ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

“Deconstruction” of the Abused Synthetic Cathinone Methylenedioxypyrovalerone (MDPV) and an Examination of Effects at the Human Dopamine Transporter

View Author Information
Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
Cite this: ACS Chem. Neurosci. 2013, 4, 12, 1524–1529
Publication Date (Web):October 11, 2013
https://doi.org/10.1021/cn4001236
Copyright © 2013 American Chemical Society

    Article Views

    1326

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (385 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Synthetic cathinones, β-keto analogues of amphetamine (or, more correctly, of phenylalkylamines), represent a new and growing class of abused substances. Several such analogues have been demonstrated to act as dopamine (DA) releasing agents. Methylenedioxypyrovalerone (MDPV) was the first synthetic cathinone shown to act as a cocaine-like DA reuptake inhibitor. MDPV and seven deconstructed analogues were examined to determine which of MDPV’s structural features account(s) for uptake inhibition. In voltage-clamped (−60 mV) Xenopus oocytes transfected with the human DA transporter (hDAT), all analogues elicited inhibitor-like behavior shown as hDAT-mediated outward currents. Using hDAT-expressing mammalian cells we determined the affinities of MDPV and its analogues to inhibit uptake of [3H]DA by hDAT that varied over a broad range (IC50 values ca. 135 to >25 000 nM). The methylenedioxy group of MDPV made a minimal contribution to affinity, the carbonyl group and a tertiary amine are more important, and the extended α-alkyl group seems most important. Either a tertiary amine, or the extended α-alkyl group (but not both), are required for the potent nature of MDPV as an hDAT inhibitor.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Representative tracings for currents induced by analogues 7 and 913, and the correlation between % DA recovery versus hDAT affinity. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 65 publications.

    1. Charles B. Jones, Jose M. Eltit, Małgorzata Dukat. Do 2-(Benzoyl)piperidines Represent a Novel Class of hDAT Reuptake Inhibitors?. ACS Chemical Neuroscience 2023, 14 (4) , 741-748. https://doi.org/10.1021/acschemneuro.2c00666
    2. Grant C. Glatfelter, Donna Walther, Michael Evans-Brown, Michael H. Baumann. Eutylone and Its Structural Isomers Interact with Monoamine Transporters and Induce Locomotor Stimulation. ACS Chemical Neuroscience 2021, 12 (7) , 1170-1177. https://doi.org/10.1021/acschemneuro.0c00797
    3. Steven J. Simmons, Jonna M. Leyrer-Jackson, Chicora F. Oliver, Callum Hicks, John W. Muschamp, Scott M. Rawls, M. Foster Olive. DARK Classics in Chemical Neuroscience: Cathinone-Derived Psychostimulants. ACS Chemical Neuroscience 2018, 9 (10) , 2379-2394. https://doi.org/10.1021/acschemneuro.8b00147
    4. Abdelrahman R. Shalabi, Donna Walther, Michael H. Baumann, and Richard A. Glennon . Deconstructed Analogues of Bupropion Reveal Structural Requirements for Transporter Inhibition versus Substrate-Induced Neurotransmitter Release. ACS Chemical Neuroscience 2017, 8 (6) , 1397-1403. https://doi.org/10.1021/acschemneuro.7b00055
    5. Richard A. Glennon . The 2014 Philip S. Portoghese Medicinal Chemistry Lectureship: The “Phenylalkylaminome” with a Focus on Selected Drugs of Abuse. Journal of Medicinal Chemistry 2017, 60 (7) , 2605-2628. https://doi.org/10.1021/acs.jmedchem.7b00085
    6. R. Kolanos, F. Sakloth, A. D. Jain, J. S. Partilla, M. H. Baumann, and R. A. Glennon . Structural Modification of the Designer Stimulant α-Pyrrolidinovalerophenone (α-PVP) Influences Potency at Dopamine Transporters. ACS Chemical Neuroscience 2015, 6 (10) , 1726-1731. https://doi.org/10.1021/acschemneuro.5b00160
    7. R. Kolanos, J. S. Partilla, M. H. Baumann, B. A. Hutsell, M. L. Banks, S. S. Negus, and R. A. Glennon . Stereoselective Actions of Methylenedioxypyrovalerone (MDPV) To Inhibit Dopamine and Norepinephrine Transporters and Facilitate Intracranial Self-Stimulation in Rats. ACS Chemical Neuroscience 2015, 6 (5) , 771-777. https://doi.org/10.1021/acschemneuro.5b00006
    8. Elisabet Teixidó, Clara Riera-Colomer, Demetrio Raldúa, David Pubill, Elena Escubedo, Marta Barenys, Raul López-Arnau. First-Generation Synthetic Cathinones Produce Arrhythmia in Zebrafish Eleutheroembryos: A New Approach Methodology for New Psychoactive Substances Cardiotoxicity Evaluation. International Journal of Molecular Sciences 2023, 24 (18) , 13869. https://doi.org/10.3390/ijms241813869
    9. Hannes Max Schwelm, Mattias Persson, Benedikt Pulver, Max Vincent Huß, Henrik Gréen, Volker Auwärter. Pharmacological profile, phase I metabolism, and excretion time profile of the new synthetic cathinone 3,4‐Pr‐PipVP. Drug Testing and Analysis 2023, 4 https://doi.org/10.1002/dta.3538
    10. Michael R. Chojnacki, Eric B. Thorndike, John S. Partilla, Kenner C. Rice, Charles W. Schindler, Michael H. Baumann. Neurochemical and Cardiovascular Effects of 4-Chloro Ring-Substituted Synthetic Cathinones in Rats. Journal of Pharmacology and Experimental Therapeutics 2023, 385 (3) , 162-170. https://doi.org/10.1124/jpet.122.001478
    11. Ákos Erdős. A szintetikus katinon-származékok hatásai: irodalmi áttekintés. Belügyi Szemle 2023, 71 (5) , 827-848. https://doi.org/10.38146/BSZ.2023.5.5
    12. Patryk Kuropka, Marcin Zawadzki, Paweł Szpot. A narrative review of the neuropharmacology of synthetic cathinones—Popular alternatives to classical drugs of abuse. Human Psychopharmacology: Clinical and Experimental 2023, 38 (3) https://doi.org/10.1002/hup.2866
    13. Qianying Cao, Ding Jiang, Lingli Zheng, Fangmin Xu, Hiroshi Shiigi, Xueling Shan, Wenchang Wang, Zhidong Chen. Dual-binding domain electrochemiluminescence biosensing platform with self-checking function for sensitive detection of synthetic cathinone in e-cigarettes. Biosensors and Bioelectronics 2023, 224 , 114963. https://doi.org/10.1016/j.bios.2022.114963
    14. Patryk Kuropka, Marcin Zawadzki, Paweł Szpot. A review of synthetic cathinones emerging in recent years (2019–2022). Forensic Toxicology 2023, 41 (1) , 25-46. https://doi.org/10.1007/s11419-022-00639-5
    15. Vy T. Nguyen, Alan C. Harris Jr., Jose M. Eltit. Structural and functional perspectives on interactions between synthetic cathinones and monoamine transporters. 2023https://doi.org/10.1016/bs.apha.2023.09.001
    16. Marta Concheiro, Steven Towler, Joshua S. Elmore, Michael R. Chojnacki, Teeshavi Acosta, Masaki Suzuki, Kenner C. Rice, Michael H. Baumann. Brain Concentrations of MDPV and its Metabolites in Male Rats: Relationship to Pharmacodynamic Effects. Current Pharmaceutical Design 2022, 28 (32) , 2653-2663. https://doi.org/10.2174/1381612828666220907100036
    17. Wonjong Lee, Jung Won Lee, Jin Mook Kim, Young-ki Hong, Mi-Seon Kim, Sun Ok Choi, Mi Sun Kang. The abuse potential of prolintane in rodents: Behavioral pharmacology approaches. Neuropharmacology 2022, 205 , 108917. https://doi.org/10.1016/j.neuropharm.2021.108917
    18. Vincent Carfagno, Jonna M. Leyrer-Jackson, M. Foster Olive. Cognitive Deficits and Synthetic Khat-Related Cathinones. 2022, 1-24. https://doi.org/10.1007/978-3-030-67928-6_86-1
    19. Vincent Carfagno, Jonna M. Leyrer-Jackson, M. Foster Olive. Cognitive Deficits and Synthetic Khat-Related Cathinones. 2022, 1681-1703. https://doi.org/10.1007/978-3-030-92392-1_86
    20. Tyler W.E. Steele, Zachary Spires, Charles B. Jones, Richard A. Glennon, Małgorzata Dukat, Jose M. Eltit. Non-conserved residues dictate dopamine transporter selectivity for the potent synthetic cathinone and psychostimulant MDPV. Neuropharmacology 2021, 200 , 108820. https://doi.org/10.1016/j.neuropharm.2021.108820
    21. Nuria Nadal-Gratacós, Ana Sofia Alberto-Silva, Míriam Rodríguez-Soler, Edurne Urquizu, Maria Espinosa-Velasco, Kathrin Jäntsch, Marion Holy, Xavier Batllori, Xavier Berzosa, David Pubill, Jordi Camarasa, Harald H. Sitte, Elena Escubedo, Raúl López-Arnau. Structure–Activity Relationship of Novel Second-Generation Synthetic Cathinones: Mechanism of Action, Locomotion, Reward, and Immediate-Early Genes. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.749429
    22. L. Duart-Castells, N. Nadal-Gratacós, M. Muralter, B. Puster, X. Berzosa, R. Estrada-Tejedor, M. Niello, S. Bhat, D. Pubill, J. Camarasa, H.H. Sitte, E. Escubedo, R. López-Arnau. Role of amino terminal substitutions in the pharmacological, rewarding and psychostimulant profiles of novel synthetic cathinones. Neuropharmacology 2021, 186 , 108475. https://doi.org/10.1016/j.neuropharm.2021.108475
    23. Dawn E. Muskiewicz, Federico Resendiz-Gutierrez, Omar Issa, F. Scott Hall. Synthetic psychoactive cathinones: hypothermia and reduced lethality compared to methamphetamine and methylenedioxymethamphetamine. Pharmacology Biochemistry and Behavior 2020, 191 , 172871. https://doi.org/10.1016/j.pbb.2020.172871
    24. Anne Zwartsen, Michiel E. Olijhoek, Remco H. S. Westerink, Laura Hondebrink. Hazard Characterization of Synthetic Cathinones Using Viability, Monoamine Reuptake, and Neuronal Activity Assays. Frontiers in Neuroscience 2020, 14 https://doi.org/10.3389/fnins.2020.00009
    25. Marta Siczek, Miłosz Siczek, Paweł Szpot, Marcin Zawadzki, Olga Wachełko. Crystal Structures and Spectroscopic Characterization of Four Synthetic Cathinones: 1-(4-Chlorophenyl)-2-(Dimethylamino)Propan-1-One (N-Methyl-Clephedrone, 4-CDC), 1-(1,3-Benzodioxol-5-yl)-2-(Tert-Butylamino)Propan-1-One (tBuONE, Tertylone, MDPT), 1-(4-Fluorophenyl)-2-(Pyrrolidin-1-yl)Hexan-1-One (4F-PHP) and 2-(Ethylamino)-1-(3-Methylphenyl)Propan-1-One (3-Methyl-Ethylcathinone, 3-MEC). Crystals 2019, 9 (11) , 555. https://doi.org/10.3390/cryst9110555
    26. William S. Hyatt, Michael D. Berquist, Neha M. Chitre, Lauren N. Russell, Kenner C. Rice, Kevin S. Murnane, William E. Fantegrossi. Repeated administration of synthetic cathinone 3,4-methylenedioxypyrovalerone persistently increases impulsive choice in rats. Behavioural Pharmacology 2019, 30 (7) , 555-565. https://doi.org/10.1097/FBP.0000000000000492
    27. João L. Gonçalves, Vera L. Alves, Joselin Aguiar, Helena M. Teixeira, José S. Câmara. Synthetic cathinones: an evolving class of new psychoactive substances. Critical Reviews in Toxicology 2019, 49 (7) , 549-566. https://doi.org/10.1080/10408444.2019.1679087
    28. Michael B. Gatch, Sean B. Dolan, Michael J. Forster. Locomotor activity and discriminative stimulus effects of five novel synthetic cathinone analogs in mice and rats. Drug and Alcohol Dependence 2019, 199 , 50-58. https://doi.org/10.1016/j.drugalcdep.2019.02.016
    29. L. Duart-Castells, R. López-Arnau, S. Vizcaíno, J. Camarasa, D. Pubill, E. Escubedo. 7,8-Dihydroxyflavone blocks the development of behavioral sensitization to MDPV, but not to cocaine: Differential role of the BDNF-TrkB pathway. Biochemical Pharmacology 2019, 163 , 84-93. https://doi.org/10.1016/j.bcp.2019.02.004
    30. Tatiana O. Kolesnikova, Sergey L. Khatsko, Oleg S. Eltsov, Vadim A. Shevyrin, Allan V. Kalueff. When fish take a bath: Psychopharmacological characterization of the effects of a synthetic cathinone bath salt ‘flakka’ on adult zebrafish. Neurotoxicology and Teratology 2019, 73 , 15-21. https://doi.org/10.1016/j.ntt.2019.02.001
    31. Christine Nash, Danielle Butzbach, Peter Stockham, Timothy Scott, Greg Abroe, Ben Painter, John Gilbert, Chris Kostakis. A Fatality Involving Furanylfentanyl and MMMP, with Presumptive Identification of Three MMMP Metabolites in Urine. Journal of Analytical Toxicology 2019, 43 (4) , 291-298. https://doi.org/10.1093/jat/bky099
    32. Raul Lopez-Arnau, Leticia Duart-Castells, Barbara Aster, Jorge Camarasa, Elena Escubedo, David Pubill. Effects of MDPV on dopamine transporter regulation in male rats. Comparison with cocaine. Psychopharmacology 2019, 236 (3) , 925-938. https://doi.org/10.1007/s00213-018-5052-z
    33. Jonna M. Leyrer-Jackson, Erin K. Nagy, M. Foster Olive. Cognitive deficits and neurotoxicity induced by synthetic cathinones: is there a role for neuroinflammation?. Psychopharmacology 2019, 236 (3) , 1079-1095. https://doi.org/10.1007/s00213-018-5067-5
    34. Madithedu Muneeswara, Alagesan Muthukumar, Govindasamy Sekar. Dual Role of N‐Bromosuccinimide as Oxidant and Succinimide Surrogate in Domino One‐Pot Oxidative Amination of Benzyl Alcohols for the Synthesis of α–Imido Ketones. ChemistrySelect 2018, 3 (44) , 12524-12529. https://doi.org/10.1002/slct.201803465
    35. Sascha K. Manier, Lilian H.J. Richter, Jan Schäper, Hans H. Maurer, Markus R. Meyer. Different in vitro and in vivo tools for elucidating the human metabolism of alpha‐cathinone‐derived drugs of abuse. Drug Testing and Analysis 2018, 10 (7) , 1119-1130. https://doi.org/10.1002/dta.2355
    36. Luis M. Colon-Perez, Jose A. Pino, Kaustuv Saha, Marjory Pompilus, Sherman Kaplitz, Nafisa Choudhury, Darin A. Jagnarine, Jean R. Geste, Brandon A. Levin, Isaac Wilks, Barry Setlow, Adriaan W. Bruijnzeel, Habibeh Khoshbouei, Gonzalo E. Torres, Marcelo Febo. Functional connectivity, behavioral and dopaminergic alterations 24 hours following acute exposure to synthetic bath salt drug methylenedioxypyrovalerone. Neuropharmacology 2018, 137 , 178-193. https://doi.org/10.1016/j.neuropharm.2018.04.031
    37. Yogesh Kumar, Yogesh Jaiswal, Rima Thakur, Amit Kumar. A Straightforward Synthesis of α ‐Amino Diaryl Ketones from (Hetero)Arylacetonitriles Promoted by N ‐Bromosuccinimide. ChemistrySelect 2018, 3 (20) , 5614-5619. https://doi.org/10.1002/slct.201801073
    38. Laura Hondebrink, Anne Zwartsen, Remco H.S. Westerink. Effect fingerprinting of new psychoactive substances (NPS): What can we learn from in vitro data?. Pharmacology & Therapeutics 2018, 182 , 193-224. https://doi.org/10.1016/j.pharmthera.2017.10.022
    39. Michael H. Baumann, Hailey M. Walters, Marco Niello, Harald H. Sitte. Neuropharmacology of Synthetic Cathinones. 2018, 113-142. https://doi.org/10.1007/164_2018_178
    40. Steven J. Simmons, Erin Kim, Taylor A. Gentile, Ali Murad, John W. Muschamp, Scott M. Rawls. Behavioral Profiles and Underlying Transmitters/Circuits of Cathinone-Derived Psychostimulant Drugs of Abuse. 2018, 125-152. https://doi.org/10.1007/978-3-319-78707-7_8
    41. Bárbara Silva, Carla Fernandes, Paula Guedes de Pinho, Fernando Remião. Chiral Resolution and Enantioselectivity of Synthetic Cathinones: A Brief Review. Journal of Analytical Toxicology 2018, 42 (1) , 17-24. https://doi.org/10.1093/jat/bkx074
    42. Aparna Shekar, Jenny I. Aguilar, Greta Galli, Nicholas V. Cozzi, Simon D. Brandt, Arnold E. Ruoho, Michael H. Baumann, Heinrich J.G. Matthies, Aurelio Galli. Atypical dopamine efflux caused by 3,4-methylenedioxypyrovalerone (MDPV) via the human dopamine transporter. Journal of Chemical Neuroanatomy 2017, 83-84 , 69-74. https://doi.org/10.1016/j.jchemneu.2017.01.004
    43. Susan M. Lantz, Hector Rosas-Hernandez, Elvis Cuevas, Bonnie Robinson, Kenner C. Rice, William E. Fantegrossi, Syed Z. Imam, Merle G. Paule, Syed F. Ali. Monoaminergic toxicity induced by cathinone phthalimide: An in vitro study. Neuroscience Letters 2017, 655 , 76-81. https://doi.org/10.1016/j.neulet.2017.06.059
    44. Mads Ødum Lambert, Theis Højland Ipsen, Kristi Anne Kohlmeier. Acute cocaine exposure elicits rises in calcium in arousal-related laterodorsal tegmental neurons. Pharmacology Research & Perspectives 2017, 5 (1) , e00282. https://doi.org/10.1002/prp2.282
    45. Barbara Zdrazil, Eva Hellsberg, Michael Viereck, Gerhard F. Ecker. From linked open data to molecular interaction: studying selectivity trends for ligands of the human serotonin and dopamine transporter. MedChemComm 2016, 7 (9) , 1819-1831. https://doi.org/10.1039/C6MD00207B
    46. Ernesto Solis, Julie A. Suyama, Matthew F. Lazenka, Louis J. DeFelice, S. Stevens Negus, Bruce E. Blough, Matthew L. Banks. Dissociable effects of the prodrug phendimetrazine and its metabolite phenmetrazine at dopamine transporters. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep31385
    47. A. Batisse, M. Grégoire, M. Marillier, M. Fortias, S. Djezzar. Usage de cathinones à Paris. L'Encéphale 2016, 42 (4) , 354-360. https://doi.org/10.1016/j.encep.2015.09.002
    48. Luis M Colon-Perez, Kelvin Tran, Khalil Thompson, Michael C Pace, Kenneth Blum, Bruce A Goldberger, Mark S Gold, Adriaan W Bruijnzeel, Barry Setlow, Marcelo Febo. The Psychoactive Designer Drug and Bath Salt Constituent MDPV Causes Widespread Disruption of Brain Functional Connectivity. Neuropsychopharmacology 2016, 41 (9) , 2352-2365. https://doi.org/10.1038/npp.2016.40
    49. Mariana Angoa-Pérez, Donald M. Kuhn. Mephedrone. 2016, 25-35. https://doi.org/10.1016/B978-0-12-800212-4.00003-0
    50. Mahesh H. Shinde, Umesh A. Kshirsagar. N-Bromosuccinimide promoted and base switchable one pot synthesis of α-imido and α-amino ketones from styrenes. Organic & Biomolecular Chemistry 2016, 14 (3) , 858-861. https://doi.org/10.1039/C5OB02034D
    51. Hector Rosas-Hernandez, Elvis Cuevas, Susan M. Lantz, Syed Z. Imam, Kenner C. Rice, Brenda M. Gannon, William E. Fantegrossi, Merle G. Paule, Syed F. Ali. 3,4-methylenedioxypyrovalerone (MDPV) Induces Cytotoxic Effects on Human Dopaminergic SH-SY5Y Cells. Journal of Drug and Alcohol Research 2016, 5 , 1-6. https://doi.org/10.4303/jdar/235991
    52. Lucas R. Watterson, M. Foster Olive. Reinforcing Effects of Cathinone NPS in the Intravenous Drug Self-Administration Paradigm. 2016, 133-143. https://doi.org/10.1007/7854_2016_33
    53. Ernesto Solis. Electrophysiological Actions of Synthetic Cathinones on Monoamine Transporters. 2016, 73-92. https://doi.org/10.1007/7854_2016_39
    54. Mariana Angoa-Pérez, John H. Anneken, Donald M. Kuhn. Neurotoxicology of Synthetic Cathinone Analogs. 2016, 209-230. https://doi.org/10.1007/7854_2016_21
    55. Richard A. Glennon, Małgorzata Dukat. Structure-Activity Relationships of Synthetic Cathinones. 2016, 19-47. https://doi.org/10.1007/7854_2016_41
    56. Michael H. Baumann, Mohammad O. Bukhari, Kurt R. Lehner, Sebastien Anizan, Kenner C. Rice, Marta Concheiro, Marilyn A. Huestis. Neuropharmacology of 3,4-Methylenedioxypyrovalerone (MDPV), Its Metabolites, and Related Analogs. 2016, 93-117. https://doi.org/10.1007/7854_2016_53
    57. Brittany Butler, Kaustuv Saha, Tanu Rana, Jonas P. Becker, Danielle Sambo, Paran Davari, J. Shawn Goodwin, Habibeh Khoshbouei. Dopamine Transporter Activity Is Modulated by α-Synuclein. Journal of Biological Chemistry 2015, 290 (49) , 29542-29554. https://doi.org/10.1074/jbc.M115.691592
    58. Krasnodara N. Cameron, Ernesto Solis, Iwona Ruchala, Louis J. De Felice, Jose M. Eltit. Amphetamine activates calcium channels through dopamine transporter-mediated depolarization. Cell Calcium 2015, 58 (5) , 457-466. https://doi.org/10.1016/j.ceca.2015.06.013
    59. Shawn M. Aarde, Kevin M. Creehan, Sophia A. Vandewater, Tobin J. Dickerson, Michael A. Taffe. In vivo potency and efficacy of the novel cathinone α-pyrrolidinopentiophenone and 3,4-methylenedioxypyrovalerone: self-administration and locomotor stimulation in male rats. Psychopharmacology 2015, 232 (16) , 3045-3055. https://doi.org/10.1007/s00213-015-3944-8
    60. Kusumika Saha, John S Partilla, Kurt R Lehner, Amir Seddik, Thomas Stockner, Marion Holy, Walter Sandtner, Gerhard F Ecker, Harald H Sitte, Michael H Baumann. ‘Second-Generation’ Mephedrone Analogs, 4-MEC and 4-MePPP, Differentially Affect Monoamine Transporter Function. Neuropsychopharmacology 2015, 40 (6) , 1321-1331. https://doi.org/10.1038/npp.2014.325
    61. John H. Anneken, Mariana Angoa‐Pérez, Donald M. Kuhn. 3,4‐Methylenedioxypyrovalerone prevents while methylone enhances methamphetamine‐induced damage to dopamine nerve endings: β‐ketoamphetamine modulation of neurotoxicity by the dopamine transporter. Journal of Neurochemistry 2015, 133 (2) , 211-222. https://doi.org/10.1111/jnc.13048
    62. Michael H. Baumann, Ernesto Solis, Lucas R. Watterson, Julie A. Marusich, William E. Fantegrossi, Jenny L. Wiley. Baths Salts, Spice, and Related Designer Drugs: The Science Behind the Headlines. The Journal of Neuroscience 2014, 34 (46) , 15150-15158. https://doi.org/10.1523/JNEUROSCI.3223-14.2014
    63. Lucas R. Watterson, M. Foster Olive. Synthetic Cathinones and Their Rewarding and Reinforcing Effects in Rodents. Advances in Neuroscience 2014, 2014 , 1-9. https://doi.org/10.1155/2014/209875
    64. Richard A. Glennon. Bath Salts, Mephedrone, and Methylenedioxypyrovalerone as Emerging Illicit Drugs That Will Need Targeted Therapeutic Intervention. 2014, 581-620. https://doi.org/10.1016/B978-0-12-420118-7.00015-9
    65. Wei-Guo Jia, Dan-Dan Li, Yuan-Chen Dai, Hui Zhang, Li-Qin Yan, En-Hong Sheng, Yun Wei, Xiao-Long Mu, Kuo-Wei Huang. Synthesis and characterization of bisoxazolines- and pybox-copper( ii ) complexes and their application in the coupling of α-carbonyls with functionalized amines. Org. Biomol. Chem. 2014, 12 (29) , 5509-5516. https://doi.org/10.1039/C4OB01027B

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect