ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Intercellular Glutamate Signaling in the Nervous System and Beyond

View Author Information
Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
Cite this: ACS Chem. Neurosci. 2010, 1, 1, 4–12
Publication Date (Web):October 9, 2009
https://doi.org/10.1021/cn900006n
Copyright © 2009 American Chemical Society

    Article Views

    3805

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Most intercellular glutamate signaling in the nervous system occurs at synapses. Some intercellular glutamate signaling occurs outside synapses, however, and even outside the nervous system where high ambient extracellular glutamate might be expected to preclude the effectiveness of glutamate as an intercellular signal. Here, I briefly review the types of intercellular glutamate signaling in the nervous system and beyond, with emphasis on the diversity of signaling mechanisms and fundamental unanswered questions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 69 publications.

    1. Todor Dudev, Cédric Grauffel, Carmay Lim. Calcium in Signaling: Its Specificity and Vulnerabilities toward Biogenic and Abiogenic Metal Ions. The Journal of Physical Chemistry B 2021, 125 (37) , 10419-10431. https://doi.org/10.1021/acs.jpcb.1c05154
    2. Cédric Grauffel, Todor Dudev, Carmay Lim. Metal Affinity/Selectivity of Monophosphate-Containing Signaling/Lipid Molecules. Journal of Chemical Theory and Computation 2021, 17 (4) , 2444-2456. https://doi.org/10.1021/acs.jctc.0c01007
    3. James A. R. Dalton, Xavier Gómez-Santacana, Amadeu Llebaria, and Jesús Giraldo . Computational Analysis of Negative and Positive Allosteric Modulator Binding and Function in Metabotropic Glutamate Receptor 5 (In)Activation. Journal of Chemical Information and Modeling 2014, 54 (5) , 1476-1487. https://doi.org/10.1021/ci500127c
    4. Shaun R. Stauffer . Progress toward Positive Allosteric Modulators of the Metabotropic Glutamate Receptor Subtype 5 (mGlu5). ACS Chemical Neuroscience 2011, 2 (8) , 450-470. https://doi.org/10.1021/cn2000519
    5. Mrityunjoy Kar, Laura T. Vogel, Gaurav Chauhan, Suren Felekyan, Hannes Ausserwöger, Timothy J. Welsh, Furqan Dar, Anjana R. Kamath, Tuomas P. J. Knowles, Anthony A. Hyman, Claus A. M. Seidel, Rohit V. Pappu. Solutes unmask differences in clustering versus phase separation of FET proteins. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-48775-3
    6. Joachim Keppler. Laying the foundations for a theory of consciousness: the significance of critical brain dynamics for the formation of conscious states. Frontiers in Human Neuroscience 2024, 18 https://doi.org/10.3389/fnhum.2024.1379191
    7. James R. Barnacle, Angharad G. Davis, Robert J. Wilkinson. Recent advances in understanding the human host immune response in tuberculous meningitis. Frontiers in Immunology 2024, 14 https://doi.org/10.3389/fimmu.2023.1326651
    8. Nehal M. Shah, Nane Ghazaryan, Noresa L. Gonzaga, Cayz G. Paclibar, Agnes P. Biju, Christopher Liang, Jogeshwar Mukherjee. Glutamate’s Effects on the N-Methyl-D-Aspartate (NMDA) Receptor Ion Channel in Alzheimer’s Disease Brain: Challenges for PET Radiotracer Development for Imaging the NMDA Ion Channel. Molecules 2024, 29 (1) , 20. https://doi.org/10.3390/molecules29010020
