org/10.1016/j.surfrep.2006.03.003
    36. Masashi Takahashi, Hirotaka Natori, Kazuo Tajima, Koichi Kobayashi. Particulate assemblies of CdS and TiO2 prepared by Langmuir–Blodgett technique with octadecylamine/methylstearate mixed films. Thin Solid Films 2005, 489 (1-2) , 205-214. https://doi.org/10.1016/j.tsf.2005.05.010
    37. Herwig Döllefeld, Alexander Eychmüller. Spectroscopy on Semiconductor Nanoparticle Assemblies. 2005, 179-192. https://doi.org/10.1201/9781420027884.ch7
    38. Ming-Liang Luo, Jian-Qing Zhao, Wu Tang, Chun-Sheng Pu. Hydrophilic modification of poly(ether sulfone) ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles. Applied Surface Science 2005, 249 (1-4) , 76-84. https://doi.org/10.1016/j.apsusc.2004.11.054
    39. Melvin T. Zin, Hong Ma, Mehmet Sarikaya, Alex K.‐Y. Jen. Assembly of Gold Nanoparticles Using Genetically Engineered Polypeptides. Small 2005, 1 (7) , 698-702. https://doi.org/10.1002/smll.200400164
    40. Eugenii Katz, Itamar Willner. Integrierte Hybridsysteme aus Nanopartikeln und Biomolekülen: Synthese, Eigenschaften und Anwendungen. Angewandte Chemie 2004, 116 (45) , 6166-6235. https://doi.org/10.1002/ange.200400651
    41. Eugenii Katz, Itamar Willner. Integrated Nanoparticle–Biomolecule Hybrid Systems: Synthesis, Properties, and Applications. Angewandte Chemie International Edition 2004, 43 (45) , 6042-6108. https://doi.org/10.1002/anie.200400651
    42. Eugenii Katz, Itamar Willner. Biomolecule‐Functionalized Carbon Nanotubes: Applications in Nanobioelectronics. ChemPhysChem 2004, 5 (8) , 1084-1104. https://doi.org/10.1002/cphc.200400193
    43. Jiyun C Huie. Guided molecular self-assembly: a review of recent efforts. Smart Materials and Structures 2003, 12 (2) , 264-271. https://doi.org/10.1088/0964-1726/12/2/315
    44. Sung Ho Kim, Seung-Yeop Kwak, Byeong-Hyeok Sohn, Tai Hyun Park. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. Journal of Membrane Science 2003, 211 (1) , 157-165. https://doi.org/10.1016/S0376-7388(02)00418-0
    45. C Malitesta, A Tepore, L Valli, A Genga, T Siciliano. X-Ray photoelectron spectroscopy characterisation of Langmuir–Blodgett films containing TiO2 nanoparticles grown by room-temperature hydrolysis of TiO(C2O4)22−. Thin Solid Films 2002, 422 (1-2) , 112-119. https://doi.org/10.1016/S0040-6090(02)00893-3
    46. V. Shklover, Md. K. Nazeeruddin, M. Grätzel, Yu. E. Ovchinnikov. Packing of ruthenium sensitizer molecules on mostly exposed faces of nanocrystalline TiO 2 : crystal structure of (NBu 4 + ) 2 [Ru(H 2 tctterpy)(NCS) 3 ] 2− ·0.5 DMSO. Applied Organometallic Chemistry 2002, 16 (11) , 635-642. https://doi.org/10.1002/aoc.361
    47. Tsukasa TORIMOTO, Bunsho OHTANI. 半導体ナノ粒子の調製・固定化と光電気化学特性. Electrochemistry 2001, 69 (11) , 866-871. https://doi.org/10.5796/electrochemistry.69.866
    48. Tsukasa Torimoto, Naohiro Tsumura, Hiroshi Nakamura, Susumu Kuwabata, Takao Sakata, Hirotaro Mori, Hiroshi Yoneyama. Photoelectrochemical properties of size-quantized semiconductor photoelectrodes prepared by two-dimensional cross-linking of monodisperse CdS nanoparticles. Electrochimica Acta 2000, 45 (20) , 3269-3276. https://doi.org/10.1016/S0013-4686(00)00443-6
    49. Y Gao, S.A Elder. TEM study of TiO2 nanocrystals with different particle size and shape. Materials Letters 2000, 44 (3-4) , 228-232. https://doi.org/10.1016/S0167-577X(00)00033-1
    50. P.Madhu Kumar, S. Badrinarayanan, Murali Sastry. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 2000, 358 (1-2) , 122-130. https://doi.org/10.1016/S0040-6090(99)00722-1
    51. Stephen Connolly, S.Nagaraja Rao, Rosalba Rizza, Nelsi Zaccheroni, Donald Fitzmaurice. Heterosupramolecular chemistry: toward the factory of the future. Coordination Chemistry Reviews 1999, 185-186 , 277-295. https://doi.org/10.1016/S0010-8545(98)00274-4
    52. Hyunjung Shin, Yuhu Wang, Sitthisuntorn Supothina, Rochael J. Collins, Monika Agarwal, Mark R. De Guire, Arthur H. Heuer, Chaim N. Sukenik. SILOXANE-ANCHORED MONOLAYERS AS TEMPLATES FOR OXIDE FILM DEPOSITION. 1999, 1-13. https://doi.org/10.1533/9781845698591.1
    53. . Chemical and Photochemical Reactivities of Nanoarchitectures. , 177-199. https://doi.org/10.1007/0-306-47941-9_7

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect