Assessing Principal Component Regression Prediction of Neurochemicals Detected with Fast-Scan Cyclic VoltammetryClick to copy article linkArticle link copied!
Abstract

Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 72 publications.
- Tuo Yang, Tongjun Shen, Boyuan Duan, Zeyang Liu, Chunxia Wang. In Vivo Electrochemical Biosensing Technologies for Neurochemicals: Recent Advances in Electrochemical Sensors and Devices. ACS Sensors 2025, 10
(1)
, 100-121. https://doi.org/10.1021/acssensors.4c03314
- Joseph N. Tonn, Richard B. Keithley. Waveform Optimization for the In Vitro Detection of Caffeic Acid by Fast-Scan Cyclic Voltammetry. ACS Measurement Science Au 2024, 4
(5)
, 534-545. https://doi.org/10.1021/acsmeasuresciau.4c00029
- Jovica Todorov, Sarah E. Calhoun, Gregory S. McCarty, Leslie A. Sombers. Electrochemical Quantification of Enkephalin Peptides Using Fast-Scan Cyclic Voltammetry. Analytical Chemistry 2024, 96
(34)
, 13916-13927. https://doi.org/10.1021/acs.analchem.4c02418
- Laney C. Kimble, Jack S. Twiddy, Jenna M. Berger, Alexandra G. Forderhase, Gregory S. McCarty, John Meitzen, Leslie A. Sombers. Simultaneous, Real-Time Detection of Glutamate and Dopamine in Rat Striatum Using Fast-Scan Cyclic Voltammetry. ACS Sensors 2023, 8
(11)
, 4091-4100. https://doi.org/10.1021/acssensors.3c01267
- Hoseok Choi, Hojin Shin, Hyun U. Cho, Charles D. Blaha, Michael L. Heien, Yoonbae Oh, Kendall H. Lee, Dong Pyo Jang. Neurochemical Concentration Prediction Using Deep Learning vs Principal Component Regression in Fast Scan Cyclic Voltammetry: A Comparison Study. ACS Chemical Neuroscience 2022, 13
(15)
, 2288-2297. https://doi.org/10.1021/acschemneuro.2c00069
- Samantha L. Regan, Michael T. Cryan, Michael T. Williams, Charles V. Vorhees, Ashley E. Ross. Enhanced Transient Striatal Dopamine Release and Reuptake in Lphn3 Knockout Rats. ACS Chemical Neuroscience 2020, 11
(8)
, 1171-1177. https://doi.org/10.1021/acschemneuro.0c00033
- Carl J. Meunier, Gregory S. McCarty, Leslie A. Sombers. Drift Subtraction for Fast-Scan Cyclic Voltammetry Using Double-Waveform Partial-Least-Squares Regression. Analytical Chemistry 2019, 91
(11)
, 7319-7327. https://doi.org/10.1021/acs.analchem.9b01083
- Carl J. Meunier, Edwin C. Mitchell, James G. Roberts, Jonathan V. Toups, Gregory S. McCarty, and Leslie A. Sombers . Electrochemical Selectivity Achieved Using a Double Voltammetric Waveform and Partial Least Squares Regression: Differentiating Endogenous Hydrogen Peroxide Fluctuations from Shifts in pH. Analytical Chemistry 2018, 90
(3)
, 1767-1776. https://doi.org/10.1021/acs.analchem.7b03717
- Leslie R. Wilson, Sambit Panda, Andreas C. Schmidt, and Leslie A. Sombers . Selective and Mechanically Robust Sensors for Electrochemical Measurements of Real-Time Hydrogen Peroxide Dynamics in Vivo. Analytical Chemistry 2018, 90
(1)
, 888-895. https://doi.org/10.1021/acs.analchem.7b03770
- James G. Roberts and Leslie A. Sombers . Fast-Scan Cyclic Voltammetry: Chemical Sensing in the Brain and Beyond. Analytical Chemistry 2018, 90
(1)
, 490-504. https://doi.org/10.1021/acs.analchem.7b04732
- Justin
A. Johnson, Josh H. Gray, Nathan T. Rodeberg, R. Mark Wightman. Multivariate Curve Resolution for Signal Isolation from Fast-Scan Cyclic Voltammetric Data. Analytical Chemistry 2017, 89
(19)
, 10547-10555. https://doi.org/10.1021/acs.analchem.7b02771
- Amber S. Moody, Peymon C. Baghernejad, Kelsey R. Webb, and Bhavya Sharma . Surface Enhanced Spatially Offset Raman Spectroscopy Detection of Neurochemicals Through the Skull. Analytical Chemistry 2017, 89
(11)
, 5688-5692. https://doi.org/10.1021/acs.analchem.7b00985
- Justin
A. Johnson, Caddy N. Hobbs, R. Mark Wightman. Removal of Differential Capacitive Interferences in Fast-Scan Cyclic Voltammetry. Analytical Chemistry 2017, 89
(11)
, 6166-6174. https://doi.org/10.1021/acs.analchem.7b01005
- Nathan T. Rodeberg, Stefan G. Sandberg, Justin A. Johnson, Paul E. M. Phillips, and R. Mark Wightman . Hitchhiker’s Guide to Voltammetry: Acute and Chronic Electrodes for in Vivo Fast-Scan Cyclic Voltammetry. ACS Chemical Neuroscience 2017, 8
(2)
, 221-234. https://doi.org/10.1021/acschemneuro.6b00393
- Tongfang Xiao, Fei Wu, Jie Hao, Meining Zhang, Ping Yu, and Lanqun Mao . In Vivo Analysis with Electrochemical Sensors and Biosensors. Analytical Chemistry 2017, 89
(1)
, 300-313. https://doi.org/10.1021/acs.analchem.6b04308
- Justin A. Johnson, Nathan T. Rodeberg, and R. Mark Wightman . Failure of Standard Training Sets in the Analysis of Fast-Scan Cyclic Voltammetry Data. ACS Chemical Neuroscience 2016, 7
(3)
, 349-359. https://doi.org/10.1021/acschemneuro.5b00302
- Nathan T. Rodeberg, Justin A. Johnson, Courtney M. Cameron, Michael P. Saddoris, Regina M. Carelli, and R. Mark Wightman . Construction of Training Sets for Valid Calibration of in Vivo Cyclic Voltammetric Data by Principal Component Analysis. Analytical Chemistry 2015, 87
(22)
, 11484-11491. https://doi.org/10.1021/acs.analchem.5b03222
- Tatiana A. Shnitko and Donita L. Robinson . Regional Variation in Phasic Dopamine Release during Alcohol and Sucrose Self-Administration in Rats. ACS Chemical Neuroscience 2015, 6
(1)
, 147-154. https://doi.org/10.1021/cn500251j
- Ashley E. Ross and B. Jill Venton . Sawhorse Waveform Voltammetry for Selective Detection of Adenosine, ATP, and Hydrogen Peroxide. Analytical Chemistry 2014, 86
(15)
, 7486-7493. https://doi.org/10.1021/ac501229c
- Elizabeth S. Bucher, Kenneth Brooks, Matthew D. Verber, Richard B. Keithley, Catarina Owesson-White, Susan Carroll, Pavel Takmakov, Collin J. McKinney, and R. Mark Wightman . Flexible Software Platform for Fast-Scan Cyclic Voltammetry Data Acquisition and Analysis. Analytical Chemistry 2013, 85
(21)
, 10344-10353. https://doi.org/10.1021/ac402263x
- Kun Liu, Ping Yu, Yuqing Lin, Yuexiang Wang, Takeo Ohsaka, and Lanqun Mao . Online Electrochemical Monitoring of Dynamic Change of Hippocampal Ascorbate: Toward a Platform for In Vivo Evaluation of Antioxidant Neuroprotective Efficiency against Cerebral Ischemia Injury. Analytical Chemistry 2013, 85
(20)
, 9947-9954. https://doi.org/10.1021/ac402620c
- Mark J. Ferris, Erin S. Calipari, Jordan T. Yorgason, and Sara R. Jones . Examining the Complex Regulation and Drug-Induced Plasticity of Dopamine Release and Uptake Using Voltammetry in Brain Slices. ACS Chemical Neuroscience 2013, 4
(5)
, 693-703. https://doi.org/10.1021/cn400026v
- Tiffiny Chan, Ari M. Chow, Xin R. Cheng, Derek W. F. Tang, Ian R. Brown, and Kagan Kerman . Oxidative Stress Effect of Dopamine on α-Synuclein: Electroanalysis of Solvent Interactions. ACS Chemical Neuroscience 2012, 3
(7)
, 569-574. https://doi.org/10.1021/cn300034t
- Usamma Amjad, Shreya Mahajan, Jiwon Choi, Ritesh Shrivastav, Raymond Murray, Abby Somich, Olivia Coyne, Helen Nora Schwerdt. Micro-invasive probes for monitoring electrical and chemical neural activity in nonhuman primates. 2025https://doi.org/10.1101/2025.01.30.635139
- Mason L. Perillo, Bhavna Gupta, Akash Saxena, Alexandra P. Veltri, Wen Li, James R. Siegenthaler, Erin K. Purcell. Biological and Mechanical Limitations for Chronic Fast‐Scan Cyclic Voltammetry Sensor Design. Advanced Materials Technologies 2025, 51 https://doi.org/10.1002/admt.202401808
- Ahmed Hasnain Jalal, Sepehr Arbabi, Mohammad A. Ahad, Fahmida Alam, Md Ashfaq Ahmed. Wearable Alcohol Monitoring Device for the Data-Driven Transcutaneous Alcohol Diffusion Model. Sensors 2024, 24
(13)
, 4233. https://doi.org/10.3390/s24134233
- Usamma Amjad, Jiwon Choi, Daniel J. Gibson, Raymond Murray, Ann M. Graybiel, Helen N. Schwerdt. Synchronous Measurements of Extracellular Action Potentials and Neurochemical Activity with Carbon Fiber Electrodes in Nonhuman Primates. eneuro 2024, , ENEURO.0001-24.2024. https://doi.org/10.1523/ENEURO.0001-24.2024
- Francis Carter, Marie‐Pierre Cossette, Ivan Trujillo‐Pisanty, Vasilios Pallikaras, Yannick‐André Breton, Kent Conover, Jill Caplan, Pavel Solis, Jacques Voisard, Alexandra Yaksich, Peter Shizgal. Does phasic dopamine release cause policy updates?. European Journal of Neuroscience 2024, 59
(6)
, 1260-1277. https://doi.org/10.1111/ejn.16199
- Moeid Jamalzadeh, Edoardo Cuniberto, Davood Shahrjerdi. A Framework for Benchmarking Emerging FSCV Neurochemical Sensors. Advanced Physics Research 2024, 3
(2)
https://doi.org/10.1002/apxr.202300079
- Michal Kielbinski, Joanna Bernacka, Katarzyna Zajda, Agnieszka Wawrzczak‐Bargieła, Marzena Maćkowiak, Ryszard Przewlocki, Wojciech Solecki. Acute stress modulates noradrenergic signaling in the ventral tegmental area‐amygdalar circuit. Journal of Neurochemistry 2023, 164
(5)
, 598-612. https://doi.org/10.1111/jnc.15698
- Joanna Bernacka, Michal Kielbinski, Agnieszka Wawrzczak-Bargieła, Katarzyna Zajda, Marzena Maćkowiak, Ryszard Przewlocki, Wojciech Solecki. Alpha-2A but not 2B/C noradrenergic receptors in ventral tegmental area regulate phasic dopamine release in nucleus accumbens core. Neuropharmacology 2022, 220 , 109258. https://doi.org/10.1016/j.neuropharm.2022.109258
- Abigail Kalmbach, Vanessa Winiger, Nuri Jeong, Arun Asok, Charles R. Gallistel, Peter D. Balsam, Eleanor H. Simpson. Dopamine encodes real-time reward availability and transitions between reward availability states on different timescales. Nature Communications 2022, 13
(1)
https://doi.org/10.1038/s41467-022-31377-2
- Gabriel Loewinger, Prasad Patil, Kenneth T. Kishida, Giovanni Parmigiani. Hierarchical resampling for bagging in multistudy prediction with applications to human neurochemical sensing. The Annals of Applied Statistics 2022, 16
(4)
https://doi.org/10.1214/21-AOAS1574
- Nick G. Hollon, Elora W. Williams, Christopher D. Howard, Hao Li, Tavish I. Traut, Xin Jin. Nigrostriatal dopamine signals sequence-specific action-outcome prediction errors. Current Biology 2021, 31
(23)
, 5350-5363.e5. https://doi.org/10.1016/j.cub.2021.09.040
- Yifei Xue, Wenliang Ji, Ying Jiang, Ping Yu, Lanqun Mao. Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie 2021, 133
(44)
, 23970-23976. https://doi.org/10.1002/ange.202109170
- Yifei Xue, Wenliang Ji, Ying Jiang, Ping Yu, Lanqun Mao. Deep Learning for Voltammetric Sensing in a Living Animal Brain. Angewandte Chemie International Edition 2021, 60
(44)
, 23777-23783. https://doi.org/10.1002/anie.202109170
- Rohan V. Bhimani, Megan Vik, Ken T. Wakabayashi, Caitlin Szalkowski, Caroline E. Bass, Jinwoo Park. Distinct dose‐dependent effects of methamphetamine on real‐time dopamine transmission in the rat nucleus accumbens and behaviors. Journal of Neurochemistry 2021, 158
(4)
, 865-879. https://doi.org/10.1111/jnc.15470
- Sergio Hidalgo, Nicolás Fuenzalida‐Uribe, Daniela Molina‐Mateo, Angélica P. Escobar, Carlos Oliva, Rodrigo A. España, Maria Estela Andrés, Jorge M. Campusano. Study of the release of endogenous amines in
Drosophila
brain in vivo in response to stimuli linked to aversive olfactory conditioning. Journal of Neurochemistry 2021, 156
(3)
, 337-351. https://doi.org/10.1111/jnc.15109
- Helen N. Schwerdt, Ann M. Graybiel, Michael J. Cima. Carbon Fiber Probes for Real-Time Monitoring of Dopamine. 2021, 125-144. https://doi.org/10.1007/978-1-0716-1146-3_6
- Dan Bang, Kenneth T. Kishida, Terry Lohrenz, Jason P. White, Adrian W. Laxton, Stephen B. Tatter, Stephen M. Fleming, P. Read Montague. Sub-second Dopamine and Serotonin Signaling in Human Striatum during Perceptual Decision-Making. Neuron 2020, 108
(5)
, 999-1010.e6. https://doi.org/10.1016/j.neuron.2020.09.015
- Ahmed Hasnain Jalal, Yogeswaran Umasankar, Ernesto A. Pretto, Shekhar Bhansali. A wearable micro-fuel cell sensor for the determination of blood alcohol content (BAC): a multivariate regression model approach. ISSS Journal of Micro and Smart Systems 2020, 9
(2)
, 131-142. https://doi.org/10.1007/s41683-020-00059-w
- Vivien Zell, Thomas Steinkellner, Nick G. Hollon, Shelley M. Warlow, Elizabeth Souter, Lauren Faget, Avery C. Hunker, Xin Jin, Larry S. Zweifel, Thomas S. Hnasko. VTA Glutamate Neuron Activity Drives Positive Reinforcement Absent Dopamine Co-release. Neuron 2020, 107
(5)
, 864-873.e4. https://doi.org/10.1016/j.neuron.2020.06.011
- Kae-Dyi You, Edoardo Cuniberto, Shao-Cheng Hsu, Bohan Wu, Zhujun Huang, Xiaochang Pei, Davood Shahrjerdi. An Electrochemical Biochip for Measuring Low Concentrations of Analytes With Adjustable Temporal Resolutions. IEEE Transactions on Biomedical Circuits and Systems 2020, 14
(4)
, 903-917. https://doi.org/10.1109/TBCAS.2020.3009303
- Shuo Huang, Zizhen Zhang, Eder Gambeta, Shi Chen Xu, Catherine Thomas, Nathan Godfrey, Lina Chen, Said M’Dahoma, Stephanie L. Borgland, Gerald W. Zamponi. Dopamine Inputs from the Ventral Tegmental Area into the Medial Prefrontal Cortex Modulate Neuropathic Pain-Associated Behaviors in Mice. Cell Reports 2020, 31
(12)
, 107812. https://doi.org/10.1016/j.celrep.2020.107812
- Danesh Ashouri Vajari, Chockalingam Ramanathan, Yixin Tong, Thomas Stieglitz, Volker A. Coenen, Máté D. Döbrössy. Medial forebrain bundle DBS differentially modulates dopamine release in the nucleus accumbens in a rodent model of depression. Experimental Neurology 2020, 327 , 113224. https://doi.org/10.1016/j.expneurol.2020.113224
- Karen Scida, Kevin W. Plaxco, Brian G. Jamieson. High frequency, real-time neurochemical and neuropharmacological measurements in situ in the living body. Translational Research 2019, 213 , 50-66. https://doi.org/10.1016/j.trsl.2019.07.004
- Norman E. Taylor, Hu Long, JunZhu Pei, Phanidhar Kukutla, Anthony Phero, Farnaz Hadaegh, Ahmed Abdelnabi, Ken Solt, Gary J. Brenner. The rostromedial tegmental nucleus: a key modulator of pain and opioid analgesia. Pain 2019, 160
(11)
, 2524-2534. https://doi.org/10.1097/j.pain.0000000000001647
- Khalid B. Mirza, Caroline T. Golden, Konstantin Nikolic, Christofer Toumazou. Closed-Loop Implantable Therapeutic Neuromodulation Systems Based on Neurochemical Monitoring. Frontiers in Neuroscience 2019, 13 https://doi.org/10.3389/fnins.2019.00808
- Mimi Shin, Ying Wang, Jason R. Borgus, B. Jill Venton. Electrochemistry at the Synapse. Annual Review of Analytical Chemistry 2019, 12
(1)
, 297-321. https://doi.org/10.1146/annurev-anchem-061318-115434
- Michał Kielbinski, Joanna Bernacka, Wojciech B. Solecki. Differential regulation of phasic dopamine release in the forebrain by the VTA noradrenergic receptor signaling. Journal of Neurochemistry 2019, 149
(6)
, 747-759. https://doi.org/10.1111/jnc.14706
- Caitlin M. Vander Weele, Cody A. Siciliano, Gillian A. Matthews, Praneeth Namburi, Ehsan M. Izadmehr, Isabella C. Espinel, Edward H. Nieh, Evelien H. S. Schut, Nancy Padilla-Coreano, Anthony Burgos-Robles, Chia-Jung Chang, Eyal Y. Kimchi, Anna Beyeler, Romy Wichmann, Craig P. Wildes, Kay M. Tye. Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. Nature 2018, 563
(7731)
, 397-401. https://doi.org/10.1038/s41586-018-0682-1
- Dan P. Covey, Hannah M. Dantrassy, Samantha E. Yohn, Alberto Castro, P. Jeffrey Conn, Yolanda Mateo, Joseph F. Cheer. Inhibition of endocannabinoid degradation rectifies motivational and dopaminergic deficits in the Q175 mouse model of Huntington’s disease. Neuropsychopharmacology 2018, 43
(10)
, 2056-2063. https://doi.org/10.1038/s41386-018-0107-8
- Matthew R. Bailey, Olivia Goldman, Estefanía P. Bello, Muhammad O. Chohan, Nuri Jeong, Vanessa Winiger, Eileen Chun, Elke Schipani, Abigail Kalmbach, Joseph F. Cheer, Peter D. Balsam, Eleanor H. Simpson. An Interaction between Serotonin Receptor Signaling and Dopamine Enhances Goal-Directed Vigor and Persistence in Mice. The Journal of Neuroscience 2018, 38
(9)
, 2149-2162. https://doi.org/10.1523/JNEUROSCI.2088-17.2018
- Helen N. Schwerdt, Hideki Shimazu, Ken-ichi Amemori, Satoko Amemori, Patrick L. Tierney, Daniel J. Gibson, Simon Hong, Tomoko Yoshida, Robert Langer, Michael J. Cima, Ann M. Graybiel. Long-term dopamine neurochemical monitoring in primates. Proceedings of the National Academy of Sciences 2017, 114
(50)
, 13260-13265. https://doi.org/10.1073/pnas.1713756114
- Evan N. Nicolai, James K. Trevathan, Erika K. Ross, J. Luis Lujan, Charles D. Blaha, Kevin E. Bennet, Kendall H. Lee, Kip A. Ludwig. Detection of norepinephrine in whole blood via fast scan cyclic voltammetry. 2017, 111-116. https://doi.org/10.1109/MeMeA.2017.7985859
- Helen N. Schwerdt, Min Jung Kim, Satoko Amemori, Daigo Homma, Tomoko Yoshida, Hideki Shimazu, Harshita Yerramreddy, Ekin Karasan, Robert Langer, Ann M. Graybiel, Michael J. Cima. Subcellular probes for neurochemical recording from multiple brain sites. Lab on a Chip 2017, 17
(6)
, 1104-1115. https://doi.org/10.1039/C6LC01398H
- Mark DeWaele, Yoonbae Oh, Cheonho Park, Yu Min Kang, Hojin Shin, Charles D. Blaha, Kevin E. Bennet, In Young Kim, Kendall H. Lee, Dong Pyo Jang. A baseline drift detrending technique for fast scan cyclic voltammetry. The Analyst 2017, 142
(22)
, 4317-4321. https://doi.org/10.1039/C7AN01465A
- Bryan F. Singer, Myranda A. Bryan, Pavlo Popov, Raymond Scarff, Cody Carter, Erin Wright, Brandon J. Aragona, Terry E. Robinson. The sensory features of a food cue influence its ability to act as an incentive stimulus and evoke dopamine release in the nucleus accumbens core. Learning & Memory 2016, 23
(11)
, 595-606. https://doi.org/10.1101/lm.043026.116
- Eric S. Ramsson. A Pipette-Based Calibration System for Fast-Scan Cyclic Voltammetry with Fast Response Times. BioTechniques 2016, 61
(5)
, 269-271. https://doi.org/10.2144/000114476
- Anne L. Collins, Venuz Y. Greenfield, Jeffrey K. Bye, Kay E. Linker, Alice S. Wang, Kate M. Wassum. Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation. Scientific Reports 2016, 6
(1)
https://doi.org/10.1038/srep20231
- Tara J. Aitken, Venuz Y. Greenfield, Kate M. Wassum. Nucleus accumbens core dopamine signaling tracks the need‐based motivational value of food‐paired cues. Journal of Neurochemistry 2016, 136
(5)
, 1026-1036. https://doi.org/10.1111/jnc.13494
- Yuexiang Wang, Lanqun Mao. Recent Advances in Analytical Methodology for in vivo Electrochemistry in Mammals. Electroanalysis 2016, 28
(2)
, 265-276. https://doi.org/10.1002/elan.201500376
- Jakob K. Dreyer, Caitlin M. Vander Weele, Vedran Lovic, Brandon J. Aragona. Functionally Distinct Dopamine Signals in Nucleus Accumbens Core and Shell in the Freely Moving Rat. The Journal of Neuroscience 2016, 36
(1)
, 98-112. https://doi.org/10.1523/JNEUROSCI.2326-15.2016
- Kenneth T. Kishida, Ignacio Saez, Terry Lohrenz, Mark R. Witcher, Adrian W. Laxton, Stephen B. Tatter, Jason P. White, Thomas L. Ellis, Paul E. M. Phillips, P. Read Montague. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward. Proceedings of the National Academy of Sciences 2016, 113
(1)
, 200-205. https://doi.org/10.1073/pnas.1513619112
- Eric S. Ramsson, Daniel Cholger, Albert Dionise, Nicholas Poirier, Avery Andrus, Randi Curtiss, . Characterization of Fast-Scan Cyclic Voltammetric Electrodes Using Paraffin as an Effective Sealant with In Vitro and In Vivo Applications. PLOS ONE 2015, 10
(10)
, e0141340. https://doi.org/10.1371/journal.pone.0141340
- Lauren J. Jones, James E. McCutcheon, Andrew M. J. Young, William H. J. Norton. Neurochemical measurements in the zebrafish brain. Frontiers in Behavioral Neuroscience 2015, 9 https://doi.org/10.3389/fnbeh.2015.00246
- Jinwoo Park, Elizabeth S. Bucher, Evgeny A. Budygin, R. Mark Wightman. Norepinephrine and dopamine transmission in 2 limbic regions differentially respond to acute noxious stimulation. Pain 2015, 156
(2)
, 318-327. https://doi.org/10.1097/01.j.pain.0000460312.79195.ed
- S.M. Fortin, J.J. Cone, S. Ng‐Evans, J.E. McCutcheon, M.F. Roitman. Sampling Phasic Dopamine Signaling with Fast‐Scan Cyclic Voltammetry in Awake, Behaving Rats. Current Protocols in Neuroscience 2015, 70
(1)
https://doi.org/10.1002/0471142301.ns0725s70
- Caitlin M. Vander Weele, Kirsten A. Porter‐Stransky, Omar S. Mabrouk, Vedran Lovic, Bryan F. Singer, Robert T. Kennedy, Brandon J. Aragona. Rapid dopamine transmission within the nucleus accumbens: Dramatic difference between morphine and oxycodone delivery. European Journal of Neuroscience 2014, 40
(7)
, 3041-3054. https://doi.org/10.1111/ejn.12709
- Tatiana A. Shnitko, Donita L. Robinson. Anatomical and pharmacological characterization of catecholamine transients in the medial prefrontal cortex evoked by ventral tegmental area stimulation. Synapse 2014, 68
(4)
, 131-143. https://doi.org/10.1002/syn.21723
- Robert T Kennedy. Emerging trends in in vivo neurochemical monitoring by microdialysis. Current Opinion in Chemical Biology 2013, 17
(5)
, 860-867. https://doi.org/10.1016/j.cbpa.2013.06.012
- Dan P. Covey, Steven A. Juliano, Paul A. Garris, . Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine. PLoS ONE 2013, 8
(5)
, e60763. https://doi.org/10.1371/journal.pone.0060763
- Jinwoo Park, Robert A. Wheeler, Khristy Fontillas, Richard B. Keithley, Regina M. Carelli, R. Mark Wightman. Catecholamines in the Bed Nucleus of the Stria Terminalis Reciprocally Respond to Reward and Aversion. Biological Psychiatry 2012, 71
(4)
, 327-334. https://doi.org/10.1016/j.biopsych.2011.10.017
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.