ACS Publications. Most Trusted. Most Cited. Most Read
Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures
My Activity
    Review

    Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures
    Click to copy article linkArticle link copied!

    View Author Information
    Thermochemistry Facility, Chemistry Annex, Department of Chemical Engineering and Materials Science, University of California at Davis, One Shields Avenue, Davis, California 95616
    Other Access Options

    Chemistry of Materials

    Cite this: Chem. Mater. 1998, 10, 10, 2787–2793
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm9801901
    Published August 29, 1998
    Copyright © 1998 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Transitions from chain silicates to garnet, ilmenite, and perovskite structures are important in deep earth geophysics and solid-state chemistry. Titanates and other oxides also show polymorphism among ilmenite, lithium niobate (metastable), and perovskite structures. This review brings together the evidence from the recent mineralogical and materials science literature linking the crystal chemistry, thermodynamics, and occurrence of these polymorphs at high pressure and temperature. A-site ordered multicomponent titanate perovskites are also discussed. A common feature of the perovskite structure is its high vibrational entropy.

    Copyright © 1998 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 138 publications.

    1. Yumi Matsuo, Yuko Matsukawa, Masahiro Kitakado, George Hasegawa, Suguru Yoshida, Ryoto Kubonaka, Yuya Yoshida, Tatsushi Kawasaki, Eiichi Kobayashi, Chikako Moriyoshi, Saneyuki Ohno, Koji Fujita, Katsuro Hayashi, Hirofumi Akamatsu. Topochemical Synthesis of LiCoF3 with a High-Temperature LiNbO3-Type Structure. Inorganic Chemistry 2022, 61 (30) , 11746-11756. https://doi.org/10.1021/acs.inorgchem.2c01439
    2. Kohei Fujiwara, Miho Kitamura, Daisuke Shiga, Yasuhiro Niwa, Koji Horiba, Tsutomu Nojima, Hiromichi Ohta, Hiroshi Kumigashira, Atsushi Tsukazaki. Insulator-to-Metal Transition of Cr2O3 Thin Films via Isovalent Ru3+ Substitution. Chemistry of Materials 2020, 32 (12) , 5272-5279. https://doi.org/10.1021/acs.chemmater.0c01497
    3. Shalu Atri, Meenakshi Pokhriyal, Sitharaman Uma. Synergistic Influence of d0 (Nb5+) and d10 (Cd2+) Cations in Stabilizing Noncentrosymmetric Dion–Jacobson Layered Perovskites, A′Cd2Nb3O10 (A′ = Rb, Cs). Inorganic Chemistry 2020, 59 (12) , 8044-8053. https://doi.org/10.1021/acs.inorgchem.0c00291
    4. Fabio Denis Romero, Midori Amano Patino, Mitsutaka Haruta, Hiroki Kurata, J. Paul Attfield, Yuichi Shimakawa. Conversion of a Defect Pyrochlore into a Double Perovskite via High-Pressure, High-Temperature Reduction of Te6+. Inorganic Chemistry 2020, 59 (1) , 343-349. https://doi.org/10.1021/acs.inorgchem.9b02472
    5. Bin Wang, Novendra Novendra, Alexandra Navrotsky. Energetics, Structures, and Phase Transitions of Cubic and Orthorhombic Cesium Lead Iodide (CsPbI3) Polymorphs. Journal of the American Chemical Society 2019, 141 (37) , 14501-14504. https://doi.org/10.1021/jacs.9b05924
    6. Yoshiyuki Inaguma, Akihisa Aimi, Daisuke Mori, Tetsuhiro Katsumata, Masanari Ohtake, Masanobu Nakayama, Masao Yonemura. High-Pressure Synthesis, Crystal Structure, Chemical Bonding, and Ferroelectricity of LiNbO3-Type LiSbO3. Inorganic Chemistry 2018, 57 (24) , 15462-15473. https://doi.org/10.1021/acs.inorgchem.8b02767
    7. Leslie Glasser . Systematic Thermodynamics of Layered Perovskites: Ruddlesden–Popper Phases. Inorganic Chemistry 2017, 56 (15) , 8920-8925. https://doi.org/10.1021/acs.inorgchem.7b00884
    8. Koji Fujita, Takahiro Kawamoto, Ikuya Yamada, Olivier Hernandez, Naoaki Hayashi, Hirofumi Akamatsu, William Lafargue-Dit-Hauret, Xavier Rocquefelte, Masafumi Fukuzumi, Pascal Manuel, Andrew J. Studer, Christopher S. Knee, and Katsuhisa Tanaka . LiNbO3-Type InFeO3: Room-Temperature Polar Magnet without Second-Order Jahn–Teller Active Ions. Chemistry of Materials 2016, 28 (18) , 6644-6655. https://doi.org/10.1021/acs.chemmater.6b02783
    9. Man-Rong Li, Jason P. Hodges, Maria Retuerto, Zheng Deng, Peter W. Stephens, Mark C. Croft, Xiaoyu Deng, Gabriel Kotliar, Javier Sánchez-Benítez, David Walker, and Martha Greenblatt . Mn2MnReO6: Synthesis and Magnetic Structure Determination of a New Transition-Metal-Only Double Perovskite Canted Antiferromagnet. Chemistry of Materials 2016, 28 (9) , 3148-3158. https://doi.org/10.1021/acs.chemmater.6b00755
    10. Alexei A. Belik, Wei Yi, Yu Kumagai, Yoshio Katsuya, Masahiko Tanaka, and Fumiyasu Oba . LiNbO3-Type Oxide (Tl1–xScx)ScO3: High-Pressure Synthesis, Crystal Structure, and Electronic Properties. Inorganic Chemistry 2016, 55 (4) , 1940-1945. https://doi.org/10.1021/acs.inorgchem.5b02915
    11. Jiangang He, Cesare Franchini, and James M. Rondinelli . Lithium Niobate-Type Oxides as Visible Light Photovoltaic Materials. Chemistry of Materials 2016, 28 (1) , 25-29. https://doi.org/10.1021/acs.chemmater.5b03356
    12. Daisuke Mori, Kie Tanaka, Hiroyuki Saitoh, Takumi Kikegawa, and Yoshiyuki Inaguma . Synthesis, Direct Formation under High Pressure, Structure, and Electronic Properties of LiNbO3-type Oxide PbZnO3. Inorganic Chemistry 2015, 54 (23) , 11405-11410. https://doi.org/10.1021/acs.inorgchem.5b02049
    13. G. P. Nagabhushana, Radha Shivaramaiah, and Alexandra Navrotsky . Thermochemistry of Multiferroic Organic–Inorganic Hybrid Perovskites [(CH3)2NH2][M(HCOO)3] (M = Mn, Co, Ni, and Zn). Journal of the American Chemical Society 2015, 137 (32) , 10351-10356. https://doi.org/10.1021/jacs.5b06146
    14. Takahiro Kawamoto, Koji Fujita, Ikuya Yamada, Tomohiko Matoba, Sung Joo Kim, Peng Gao, Xiaoqing Pan, Scott D. Findlay, Cédric Tassel, Hiroshi Kageyama, Andrew J. Studer, James Hester, Tetsuo Irifune, Hirofumi Akamatsu, and Katsuhisa Tanaka . Room-Temperature Polar Ferromagnet ScFeO3 Transformed from a High-Pressure Orthorhombic Perovskite Phase. Journal of the American Chemical Society 2014, 136 (43) , 15291-15299. https://doi.org/10.1021/ja507958z
    15. Yoshiyuki Inaguma, Akihisa Aimi, Yuichi Shirako, Daichi Sakurai, Daisuke Mori, Hiroshi Kojitani, Masaki Akaogi, and Masanobu Nakayama . High-Pressure Synthesis, Crystal Structure, and Phase Stability Relations of a LiNbO3-Type Polar Titanate ZnTiO3 and Its Reinforced Polarity by the Second-Order Jahn–Teller Effect. Journal of the American Chemical Society 2014, 136 (7) , 2748-2756. https://doi.org/10.1021/ja408931v
    16. Yasuhide Akizuki, Ikuya Yamada, Koji Fujita, Norimasa Nishiyama, Tetuo Irifune, Takeshi Yajima, Hiroshi Kageyama, and Katsuhisa Tanaka . A-Site-Ordered Perovskite MnCu3V4O12 with a 12-Coordinated Manganese(II). Inorganic Chemistry 2013, 52 (19) , 11538-11543. https://doi.org/10.1021/ic401855j
    17. Martin D. Peel, Sharon E. Ashbrook, and Philip Lightfoot . Unusual Phase Behavior in the Piezoelectric Perovskite System, LixNa1–xNbO3. Inorganic Chemistry 2013, 52 (15) , 8872-8880. https://doi.org/10.1021/ic401061t
    18. Nicole A. Benedek and Craig J. Fennie . Why Are There So Few Perovskite Ferroelectrics?. The Journal of Physical Chemistry C 2013, 117 (26) , 13339-13349. https://doi.org/10.1021/jp402046t
    19. Yoshiyuki Inaguma, Kie Tanaka, Takeshi Tsuchiya, Daisuke Mori, Tetsuhiro Katsumata, Tomonori Ohba, Ko-ichi Hiraki, Toshihiro Takahashi, and Hiroyuki Saitoh . Synthesis, Structural Transformation, Thermal Stability, Valence State, and Magnetic and Electronic Properties of PbNiO3 with Perovskite- and LiNbO3-Type Structures. Journal of the American Chemical Society 2011, 133 (42) , 16920-16929. https://doi.org/10.1021/ja206247j
    20. Alexei A. Belik, Takao Furubayashi, Hitoshi Yusa, and Eiji Takayama-Muromachi . Perovskite, LiNbO3, Corundum, and Hexagonal Polymorphs of (In1–xMx)MO3. Journal of the American Chemical Society 2011, 133 (24) , 9405-9412. https://doi.org/10.1021/ja2010362
    21. Y. Fujioka, J. Frantti, and R. M. Nieminen . Itinerant-Electron Ferromagnetism in a Titanium-Rich Magnesium Titanate Ilmenite Solid Solution. The Journal of Physical Chemistry C 2011, 115 (5) , 1457-1463. https://doi.org/10.1021/jp107698j
    22. Hongwu Xu,, Alexandra Navrotsky,, Yali Su, and, M. Lou Balmer. Perovskite Solid Solutions along the NaNbO3−SrTiO3 Join:  Phase Transitions, Formation Enthalpies, and Implications for General Perovskite Energetics. Chemistry of Materials 2005, 17 (7) , 1880-1886. https://doi.org/10.1021/cm047785i
    23. Hongwu Xu,, Yali Su,, M. Lou Balmer, and, Alexandra Navrotsky. A New Series of Oxygen-Deficient Perovskites in the NaTixNb1-xO3-0.5x System:  Synthesis, Crystal Chemistry, and Energetics. Chemistry of Materials 2003, 15 (9) , 1872-1878. https://doi.org/10.1021/cm020963s
    24. Oleg V. Mikhailov. N-Perovskite-Like Metal Trinitrides MM′N 3 : 30 Years Since Discovery. Comments on Inorganic Chemistry 2025, , 1-28. https://doi.org/10.1080/02603594.2025.2477604
    25. Mingda Lv, Shengcai Zhu, Jiachao Liu, Yi Hu, Feng Zhu, Xiaojing Lai, Dongzhou Zhang, Bin Chen, Przemyslaw Dera, Jie Li, Susannah M. Dorfman, . Phase transformation of ferric-iron-rich silicate in Earth’s mid-mantle. American Mineralogist 2025, 110 (3) , 414-421. https://doi.org/10.2138/am-2024-9410
    26. U. Mohanty, I. Naik, S.D. Kaushik. Development of hysteretic behavior in ilmenite MnTi(Al)O3 spin-glass system. Physica B: Condensed Matter 2025, 699 , 416869. https://doi.org/10.1016/j.physb.2024.416869
    27. Tanusri Saha-Dasgupta, Koushik Pradhan. Kinetic energy driven two-sublattice double-exchange: a general mechanism of magnetic exchange in transition metal compounds. Journal of Physics: Condensed Matter 2025, 37 (2) , 023001. https://doi.org/10.1088/1361-648X/ad841a
    28. Kiran Batool, Malika Rani, Mariam Akram, Rubia Shafique, Asma A. Alothman, Huda Algahtani, Mushab Saleh Mohammad, Sajid Ali, Fakhar Jahan. Novel multinary nanocomposite of GO/AlCrO 3 /SiO 2 /Mn 3 O 4 /SnO 2 : synthesis and electrochemical performance for energy storage system. Journal of Taibah University for Science 2024, 18 (1) https://doi.org/10.1080/16583655.2024.2351619
    29. Lalhumhima, Bernard Lalroliana, Lalmuanchhana, R Zosiamliana, D P Rai, R C Tiwari, Lalhriatzuala. Comprehensive investigation of structural, magnetic, electronic, optical, mechanical, and piezoelectric properties of ATiO 3 (A = Mn, Fe, Ni) compounds for sustainable energy materials. Journal of Physics: Condensed Matter 2024, 36 (48) , 485901. https://doi.org/10.1088/1361-648X/ad7218
    30. Nguyen Anh Tien, Nguyen Thai Son, Elena Viktorovna Tomina, Le Thi Thanh Thuy, Vu Thi Ngoc Anh, Tran Dinh Trinh, Thanh Son Cam. Structural, magnetic, and optical properties of perovskite-like SmFeO 3 nanoparticles obtained from the co-precipitation method. Materials Science and Technology 2024, https://doi.org/10.1177/02670836241299702
    31. Swadesh Paul, Shubhankar Barman, Anuja Datta. Zn-based oxide perovskite nanocomposites for energy and sensing applications. Journal of Materials Science 2024, 59 (38) , 17968-17990. https://doi.org/10.1007/s10853-024-09765-4
    32. Sahil Kumar, Vishal Sharma, Neha Kumari, Gun Anit Kaur, Anirban Saha, Sapna Thakur, Mamta Shandilya. Recent advances in perovskite materials: exploring multifaceted properties for energy harvesting applications. Ionics 2024, 30 (9) , 5159-5188. https://doi.org/10.1007/s11581-024-05658-3
    33. Karthick Sekar, Ravichandran Manisekaran, Onyekachi Michael Nwakanma, Mercyrani Babudurai. Significance of Formamidinium Incorporation in Perovskite Composition and Its Impact on Solar Cell Efficiency: A Mini‐Review. Advanced Energy and Sustainability Research 2024, 5 (8) https://doi.org/10.1002/aesr.202400003
    34. M. Azhar, Saba Niaz, K. M. Batoo, Sidra Khan, Hadia Noor, Shahid Atiq, Y. B. Xu, Shahzad Naseem, Saira Riaz. Stirring-mediated dielectric and ferroelectric response in perovskite BaTiO3 for multilayer capacitor applications. Journal of the Korean Ceramic Society 2024, 61 (4) , 735-753. https://doi.org/10.1007/s43207-024-00370-4
    35. S. Samal, S. Mishra, S. K. Parida. Microstructure, dielectric, and impedance spectroscopy of the dysprosium-modified LaBiO 3 ceramic. Ferroelectrics 2024, 618 (2) , 321-333. https://doi.org/10.1080/00150193.2023.2273709
    36. P. S. Sahoo, B. B. Mohanty, A. N. Pani, S. S. Rout, L. K. Mishra, H. K. Tola, R. N. P. Choudhary. Electrical characterization of BaBi 4 Zr 2 Sn 2 O 15 complex ferroelectric system. Ferroelectrics 2024, 618 (2) , 394-403. https://doi.org/10.1080/00150193.2023.2273716
    37. Ashish Raturi, Poornima Mittal, Sudhanshu Choudhary. Effect of rare earth metal (lanthanum) doping on optical and electronic properties of lithium niobate (LiNbO3): DFT insights. 2024, 030060. https://doi.org/10.1063/5.0192542
    38. Ramarajan Ramanathan, Ramesh Chandra Mallik, Michael Zinigrad. Effective Approaches for Perovskite Solar Cells: Recent Advances and Perspectives. physica status solidi (a) 2023, 220 (14) https://doi.org/10.1002/pssa.202300091
    39. Sana Jebali, Mahdi Meftah, Chadha Mejri, Abdesslem Ben Haj Amara, Walid Oueslati. Enhancement of Photocatalytic Activity and Microstructural Growth of Cobalt-Substituted Ba1−xCoxTiO3 {x = 0, …, 1} Heterostructure. ChemEngineering 2023, 7 (3) , 43. https://doi.org/10.3390/chemengineering7030043
    40. Muhammad Bkkar, Roman Olekhnovich, Arina Kremleva, Vera Sitnikova, Yakov Kovach, Nikolai Zverkov, Mayya Uspenskaya. Influence of Electrospinning Setup Parameters on Properties of Polymer-Perovskite Nanofibers. Polymers 2023, 15 (3) , 731. https://doi.org/10.3390/polym15030731
    41. Yoshiyuki Kawazoe, Takeshi Kanomata, Ryunosuke Note. MnTiO3 (Synthesized Under Pressure). 2023, 256-259. https://doi.org/10.1007/978-3-662-64593-2_61
    42. Yoshiyuki Kawazoe, Takeshi Kanomata, Ryunosuke Note. FeTiO3. 2023, 297-300. https://doi.org/10.1007/978-3-662-64593-2_71
    43. Kabir O. Oyedotun, Joshua O. Ighalo, James F. Amaku, Chijioke Olisah, Adedapo O. Adeola, Kingsley O. Iwuozor, Kovo G. Akpomie, Jeanet Conradie, Kayode A. Adegoke. Advances in Supercapacitor Development: Materials, Processes, and Applications. Journal of Electronic Materials 2023, 52 (1) , 96-129. https://doi.org/10.1007/s11664-022-09987-9
    44. N. K. Singh, A. Kumar, R. Dawn, S. Jena, A. Kumari, V. R. Singh, M. Zzaman, R. Shahid, D. Panda, S. K. Sahoo, U. K. Goutam, V. K. Verma, K. Kumar, M. Khatravath, A. Priyam. Resonance Photoemission Spectroscopic Study of Thermally Evaporated NiTiO3 Thin Films. Journal of Electronic Materials 2023, 52 (1) , 669-678. https://doi.org/10.1007/s11664-022-10037-7
    45. Masaki Azuma, Ikuya Yamada, Kazunari Yamaura, Alexei A. Belik, Takafumi Yamamoto, Masayuki Fukuda. High pressure studies of transition metal oxides. 2023, 681-718. https://doi.org/10.1016/B978-0-12-823144-9.00141-2
    46. Shubhangi Bhardwaj, Ashutosh Mohanty, Ranjan Das, Pallavi Singh, Ankit Singh, Dipankar Das Sarma, Sushobhan Avasthi. Dielectric Properties of Acetamidinium Substituted Methylammonium Lead Iodide Perovskite. 2022, 1-5. https://doi.org/10.1109/ICEE56203.2022.10118156
    47. D.Shobana Priyanka, M.Mohamed Sheik Sirajuddeen, Srinivasan M., Ramasamy P.. Spin polarized study of alkaline earth-cubic lead perovskites (PbXO3, X = Mg, Ca & Sr) for emerging spintronic technology. Journal of Crystal Growth 2022, 590 , 126699. https://doi.org/10.1016/j.jcrysgro.2022.126699
    48. K. Aishwarya, I. Hannah Jeniffer, S. Maruthasalamoorthy, R. Nirmala, N. Punithavelan, R. Navamathavan. Review—State of the Art of the Multifunctional Bismuth Ferrite: Synthesis Method and Applications. ECS Journal of Solid State Science and Technology 2022, 11 (4) , 043010. https://doi.org/10.1149/2162-8777/ac627a
    49. Jiajun Mo, Puyue Xia, Qinghang Zhang, Haiwen Chen, Lebin Liu, Yanfang Xia, Min Liu. Magnetism of Bi Fe 0.9 Cr 0.1 O 3 studied experimentally and with Monte Carlo simulations. Physical Review B 2022, 105 (9) https://doi.org/10.1103/PhysRevB.105.094411
    50. Bita Farhadi, Fatemeh Zabihi, Ishaq Lugoloobi, Aimin Liu. A hypothesis on optoelectronic behavior of CH3NH3SnIxBr3−x perovskite: Density functional theory approach. Solar Energy 2022, 233 , 11-17. https://doi.org/10.1016/j.solener.2022.01.022
    51. Chengliang Xia, Yue Chen, Hanghui Chen. Pressure-induced metal–insulator transition in oxygen-deficient LiNbO 3 -type ferroelectrics. Journal of Physics: Condensed Matter 2022, 34 (2) , 025501. https://doi.org/10.1088/1361-648X/ac2e30
    52. Vicky Fidelsky Kozokaro, Maytal Caspary Toroker. Perovskite La 0.3 Sr 0.7 Fe 0.7 Cr 0.3 O 3− δ Catalysis Raises the Bar: Preventing Unwanted Near‐Surface Sr Segregation and SrCO 3 Precipitation. Advanced Theory and Simulations 2022, 5 (1) https://doi.org/10.1002/adts.202100173
    53. Qamar Wali, Muhammad Aamir, Abid Ullah, Faiza Jan Iftikhar, Muhammad Ejaz Khan, Javeed Akhtar, Shengyuan Yang. Fundamentals of Hysteresis in Perovskite Solar Cells: From Structure‐Property Relationship to Neoteric Breakthroughs. The Chemical Record 2022, 22 (1) https://doi.org/10.1002/tcr.202100150
    54. Masaki Akaogi. Crystal Chemistry, Phase Relations, and Energetics of High-Pressure ABO3 Perovskites. 2022, 115-132. https://doi.org/10.1007/978-981-19-6363-6_7
    55. VINAYA JOSE, VISMAYA JOSE, C. FREEDA CHRISTY, A. SAMSON NESARAJ. Development of Perovskite Based Electrode Materials for Application in Electrochemical Supercapacitors: Present Status and Future Prospects. Asian Journal of Chemistry 2022, 34 (3) , 497-507. https://doi.org/10.14233/ajchem.2022.23549
    56. Masamichi Negishi, Kohei Fujiwara, Atsushi Tsukazaki. Formation of ilmenite-type single-crystalline MgTiO3 thin films by pulsed-laser deposition. AIP Advances 2021, 11 (12) https://doi.org/10.1063/5.0078021
    57. Md Soaib Khan, Rajeev Ranjan, Sweta Sharma, Ashok Srivastava. Gd and Nd Doped Perovskite – Potential Material for Sustainable Energy. 2021, 1-4. https://doi.org/10.1109/ETI4.051663.2021.9619211
    58. Andreas Kling, José G. Marques. Unveiling the Defect Structure of Lithium Niobate with Nuclear Methods. Crystals 2021, 11 (5) , 501. https://doi.org/10.3390/cryst11050501
    59. Florian Pielnhofer, Leo Diehl, Alberto Jiménez-Solano, Annette Bussmann-Holder, J. Christian Schön, Bettina V. Lotsch. Examination of possible high-pressure candidates of SnTiO3: The search for novel ferroelectric materials. APL Materials 2021, 9 (2) https://doi.org/10.1063/5.0029968
    60. Bin Wang, Alexandra Navrotsky. Thermodynamics of cesium lead halide (CsPbX3, x= I, Br, Cl) perovskites. Thermochimica Acta 2021, 695 , 178813. https://doi.org/10.1016/j.tca.2020.178813
    61. Oswaldo Sánchez-Dena, Cesar David Fierro-Ruiz, Sergio David Villalobos-Mendoza, Diana María Carrillo Flores, José Trinidad Elizalde-Galindo, Rurik Farías. Lithium Niobate Single Crystals and Powders Reviewed—Part I. Crystals 2020, 10 (11) , 973. https://doi.org/10.3390/cryst10110973
    62. K. Hossain, S. Khanom, F. Israt, M.K. Hossain, M.A. Hossain, F. Ahmed. First-principles study on structural, mechanical and optoelectronic properties of lead-free mixed Ge–Sn hybrid organic-inorganic perovskites. Solid State Communications 2020, 320 , 114024. https://doi.org/10.1016/j.ssc.2020.114024
    63. Yuichi Okazaki, Ikuya Yamada, Shunsuke Yagi. Oxygen Evolution Catalysis for Iron Oxides with Various Structures. MATERIALS TRANSACTIONS 2020, 61 (8) , 1523-1526. https://doi.org/10.2320/matertrans.MT-MN2019043
    64. Junran Zhang, Yixuan Xu, Shihai An, Ying Sun, Xiaodong Li, Yanchun Li. Giant mechanocaloric materials for solid-state cooling*. Chinese Physics B 2020, 29 (7) , 076202. https://doi.org/10.1088/1674-1056/ab8a40
    65. Xu Sang, Huimin Zhang, Aiming Chang, Junyi Zhou, Haibing Li, Xiaohui Li. Correlation between B value deviation and sintering temperature of perovskite solid solution materials. Journal of the American Ceramic Society 2020, 103 (3) , 1903-1911. https://doi.org/10.1111/jace.16906
    66. Sayantan Sinha, Bibhu Prasad Swain. Graphene for the Potential Renewable Energy Applications. 2020, 439-450. https://doi.org/10.1007/978-981-15-4246-6_24
    67. Ubaidah Syafiq, Narges Ataollahi, Paolo Scardi. Progress in CZTS as hole transport layer in perovskite solar cell. Solar Energy 2020, 196 , 399-408. https://doi.org/10.1016/j.solener.2019.12.016
    68. Jan Ady, Arum Nurpratiwi, Aliyah, Winda Apriliana. The Perovskite Phase Optimize of Barium Titanate Nanoparticles. Journal of Physics: Conference Series 2020, 1445 (1) , 012001. https://doi.org/10.1088/1742-6596/1445/1/012001
    69. Radha Shivaramaiah, Sindhoora Tallapragada, G.P. Nagabhushana, Alexandra Navrotsky. Synthesis and thermodynamics of transition metal oxide based sodium ion cathode materials. Journal of Solid State Chemistry 2019, 280 , 121011. https://doi.org/10.1016/j.jssc.2019.121011
    70. Jing Zhang, Bin Xu, Yu-Sheng Wang, Zhen Qin, San-Huang Ke. First-principles investigation of the ferroelectric, piezoelectric and nonlinear optical properties of LiNbO3-type ZnTiO3. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-53986-6
    71. Minji Lee, Ahmed Y. Mohamed, Doyeong Kim, Dae Hyun Kim, Tae Joo Park, Deok-Yong Cho. Identification of ZnTiO3 nanostructures in oxidized TiN/ZnS thin films using X-ray absorption spectroscopy. Applied Surface Science 2019, 494 , 63-71. https://doi.org/10.1016/j.apsusc.2019.07.188
    72. Zhaodong Liu, Leonid Dubrovinsky, Catherine McCammon, Sergey V. Ovsyannikov, Iuliia Koemets, Luyao Chen, Qi Cui, Na Su, Jinguang Cheng, Tian Cui, Bingbing Liu, Tomoo Katsura. A new (Mg0.5Fe0.53+)(Si0.5Al0.53+)O3 LiNbO3-type phase synthesized at lower mantle conditions. American Mineralogist 2019, 104 (8) , 1213-1216. https://doi.org/10.2138/am-2019-7070
    73. T. Mazaheri, Bo Sun, J. Scher-Zagier, A. S. Thind, D. Magee, P. Ronhovde, T. Lookman, R. Mishra, Z. Nussinov. Stochastic replica voting machine prediction of stable cubic and double perovskite materials and binary alloys. Physical Review Materials 2019, 3 (6) https://doi.org/10.1103/PhysRevMaterials.3.063802
    74. Lei Liu, Hong X. Song, Xiaodong Li, Dongzhou Zhang, Roland Mathieu, Sergey Ivanov, Henrik Skogby, Peter Lazor. Pressure-induced polymorphism and piezochromism in Mn2FeSbO6. Applied Physics Letters 2019, 114 (16) https://doi.org/10.1063/1.5090649
    75. Kohei Fujiwara, Hiroya Minato, Junichi Shiogai, Akihito Kumamoto, Naoya Shibata, Atsushi Tsukazaki. Thin-film stabilization of LiNbO3-type ZnSnO3 and MgSnO3 by molecular-beam epitaxy. APL Materials 2019, 7 (2) https://doi.org/10.1063/1.5054289
    76. U. Mohanty, S. D. Kaushik, H. Bhatt, M. N. Deo, I. Naik. Neutron diffraction and magnetic behavior of ilmenite MnTiO3. 2019, 030514. https://doi.org/10.1063/1.5113353
    77. S. Mtougui, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Magnetic properties of the perovskite BiFeO3: Monte Carlo simulation. Superlattices and Microstructures 2018, 123 , 111-118. https://doi.org/10.1016/j.spmi.2018.05.005
    78. Tamas Varga, Timothy C. Droubay, Libor Kovarik, Dehong Hu, Scott A. Chambers. Controlling the structure and ferroic properties of strained epitaxial NiTiO3 thin films on sapphire by post-deposition annealing. Thin Solid Films 2018, 662 , 47-53. https://doi.org/10.1016/j.tsf.2018.07.030
    79. Sandeep Kumar Lakhera, Hafeez Yusuf Hafeez, Pandiyarasan Veluswamy, V. Ganesh, Anish Khan, Hiroya Ikeda, Bernaurdshaw Neppolian. Enhanced photocatalytic degradation and hydrogen production activity of in situ grown TiO2 coupled NiTiO3 nanocomposites. Applied Surface Science 2018, 449 , 790-798. https://doi.org/10.1016/j.apsusc.2018.02.136
    80. Sike Wu, Cheng Zhou, Elham Doroodchi, Rajesh Nellore, Behdad Moghtaderi. A review on high-temperature thermochemical energy storage based on metal oxides redox cycle. Energy Conversion and Management 2018, 168 , 421-453. https://doi.org/10.1016/j.enconman.2018.05.017
    81. Sung Gu Kang. First-principles analysis of ferroelectric transition in MnSnO3 and MnTiO3 perovskites. Journal of Solid State Chemistry 2018, 262 , 251-255. https://doi.org/10.1016/j.jssc.2018.03.026
    82. Marina R. Filip, Feliciano Giustino. The geometric blueprint of perovskites. Proceedings of the National Academy of Sciences 2018, 115 (21) , 5397-5402. https://doi.org/10.1073/pnas.1719179115
    83. Hiroya Minato, Kohei Fujiwara, Atsushi Tsukazaki. High-mobility field-effect transistor based on crystalline ZnSnO3 thin films. AIP Advances 2018, 8 (5) https://doi.org/10.1063/1.5034403
    84. Aslam Hossain, Prasanta Bandyopadhyay, Sanjay Roy. An overview of double perovskites A2B′B″O6 with small ions at A site: Synthesis, structure and magnetic properties. Journal of Alloys and Compounds 2018, 740 , 414-427. https://doi.org/10.1016/j.jallcom.2017.12.282
    85. Mallika Dasari, Rajesh P. Balaraman, Punit Kohli. Photovoltaics and Nanotechnology as Alternative Energy. 2018, 211-241. https://doi.org/10.1007/978-3-319-76090-2_7
    86. Peiyuan Guan, Yuandong Sun, Tao Wan, Xi Lin, Zhemi Xu, Dewei Chu. Development of ferroelectric oxides based resistive switching materials. Materials Science and Technology 2017, 33 (17) , 2010-2023. https://doi.org/10.1080/02670836.2017.1366712
    87. Yoshiyuki Inaguma. High‐Pressure Perovskite: Synthesis, Structure, and Phase Relation. 2017, 49-106. https://doi.org/10.1002/9783527691036.hsscvol2005
    88. Ru-Bin Lee, Joon-Ching Juan, Chin-Wei Lai, Kian-Mun Lee. Ilmenite: Properties and photodegradation kinetic on Reactive Black 5 dye. Chinese Chemical Letters 2017, 28 (7) , 1613-1618. https://doi.org/10.1016/j.cclet.2017.03.006
    89. Jing Zhang, San Huang Ke, Derwyn A. Rowlands. First-principles study on the dielectric and transport properties of the LiNbO 3 -type CdPbO 3. International Journal of Modern Physics B 2017, 31 (05) , 1750032. https://doi.org/10.1142/S0217979217500321
    90. Tridip Das, Jason D. Nicholas, Yue Qi. Polaron size and shape effects on oxygen vacancy interactions in lanthanum strontium ferrite. Journal of Materials Chemistry A 2017, 5 (47) , 25031-25043. https://doi.org/10.1039/C7TA06948K
    91. Fei-Ting Huang, Bin Gao, Jae-Wook Kim, Xuan Luo, Yazhong Wang, Ming-Wen Chu, Chung-Kai Chang, Hwo-Shuenn Sheu, Sang-Wook Cheong. Topological defects at octahedral tilting plethora in bi-layered perovskites. npj Quantum Materials 2016, 1 (1) https://doi.org/10.1038/npjquantmats.2016.17
    92. R. V. Rodrigues, E. J. B. Muri, P. C. M. da Cruz, A. A. L. Marins, L. U. Khan, R. M. Oliveira, J. R. Matos, H. F. Brito, L. C. Machado. Thermogravimetric study on preparation of NiTiO3 in different reaction times. Journal of Thermal Analysis and Calorimetry 2016, 126 (3) , 1499-1505. https://doi.org/10.1007/s10973-016-5836-5
    93. Wei Sun, Jincheng Du. Defect Behaviors in Zinc Oxide and Zinc Titanates Ceramics from First Principles Computer Simulations. 2016https://doi.org/10.12794/metadc955093
    94. Man‐Rong Li, Maria Retuerto, Peter W. Stephens, Mark Croft, Denis Sheptyakov, Vladimir Pomjakushin, Zheng Deng, Hirofumi Akamatsu, Venkatraman Gopalan, Javier Sánchez‐Benítez, Felix O. Saouma, Joon I. Jang, David Walker, Martha Greenblatt. Low‐Temperature Cationic Rearrangement in a Bulk Metal Oxide. Angewandte Chemie 2016, 128 (34) , 10016-10021. https://doi.org/10.1002/ange.201511360
    95. Man‐Rong Li, Maria Retuerto, Peter W. Stephens, Mark Croft, Denis Sheptyakov, Vladimir Pomjakushin, Zheng Deng, Hirofumi Akamatsu, Venkatraman Gopalan, Javier Sánchez‐Benítez, Felix O. Saouma, Joon I. Jang, David Walker, Martha Greenblatt. Low‐Temperature Cationic Rearrangement in a Bulk Metal Oxide. Angewandte Chemie International Edition 2016, 55 (34) , 9862-9867. https://doi.org/10.1002/anie.201511360
    96. Sebastian Zlotnik, Alexander Tkach, Paula M. Vilarinho. Functional Tantalum‐based Oxides: From the Structure to the Applications. 2016, 337-383. https://doi.org/10.1002/9781119242598.ch9
    97. Cristina Prieto, Patrick Cooper, A. Inés Fernández, Luisa F. Cabeza. Review of technology: Thermochemical energy storage for concentrated solar power plants. Renewable and Sustainable Energy Reviews 2016, 60 , 909-929. https://doi.org/10.1016/j.rser.2015.12.364
    98. María E. Zarazúa-Morín, Leticia M. Torres-Martínez, Edgar Moctezuma, Isaías Juárez-Ramírez, Brenda B. Zermeño. Synthesis, characterization, and catalytic activity of FeTiO3/TiO2 for photodegradation of organic pollutants with visible light. Research on Chemical Intermediates 2016, 42 (2) , 1029-1043. https://doi.org/10.1007/s11164-015-2071-9
    99. M. A. Ruiz-Preciado, A. Bulou, M. Makowska-Janusik, A. Gibaud, A. Morales-Acevedo, A. Kassiba. Nickel titanate (NiTiO 3 ) thin films: RF-sputtering synthesis and investigation of related features for photocatalysis. CrystEngComm 2016, 18 (18) , 3229-3236. https://doi.org/10.1039/C6CE00306K
    100. Hsin-An Chen, Ming-Hsien Lee, Chun-Wei Chen. Wavelength-dependent optical transition mechanisms for light-harvesting of perovskite MAPbI 3 solar cells using first-principles calculations. Journal of Materials Chemistry C 2016, 4 (23) , 5248-5254. https://doi.org/10.1039/C6TC00773B
    Load all citations

    Chemistry of Materials

    Cite this: Chem. Mater. 1998, 10, 10, 2787–2793
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cm9801901
    Published August 29, 1998
    Copyright © 1998 American Chemical Society

    Article Views

    4765

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.