    9. Bettina Kolen, Bart Borghans, Daniel Kortzak, Victor Lugo, Cora Hannack, Raul E. Guzman, Ghanim Ullah, Christoph Fahlke. Vesicular glutamate transporters are H+-anion exchangers that operate at variable stoichiometry. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38340-9
    10. Jed de Ruiter Swain, Evdokia Michalopoulou, Evan K. Noch, Michael J. Lukey, Linda Van Aelst. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes & Development 2023, 37 (15-16) , 681-702. https://doi.org/10.1101/gad.350693.123
    11. Sonia Thapa, Shashank K. Singh. The Role of Endocannabinoid System in Neuroprotection: Molecular Targets and Therapeutic Opportunities. Integrative Medicine Reports 2023, 2 (1) , 72-86. https://doi.org/10.1089/imr.2022.0091
    12. Joachim Keppler. Scrutinizing the feasibility of macroscopic quantum coherence in the brain: a field-theoretical model of cortical dynamics. Frontiers in Physics 2023, 11 https://doi.org/10.3389/fphy.2023.1181416
    13. Yashuang Ping, Kenji Ohata, Kenji Kikushima, Takumi Sakamoto, Ariful Islam, Lili Xu, Hengsen Zhang, Bin Chen, Jing Yan, Fumihiro Eto, Chiho Nakane, Keizo Takao, Tsuyoshi Miyakawa, Katsuya Kabashima, Miho Watanabe, Tomoaki Kahyo, Ikuko Yao, Atsuo Fukuda, Koji Ikegami, Yoshiyuki Konishi, Mitsutoshi Setou. Tubulin Polyglutamylation by TTLL1 and TTLL7 Regulate Glutamate Concentration in the Mice Brain. Biomolecules 2023, 13 (5) , 784. https://doi.org/10.3390/biom13050784
    14. Michael-Paul Schallmo, Kimberly B. Weldon, Rohit S. Kamath, Hannah R. Moser, Samantha A. Montoya, Kyle W. Killebrew, Caroline Demro, Andrea N. Grant, Małgorzata Marjańska, Scott R. Sponheim, Cheryl A. Olman. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. NeuroImage 2023, 272 , 120060. https://doi.org/10.1016/j.neuroimage.2023.120060
    15. Barbara Miranda Sartori, Renato Elias Moreira Júnior, Isadora Marques Paiva, Izabela Barbosa Moraes, Luis David Solis Murgas, Ana Lúcia Brunialti-Godard. Acute ethanol exposure leads to long-term effects on memory, behavior, and transcriptional regulation in the zebrafish brain. Behavioural Brain Research 2023, 444 , 114352. https://doi.org/10.1016/j.bbr.2023.114352
    16. MA El-Sayed, NS Ibrahim, HAEM Assi, MA El-Gawad, WS Mohammed, MA Ibrahim, NM Mesalam, AE Abdel-Moneim. Utilization of Biotechnology, Neurotransmitter and Cytogenetic Indices in Selecting Pigeon Breeds. Brazilian Journal of Poultry Science 2023, 25 (1) https://doi.org/10.1590/1806-9061-2021-1586
    17. Soyeon Kim, Byeong Woo Yang, Hee-Kyung Kim, Bokyung Sung, Ji-ung Yang, Dongseon Kim, Kichul Park, Minsup Kim, Ji-Ae Park, Yongmin Chang. Zwitterionic neurotransmitter-sensitive gadolinium complex as a potential MRI contrast agent for Alzheimer’s disease diagnosis. Journal of Industrial and Engineering Chemistry 2023, 117 , 255-264. https://doi.org/10.1016/j.jiec.2022.10.013
    18. Ana Cristina García-Gaytán, Andy Hernández-Abrego, Mauricio Díaz-Muñoz, Isabel Méndez. Glutamatergic system components as potential biomarkers and therapeutic targets in cancer in non-neural organs. Frontiers in Endocrinology 2022, 13 https://doi.org/10.3389/fendo.2022.1029210
    19. Armin Zlomuzica, Laurin Plank, Ekrem Dere. A new path to mental disorders: Through gap junction channels and hemichannels. Neuroscience & Biobehavioral Reviews 2022, 142 , 104877. https://doi.org/10.1016/j.neubiorev.2022.104877
    20. Jan Voldřich, Marika Matoušová, Markéta Šmídková, Barbora Slavíková, Hana Chodounská, Eva Kudová, Helena Mertlíková-Kaiserová. Identification of N-methyl-D-aspartate receptor antagonists using the rat postnatal mixed cortical and hippocampal neurons. European Journal of Pharmacology 2022, 927 , 175056. https://doi.org/10.1016/j.ejphar.2022.175056
    21. Antara Sengupta, Subhadip Chakraborty, Pabitra Pal Choudhury. Chemical characterizations of neurotransmission receptors of human and plant to unfold the evolutionary relationships among them. Computational Biology and Chemistry 2022, 98 , 107685. https://doi.org/10.1016/j.compbiolchem.2022.107685
    22. Martín A. Toderi, Dzmitry Vaido, Dolores Bozovic, , , , . Optical techniques for imaging activity in fibers innervating saccular hair cells. 2022, 38. https://doi.org/10.1117/12.2607823
    23. Panagiotis Chandris, Christina C. Giannouli, George Panayotou. Imaging Approaches for the Study of Metabolism in Real Time Using Genetically Encoded Reporters. Frontiers in Cell and Developmental Biology 2022, 9 https://doi.org/10.3389/fcell.2021.725114
    24. He Wei, Abigail M Frey, Alan Jasanoff. Molecular fMRI of neurochemical signaling. Journal of Neuroscience Methods 2021, 364 , 109372. https://doi.org/10.1016/j.jneumeth.2021.109372
    25. Franziska R. Traube, Dilara Özdemir, Hanife Sahin, Constanze Scheel, Andrea F. Glück, Anna S. Geserich, Sabine Oganesian, Sarantos Kostidis, Katharina Iwan, René Rahimoff, Grazia Giorgio, Markus Müller, Fabio Spada, Martin Biel, Jürgen Cox, Martin Giera, Stylianos Michalakis, Thomas Carell. Redirected nuclear glutamate dehydrogenase supplies Tet3 with α-ketoglutarate in neurons. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24353-9
    26. Mert GUR, Sema Zeynep YILMAZ, Elhan TAKA. THE FIRST LAW OF THERMODYNAMICS ANALYSIS OF TRANSPORTERS INVOLVED IN THE GLUTAMATE/GABA-GLUTAMINE CYCLE. Isı Bilimi ve Tekniği Dergisi 2021, 41 (2) , 265-276. https://doi.org/10.47480/isibted.1025952
    27. João Ronielly Campêlo Araújo, Ana Cristina de Oliveira Monteiro-Moreira. Depression and the NMDA receptor/NO/cGMP pathway. 2021, 179-187. https://doi.org/10.1016/B978-0-12-817935-2.00017-9
    28. Sonia Kartha, Prabesh Ghimire, Beth A Winkelstein. Inhibiting spinal secretory phospholipase A 2 after painful nerve root injury attenuates established pain and spinal neuronal hyperexcitability by altering spinal glutamatergic signaling. Molecular Pain 2021, 17 , 174480692110662. https://doi.org/10.1177/17448069211066221
    29. Elena Obrador, Rosario Salvador, Rafael López-Blanch, Ali Jihad-Jebbar, Soraya L. Vallés, José M. Estrela. Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis. Antioxidants 2020, 9 (9) , 901. https://doi.org/10.3390/antiox9090901
    30. Rochelin Dalangin, Anna Kim, Robert E. Campbell. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. International Journal of Molecular Sciences 2020, 21 (17) , 6197. https://doi.org/10.3390/ijms21176197
    31. David F. Wilson, Franz M. Matschinsky. Ethanol metabolism: The good, the bad, and the ugly. Medical Hypotheses 2020, 140 , 109638. https://doi.org/10.1016/j.mehy.2020.109638
    32. Maggie L. Kalev-Zylinska, James I. Hearn, Asya Makhro, Anna Bogdanova. N-Methyl-D-Aspartate Receptors in Hematopoietic Cells: What Have We Learned?. Frontiers in Physiology 2020, 11 https://doi.org/10.3389/fphys.2020.00577
    33. Rodrigo S. Delfino, Juliana Surjan, Igor D. Bandeira, Lucas Braziliano, Fernanda S. Correia-Melo, Jose A. Del-Porto, Lucas C. Quarantini, Acioly L. T. Lacerda. NMDA Antagonists and Their Role in the Management of Bipolar Disorder: a Review. Current Behavioral Neuroscience Reports 2020, 7 (2) , 76-85. https://doi.org/10.1007/s40473-020-00201-w
    34. Mehmet Soner Türküner, Ferruh Özcan. Monosodium glutamate restricts the adipogenic potential of 3T3‐L1 preadipocytes through mitotic clonal expansion. Cell Biology International 2020, 44 (3) , 744-754. https://doi.org/10.1002/cbin.11269
    35. Yohan Boillat, Lijing Xin, Wietske van der Zwaag, Rolf Gruetter. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. Journal of Cerebral Blood Flow & Metabolism 2020, 40 (3) , 488-500. https://doi.org/10.1177/0271678X19831022
    36. John D. Port. Magnetic Resonance Spectroscopy for Psychiatry. Neuroimaging Clinics of North America 2020, 30 (1) , 25-33. https://doi.org/10.1016/j.nic.2019.09.002
    37. Mert Gur, Mert Golcuk, Sema Zeynep Yilmaz, Elhan Taka. Thermodynamic first law efficiency of membrane proteins. Journal of Biomolecular Structure and Dynamics 2020, 38 (2) , 439-449. https://doi.org/10.1080/07391102.2019.1577759
    38. Jessica Schultz, Zakir Uddin, Gurmit Singh, Matiar M. R. Howlader. Glutamate sensing in biofluids: recent advances and research challenges of electrochemical sensors. The Analyst 2020, 145 (2) , 321-347. https://doi.org/10.1039/C9AN01609K
    39. Chao Tan, Phillip T. Doughty, Katherine Magee, Teresa A. Murray, Shabnam Siddiqui, Prabhu U. Arumugam. Effect of Process Parameters on Electrochemical Performance of a Glutamate Microbiosensor. Journal of The Electrochemical Society 2020, 167 (2) , 027528. https://doi.org/10.1149/1945-7111/ab6b0b
    40. Sitrarasu Vijaya Prabhu, Sanjeev Kumar Singh. Identification of Potential Dual Negative Allosteric Modulators of Group I mGluR Family: A Shape Based Screening, ADME Prediction, Induced Fit Docking and Molecular Dynamics Approach Against Neurodegenerative Diseases. Current Topics in Medicinal Chemistry 2019, 19 (29) , 2687-2707. https://doi.org/10.2174/1568026619666191105112800
    41. Cheng-Tsung Liu, Yuahn-Sieh Huang, Hsin-Chien Chen, Kuo-Hsing Ma, Chih-Hung Wang, Chuang-Hsin Chiu, Jui-Hu Shih, Hsiao-Hsien Kang, Chyng-Yann Shiue, I-Hsun Li. Evaluation of brain SERT with 4-[18F]-ADAM/micro-PET and hearing protective effects of dextromethorphan in hearing loss rat model. Toxicology and Applied Pharmacology 2019, 378 , 114604. https://doi.org/10.1016/j.taap.2019.114604
    42. Thomas Steinkellner, Ji Hoon Yoo, Thomas S. Hnasko. Differential Expression of VGLUT2 in Mouse Mesopontine Cholinergic Neurons. eneuro 2019, 6 (4) , ENEURO.0161-19.2019. https://doi.org/10.1523/ENEURO.0161-19.2019
    43. Matías Preza, Jimena Montagne, Alicia Costábile, Andrés Iriarte, Estela Castillo, Uriel Koziol. Analysis of classical neurotransmitter markers in tapeworms: Evidence for extensive loss of neurotransmitter pathways. International Journal for Parasitology 2018, 48 (13) , 979-992. https://doi.org/10.1016/j.ijpara.2018.06.004
    44. Mathias J. Aebersold, Harald Dermutz, László Demkó, José F. Saenz Cogollo, Shiang‐Chi Lin, Conrad Burchert, Moritz Schneider, Doris Ling, Csaba Forró, Hana Han, Tomaso Zambelli, János Vörös. Local Chemical Stimulation of Neurons with the Fluidic Force Microscope (FluidFM). ChemPhysChem 2018, 19 (10) , 1234-1244. https://doi.org/10.1002/cphc.201700780
    45. Thomas Steinkellner, Vivien Zell, Zachary J. Farino, Mark S. Sonders, Michael Villeneuve, Robin J. Freyberg, Serge Przedborski, Wei Lu, Zachary Freyberg, Thomas S. Hnasko. Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. Journal of Clinical Investigation 2018, 128 (2) , 774-788. https://doi.org/10.1172/JCI95795
    46. James A. R. Dalton, Jean-Philippe Pin, Jesús Giraldo. Analysis of positive and negative allosteric modulation in metabotropic glutamate receptors 4 and 5 with a dual ligand. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-05095-5
    47. Chia-Cheng Kan, Tsui-Yun Chung, Hsin-Yu Wu, Yan-An Juo, Ming-Hsiun Hsieh. Exogenous glutamate rapidly induces the expression of genes involved in metabolism and defense responses in rice roots. BMC Genomics 2017, 18 (1) https://doi.org/10.1186/s12864-017-3588-7
    48. Natalia Mast, Kyle W. Anderson, Kevin M. Johnson, Thanh T.N. Phan, F. Peter Guengerich, Irina A. Pikuleva. In vitro cytochrome P450 46A1 (CYP46A1) activation by neuroactive compounds. Journal of Biological Chemistry 2017, 292 (31) , 12934-12946. https://doi.org/10.1074/jbc.M117.794909
    49. Stanley L. Okon, Niina J. Ronkainen. Enzyme-Based Electrochemical Glutamate Biosensors. 2017https://doi.org/10.5772/68025
    50. Jesús Giraldo, Jordi Ortiz, James Dalton, Bin Zhou. Examining Allosterism in a Dimeric G-Protein-Coupled Receptor Context. 2016, 97-130. https://doi.org/10.1039/9781782629276-00097
    51. Sufang Wang, Qiyan Lv, Yu Yang, Liang-Hong Guo, Bin Wan, Xiaomin Ren, Hui Zhang. Arginine decarboxylase: A novel biological target of mercury compounds identified in PC12 cells. Biochemical Pharmacology 2016, 118 , 109-120. https://doi.org/10.1016/j.bcp.2016.08.019
    52. Vanessa Cristina de Oliveira Souza, Kátia Cristina de Marco, Hélen Julie Laure, José Cesar Rosa, Fernando Barbosa. A brain proteome profile in rats exposed to methylmercury or thimerosal (ethylmercury). Journal of Toxicology and Environmental Health, Part A 2016, 79 (12) , 502-512. https://doi.org/10.1080/15287394.2016.1182003
    53. Fabiana K. Ludka, Lori de Fátima Tandler, Gislaine Kuminek, Gislaine Olescowicz, Jonatha Jacobsen, Simone Molz. Ilex paraguariensis hydroalcoholic extract exerts antidepressant-like and neuroprotective effects: involvement of the NMDA receptor and the l-arginine-NO pathway. Behavioural Pharmacology 2016, 27 (4) , 384-392. https://doi.org/10.1097/FBP.0000000000000211
    54. Peter D. Jones, Martin Stelzle. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?. Frontiers in Neuroscience 2016, 10 https://doi.org/10.3389/fnins.2016.00138
    55. Carlos A Gutierrez, Mary M Staehle. A control system analysis of the dynamic response of N-methyl-D-aspartate glutamate receptors to alcoholism and alcohol withdrawal. Theoretical Biology and Medical Modelling 2015, 12 (1) https://doi.org/10.1186/s12976-015-0004-3
    56. Rıfat Emrah Özel, Akhtar Hayat, Silvana Andreescu. Recent Developments in Electrochemical Sensors for the Detection of Neurotransmitters for Applications in Biomedicine. Analytical Letters 2015, 48 (7) , 1044-1069. https://doi.org/10.1080/00032719.2014.976867
    57. Yuyu Wang, Dazhi Wang, Lin Lin, Minghua Wang. Quantitative proteomic analysis reveals proteins involved in the neurotoxicity of marine medaka Oryzias melastigma chronically exposed to inorganic mercury. Chemosphere 2015, 119 , 1126-1133. https://doi.org/10.1016/j.chemosphere.2014.09.053
    58. Masashi Nakahama, Julien Reboul, Kenji Yoshida, Shuhei Furukawa, Susumu Kitagawa. l -Glutamic acid release from a series of aluminum-based isoreticular porous coordination polymers. Journal of Materials Chemistry B 2015, 3 (20) , 4205-4212. https://doi.org/10.1039/C5TB00346F
    59. Shu Feng, Zhaofa Xu, Wei Liu, Yuehui Li, Yu Deng, Bin Xu. Preventive Effects of Dextromethorphan on Methylmercury-Induced Glutamate Dyshomeostasis and Oxidative Damage in Rat Cerebral Cortex. Biological Trace Element Research 2014, 159 (1-3) , 332-345. https://doi.org/10.1007/s12011-014-9977-8
    60. David N. Guilfoyle, Scott Gerum, Csaba Vadasz. In vivo Proton NMR Spectroscopy of Genetic Mouse Models BALB/cJ and C57BL/6By: Variation in Hippocampal Glutamate Level and the Metabotropic Glutamate Receptor, Subtype 7 (Grm7) Gene. Journal of Molecular Neuroscience 2014, 53 (1) , 135-141. https://doi.org/10.1007/s12031-013-0211-5
    61. R. Pérez-Rodríguez, A.M. Oliván, C. Roncero, J. Morón-Oset, M.P. González, M.J. Oset-Gasque. Glutamate triggers neurosecretion and apoptosis in bovine chromaffin cells through a mechanism involving NO production by neuronal NO synthase activation. Free Radical Biology and Medicine 2014, 69 , 390-402. https://doi.org/10.1016/j.freeradbiomed.2014.01.029
    62. Brian G. Forde. Glutamate signalling in roots. Journal of Experimental Botany 2014, 65 (3) , 779-787. https://doi.org/10.1093/jxb/ert335
    63. J.J. Xu, P. Diaz, B. Bie, F. Astruc-Diaz, J. Wu, H. Yang, D.L. Brown, M. Naguib. Spinal gene expression profiling and pathways analysis of a CB2 agonist (MDA7)-targeted prevention of paclitaxel-induced neuropathy. Neuroscience 2014, 260 , 185-194. https://doi.org/10.1016/j.neuroscience.2013.12.028
    64. Pablo R. Brumovsky. VGLUTs in Peripheral Neurons and the Spinal Cord: Time for a Review. ISRN Neurology 2013, 2013 , 1-28. https://doi.org/10.1155/2013/829753
    65. Wei Liu, Zhaofa Xu, Yu Deng, Bin Xu, Yangang Wei, Tianyao Yang. Protective Effects of Memantine Against Methylmercury-Induced Glutamate Dyshomeostasis and Oxidative Stress in Rat Cerebral Cortex. Neurotoxicity Research 2013, 24 (3) , 320-337. https://doi.org/10.1007/s12640-013-9386-3
    66. M. Malet, C.A. Vieytes, K.H. Lundgren, R.P. Seal, E. Tomasella, K.B. Seroogy, T. Hökfelt, G.F. Gebhart, P.R. Brumovsky. Transcript expression of vesicular glutamate transporters in lumbar dorsal root ganglia and the spinal cord of mice – Effects of peripheral axotomy or hindpaw inflammation. Neuroscience 2013, 248 , 95-111. https://doi.org/10.1016/j.neuroscience.2013.05.044
    67. Fabiana K. Ludka, Andréa D.E. Zomkowski, Mauricio P. Cunha, Tharine Dal-Cim, Ana Lúcia B. Zeni, Ana Lúcia S. Rodrigues, Carla I. Tasca. Acute atorvastatin treatment exerts antidepressant-like effect in mice via the l-arginine–nitric oxide–cyclic guanosine monophosphate pathway and increases BDNF levels. European Neuropsychopharmacology 2013, 23 (5) , 400-412. https://doi.org/10.1016/j.euroneuro.2012.05.005
    68. Anurag Mishra, Sven Gottschalk, Jörn Engelmann, David Parker. Responsive imaging probes for metabotropic glutamate receptors. Chem. Sci. 2012, 3 (1) , 131-135. https://doi.org/10.1039/C1SC00418B
    69. Chandni A. Vyas, Scott M. Rawls, Robert B. Raffa, Jonathan G. Shackman. Glutamate and aspartate measurements in individual planaria by rapid capillary electrophoresis. Journal of Pharmacological and Toxicological Methods 2011, 63 (1) , 119-122. https://doi.org/10.1016/j.vascn.2010.08.002

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect