ACS Publications. Most Trusted. Most Cited. Most Read
Dual Effect of Amino Modified Polystyrene Nanoparticles on Amyloid β Protein Fibrillation
My Activity

Figure 1Loading Img
    Letter

    Dual Effect of Amino Modified Polystyrene Nanoparticles on Amyloid β Protein Fibrillation
    Click to copy article linkArticle link copied!

    View Author Information
    Centre for BioNano Interactions, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
    Biochemistry Department, Lund University, PO Box 124, 22100 Lund, Sweden
    Other Access Options

    ACS Chemical Neuroscience

    Cite this: ACS Chem. Neurosci. 2010, 1, 4, 279–287
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cn900027u
    Published January 27, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The fibrillation kinetics of the amyloid β peptide is analyzed in presence of cationic polystyrene nanoparticles of different size. The results highlight the importance of the ratio between the peptide and particle concentration. Depending on the specific ratio, the kinetic effects vary from acceleration of the fibrillation process by reducing the lag phase at low particle surface area in solution to inhibition of the fibrillation process at high particle surface area. The kinetic behavior can be explained if we assume a balance between two different pathways: first fibrillation of free monomer in solution and second nucleation and fibrillation promoted at the particle surface. The overall rate of fibrillation will depend on the interplay between these two pathways, and the predominance of one mechanism over the other will be determined by the relative equilibrium and rate constants.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 248 publications.

    1. Afroz Karim, Anju Yadav, Ummy Habiba Sweety, Jyotish Kumar, Sofia A. Delgado, Jose A. Hernandez, Jason C. White, Lela Vukovic, Mahesh Narayan. Interfacial Interactions between Nanoplastics and Biological Systems: toward an Atomic and Molecular Understanding of Plastics-Driven Biological Dyshomeostasis. ACS Applied Materials & Interfaces 2024, 16 (20) , 25740-25756. https://doi.org/10.1021/acsami.4c03008
    2. Ying Wang, Wei Liu, Xiaoyan Dong, Yan Sun. Design of Self-Assembled Nanoparticles as a Potent Inhibitor and Fluorescent Probe for β-Amyloid Fibrillization. Langmuir 2023, 39 (36) , 12576-12589. https://doi.org/10.1021/acs.langmuir.3c01169
    3. Pooja Ghosh, Avisek Bera, Punyasloke Bhadury, Priyadarsi De. From Small Molecules to Synthesized Polymers: Potential Role in Combating Amyloidogenic Disorders. ACS Chemical Neuroscience 2021, 12 (10) , 1737-1748. https://doi.org/10.1021/acschemneuro.1c00104
    4. Mohammad Ramezani, Maryam Dehghan Hesami, Yasin Rafiei, Ebrahim Rostampour Ghareghozloo, Ali Akbar Meratan, Nasser Nikfarjam. Efficient Amyloid Fibrillation Inhibition and Remodeling of Preformed Fibrils of Bovine Insulin by Propolis Polyphenols-Based Nanosheets. ACS Applied Bio Materials 2021, 4 (4) , 3547-3560. https://doi.org/10.1021/acsabm.1c00068
    5. Pravin Hivare, Chinmaya Panda, Sharad Gupta, Dhiraj Bhatia. Programmable DNA Nanodevices for Applications in Neuroscience. ACS Chemical Neuroscience 2021, 12 (3) , 363-377. https://doi.org/10.1021/acschemneuro.0c00723
    6. Pooja Ghosh, Priyadarsi De. Modulation of Amyloid Protein Fibrillation by Synthetic Polymers: Recent Advances in the Context of Neurodegenerative Diseases. ACS Applied Bio Materials 2020, 3 (10) , 6598-6625. https://doi.org/10.1021/acsabm.0c01021
    7. Qi-Qi Yang, Huan He, Chen-Qiao Li, Lai-Bing Luo, Shu-Lan Li, Zi-Qiang Xu, Jian-Cheng Jin, Feng-Lei Jiang, Yi Liu, Mian Yang. Molecular Mechanisms of the Ultra-Strong Inhibition Effect of Oxidized Carbon Dots on Human Insulin Fibrillation. ACS Applied Bio Materials 2020, 3 (1) , 217-226. https://doi.org/10.1021/acsabm.9b00725
    8. Zhi He, Jingyuan Li, Serena H. Chen, Ruhong Zhou. Surface Inhomogeneity of Graphene Oxide Influences Dissociation of Aβ16–21 Peptide Assembly. The Journal of Physical Chemistry B 2019, 123 (43) , 9098-9103. https://doi.org/10.1021/acs.jpcb.9b07359
    9. Shweta Kishor Sonawane, Absar Ahmad, Subashchandrabose Chinnathambi. Protein-Capped Metal Nanoparticles Inhibit Tau Aggregation in Alzheimer’s Disease. ACS Omega 2019, 4 (7) , 12833-12840. https://doi.org/10.1021/acsomega.9b01411
    10. Srijita Paul, Sandip Paul. Inhibitory Effect of Choline-O-sulfate on Aβ16–22 Peptide Aggregation: A Molecular Dynamics Simulation Study. The Journal of Physical Chemistry B 2019, 123 (16) , 3475-3489. https://doi.org/10.1021/acs.jpcb.9b02727
    11. Wentao Wang, Yuchun Han, Yaxun Fan, Yilin Wang. Effects of Gold Nanospheres and Nanocubes on Amyloid-β Peptide Fibrillation. Langmuir 2019, 35 (6) , 2334-2342. https://doi.org/10.1021/acs.langmuir.8b04006
    12. Nan Zhang, Xiaoling Hu, Ping Guan, Kaiyang Zeng, Yuan Cheng. Adsorption Mechanism of Amyloid Fibrils to Graphene Nanosheets and Their Structural Destruction. The Journal of Physical Chemistry C 2019, 123 (1) , 897-906. https://doi.org/10.1021/acs.jpcc.8b09893
    13. Xi Li, Baolong Xie, Yan Sun. Basified Human Lysozyme: A Potent Inhibitor against Amyloid β-Protein Fibrillogenesis. Langmuir 2018, 34 (50) , 15569-15577. https://doi.org/10.1021/acs.langmuir.8b03278
    14. Ibrahim Javed, Tianyu Yu, Guotao Peng, Antoni Sánchez-Ferrer, Ava Faridi, Aleksandr Kakinen, Mei Zhao, Raffaele Mezzenga, Thomas P. Davis, Sijie Lin, Pu Chun Ke. In Vivo Mitigation of Amyloidogenesis through Functional–Pathogenic Double-Protein Coronae. Nano Letters 2018, 18 (9) , 5797-5804. https://doi.org/10.1021/acs.nanolett.8b02446
    15. Michael J. Lucas, Benjamin K. Keitz. Influence of Zeolites on Amyloid-β Aggregation. Langmuir 2018, 34 (33) , 9789-9797. https://doi.org/10.1021/acs.langmuir.8b01496
    16. Fan Huang, Aoting Qu, Huiru Yang, Lin Zhu, Hao Zhou, Jianfeng Liu, Jiafu Long, Linqi Shi. Self-Assembly Molecular Chaperone to Concurrently Inhibit the Production and Aggregation of Amyloid β Peptide Associated with Alzheimer’s Disease. ACS Macro Letters 2018, 7 (8) , 983-989. https://doi.org/10.1021/acsmacrolett.8b00495
    17. Alireza Lotfabadi, Mohammad Javad Hajipour, Hossein Derakhshankhah, Afshin Peirovi, Samaneh Saffar, Elnaz Shams, Elnaz Fatemi, Ebrahim Barzegari, Sajad Sarvari, Faezeh Moakedi, Maryam Ferdousi, Fatemeh Atyabi, Ali Akbar Saboury, Rassoul Dinarvand. Biomolecular Corona Dictates Aβ Fibrillation Process. ACS Chemical Neuroscience 2018, 9 (7) , 1725-1734. https://doi.org/10.1021/acschemneuro.8b00076
    18. Xi Li, Baolong Xie, Xiaoyan Dong, Yan Sun. Bifunctionality of Iminodiacetic Acid-Modified Lysozyme on Inhibiting Zn2+-Mediated Amyloid β-Protein Aggregation. Langmuir 2018, 34 (17) , 5106-5115. https://doi.org/10.1021/acs.langmuir.8b00254
    19. Jing Sun, Wenjie Xie, Xufeng Zhu, Mengmeng Xu, Jie Liu. Sulfur Nanoparticles with Novel Morphologies Coupled with Brain-Targeting Peptides RVG as a New Type of Inhibitor Against Metal-Induced Aβ Aggregation. ACS Chemical Neuroscience 2018, 9 (4) , 749-761. https://doi.org/10.1021/acschemneuro.7b00312
    20. Xu Han and Gefei He . Toward a Rational Design to Regulate β-Amyloid Fibrillation for Alzheimer’s Disease Treatment. ACS Chemical Neuroscience 2018, 9 (2) , 198-210. https://doi.org/10.1021/acschemneuro.7b00477
    21. Suraj Konar, Shubhatam Sen, and Amita Pathak . Morphological Effects of CuO Nanostructures on Fibrillation of Human Serum Albumin. The Journal of Physical Chemistry B 2017, 121 (51) , 11437-11448. https://doi.org/10.1021/acs.jpcb.7b08432
    22. Fulvio Grigolato, Claudio Colombo, Raffaele Ferrari, Lenka Rezabkova, and Paolo Arosio . Mechanistic Origin of the Combined Effect of Surfaces and Mechanical Agitation on Amyloid Formation. ACS Nano 2017, 11 (11) , 11358-11367. https://doi.org/10.1021/acsnano.7b05895
    23. Esmail A. Elbassal, Clifford Morris, Thomas W. Kent, Richard Lantz, Bimlesh Ojha, Ewa P. Wojcikiewicz, and Deguo Du . Gold Nanoparticles as a Probe for Amyloid-β Oligomer and Amyloid Formation. The Journal of Physical Chemistry C 2017, 121 (36) , 20007-20015. https://doi.org/10.1021/acs.jpcc.7b05169
    24. Qiusen Han, Shuangfei Cai, Lin Yang, Xinhuan Wang, Cui Qi, Rong Yang, and Chen Wang . Molybdenum Disulfide Nanoparticles as Multifunctional Inhibitors against Alzheimer’s Disease. ACS Applied Materials & Interfaces 2017, 9 (25) , 21116-21123. https://doi.org/10.1021/acsami.7b03816
    25. Bibin G. Anand, Dolat S. Shekhawat, Kriti Dubey, and Karunakar Kar . Uniform, Polycrystalline, and Thermostable Piperine-Coated Gold Nanoparticles to Target Insulin Fibril Assembly. ACS Biomaterials Science & Engineering 2017, 3 (6) , 1136-1145. https://doi.org/10.1021/acsbiomaterials.7b00030
    26. Swathi Sudhakar, Pandurangan Kalipillai, Poornima Budime Santhosh, and Ethayaraja Mani . Role of Surface Charge of Inhibitors on Amyloid Beta Fibrillation. The Journal of Physical Chemistry C 2017, 121 (11) , 6339-6348. https://doi.org/10.1021/acs.jpcc.6b12307
    27. Shih-Ting Wang, Yiyang Lin, Nevena Todorova, Yingqi Xu, Manuel Mazo, Subinoy Rana, Vincent Leonardo, Nadav Amdursky, Christopher D. Spicer, Bruce D. Alexander, Alison A. Edwards, Steve J. Matthews, Irene Yarovsky, and Molly M. Stevens . Facet-Dependent Interactions of Islet Amyloid Polypeptide with Gold Nanoparticles: Implications for Fibril Formation and Peptide-Induced Lipid Membrane Disruption. Chemistry of Materials 2017, 29 (4) , 1550-1560. https://doi.org/10.1021/acs.chemmater.6b04144
    28. Roozbeh Hajiraissi, Ignacio Giner, Guido Grundmeier, and Adrian Keller . Self-Assembly, Dynamics, and Polymorphism of hIAPP(20–29) Aggregates at Solid–Liquid Interfaces. Langmuir 2017, 33 (1) , 372-381. https://doi.org/10.1021/acs.langmuir.6b03288
    29. Hossein Derakhshankhah, Mohammad Javad Hajipour, Ebrahim Barzegari, Alireza Lotfabadi, Maryam Ferdousi, Ali Akbar Saboury, Eng Poh Ng, Mohammad Raoufi, Hussein Awala, Svetlana Mintova, Rassoul Dinarvand, and Morteza Mahmoudi . Zeolite Nanoparticles Inhibit Aβ–Fibrinogen Interaction and Formation of a Consequent Abnormal Structural Clot. ACS Applied Materials & Interfaces 2016, 8 (45) , 30768-30779. https://doi.org/10.1021/acsami.6b10941
    30. Dongdong Lin, Ruxi Qi, Shujie Li, Ruoyu He, Pei Li, Guanghong Wei, and Xinju Yang . Interaction Dynamics in Inhibiting the Aggregation of Aβ Peptides by SWCNTs: A Combined Experimental and Coarse-Grained Molecular Dynamic Simulation Study. ACS Chemical Neuroscience 2016, 7 (9) , 1232-1240. https://doi.org/10.1021/acschemneuro.6b00101
    31. Bhanita Sharma and Sandip Paul . Action of Caffeine as an Amyloid Inhibitor in the Aggregation of Aβ16–22 Peptides. The Journal of Physical Chemistry B 2016, 120 (34) , 9019-9033. https://doi.org/10.1021/acs.jpcb.6b03892
    32. Khurram Shezad, Kejun Zhang, Mubashir Hussain, Hai Dong, Chuanxin He, Xiangjun Gong, Xiaolin Xie, Jintao Zhu, and Lei Shen . Surface Roughness Modulates Diffusion and Fibrillation of Amyloid-β Peptide. Langmuir 2016, 32 (32) , 8238-8244. https://doi.org/10.1021/acs.langmuir.6b01756
    33. Masahiko Nakamoto, Tadashi Nonaka, Kenneth J. Shea, Yoshiko Miura, and Yu Hoshino . Design of Synthetic Polymer Nanoparticles That Facilitate Resolubilization and Refolding of Aggregated Positively Charged Lysozyme. Journal of the American Chemical Society 2016, 138 (13) , 4282-4285. https://doi.org/10.1021/jacs.5b12600
    34. Irem Nasir, Sara Linse, and Celia Cabaleiro-Lago . Fluorescent Filter-Trap Assay for Amyloid Fibril Formation Kinetics in Complex Solutions. ACS Chemical Neuroscience 2015, 6 (8) , 1436-1444. https://doi.org/10.1021/acschemneuro.5b00104
    35. Giorgia Brancolini, Alessandra Corazza, Marco Vuano, Federico Fogolari, Maria Chiara Mimmi, Vittorio Bellotti, Monica Stoppini, Stefano Corni, and Gennaro Esposito . Probing the Influence of Citrate-Capped Gold Nanoparticles on an Amyloidogenic Protein. ACS Nano 2015, 9 (3) , 2600-2613. https://doi.org/10.1021/nn506161j
    36. Neng Xiong, Xiao-Yan Dong, Jie Zheng, Fu-Feng Liu, and Yan Sun . Design of LVFFARK and LVFFARK-Functionalized Nanoparticles for Inhibiting Amyloid β-Protein Fibrillation and Cytotoxicity. ACS Applied Materials & Interfaces 2015, 7 (10) , 5650-5662. https://doi.org/10.1021/acsami.5b00915
    37. David C. Latshaw, Mookyung Cheon, and Carol K. Hall . Effects of Macromolecular Crowding on Amyloid Beta (16–22) Aggregation Using Coarse-Grained Simulations. The Journal of Physical Chemistry B 2014, 118 (47) , 13513-13526. https://doi.org/10.1021/jp508970q
    38. Sharbari Palmal, Nihar R. Jana, and Nikhil R. Jana . Inhibition of Amyloid Fibril Growth by Nanoparticle Coated with Histidine-Based Polymer. The Journal of Physical Chemistry C 2014, 118 (37) , 21630-21638. https://doi.org/10.1021/jp505613g
    39. Robert Vácha, Sara Linse, and Mikael Lund . Surface Effects on Aggregation Kinetics of Amyloidogenic Peptides. Journal of the American Chemical Society 2014, 136 (33) , 11776-11782. https://doi.org/10.1021/ja505502e
    40. Anna Assarsson, Sara Linse, and Celia Cabaleiro-Lago . Effects of Polyamino Acids and Polyelectrolytes on Amyloid β Fibril Formation. Langmuir 2014, 30 (29) , 8812-8818. https://doi.org/10.1021/la501414j
    41. Xiaoying Zhou, Wenhui Xi, Yin Luo, Siqin Cao, and Guanghong Wei . Interactions of a Water-Soluble Fullerene Derivative with Amyloid-β Protofibrils: Dynamics, Binding Mechanism, and the Resulting Salt-Bridge Disruption. The Journal of Physical Chemistry B 2014, 118 (24) , 6733-6741. https://doi.org/10.1021/jp503458w
    42. Anna Assarsson, Erik Hellstrand, Celia Cabaleiro-Lago, and Sara Linse . Charge Dependent Retardation of Amyloid β Aggregation by Hydrophilic Proteins. ACS Chemical Neuroscience 2014, 5 (4) , 266-274. https://doi.org/10.1021/cn400124r
    43. Jie An Yang, Wayne Lin, Wendy S. Woods, Julia M. George, and Catherine J. Murphy . α-Synuclein’s Adsorption, Conformation, and Orientation on Cationic Gold Nanoparticle Surfaces Seeds Global Conformation Change. The Journal of Physical Chemistry B 2014, 118 (13) , 3559-3571. https://doi.org/10.1021/jp501114h
    44. Yanina D. Álvarez, Jonathan A. Fauerbach, Jésica V. Pellegrotti, Thomas M. Jovin, Elizabeth A. Jares-Erijman, and Fernando D. Stefani . Influence of Gold Nanoparticles on the Kinetics of α-Synuclein Aggregation. Nano Letters 2013, 13 (12) , 6156-6163. https://doi.org/10.1021/nl403490e
    45. Jacob H. Forstater, Alfred Kleinhammes, and Yue Wu . Self-Assembly of Protein-Based Biomaterials Initiated by Titania Nanotubes. Langmuir 2013, 29 (48) , 15013-15021. https://doi.org/10.1021/la403414t
    46. Houshang Amiri, Kolsoum Saeidi, Parvin Borhani, Arash Manafirad, Mahdi Ghavami, and Valerio Zerbi . Alzheimer’s Disease: Pathophysiology and Applications of Magnetic Nanoparticles as MRI Theranostic Agents. ACS Chemical Neuroscience 2013, 4 (11) , 1417-1429. https://doi.org/10.1021/cn4001582
    47. Tyuji Hoshino, Md. Iqbal Mahmood, Kenichi Mori, and Katsumi Matsuzaki . Binding and Aggregation Mechanism of Amyloid β-Peptides onto the GM1 Ganglioside-Containing Lipid Membrane. The Journal of Physical Chemistry B 2013, 117 (27) , 8085-8094. https://doi.org/10.1021/jp4029062
    48. Jie An Yang, Brittany J. Johnson, Sway Wu, Wendy S. Woods, Julia M. George, and Catherine J. Murphy . Study of Wild-Type α-Synuclein Binding and Orientation on Gold Nanoparticles. Langmuir 2013, 29 (14) , 4603-4615. https://doi.org/10.1021/la400266u
    49. Morteza Mahmoudi, Fiona Quinlan-Pluck, Marco P. Monopoli, Sara Sheibani, Hojatollah Vali, Kenneth A. Dawson, and Iseult Lynch . Influence of the Physiochemical Properties of Superparamagnetic Iron Oxide Nanoparticles on Amyloid β Protein Fibrillation in Solution. ACS Chemical Neuroscience 2013, 4 (3) , 475-485. https://doi.org/10.1021/cn300196n
    50. I. W. Hamley . The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chemical Reviews 2012, 112 (10) , 5147-5192. https://doi.org/10.1021/cr3000994
    51. Hadas Skaat, Ravit Chen, Igor Grinberg, and Shlomo Margel . Engineered Polymer Nanoparticles Containing Hydrophobic Dipeptide for Inhibition of Amyloid-β Fibrillation. Biomacromolecules 2012, 13 (9) , 2662-2670. https://doi.org/10.1021/bm3011177
    52. Andrew J. Martinolich, Grace Park, Meagan Y. Nakamoto, Rachel E. Gate, and Korin E. Wheeler . Structural and Functional Effects of Cu Metalloprotein-Driven Silver Nanoparticle Dissolution. Environmental Science & Technology 2012, 46 (11) , 6355-6362. https://doi.org/10.1021/es300901h
    53. Yuning Hong, Luming Meng, Sijie Chen, Chris Wai Tung Leung, Lin-Tai Da, Mahtab Faisal, Daniel-Adriano Silva, Jianzhao Liu, Jacky Wing Yip Lam, Xuhui Huang, and Ben Zhong Tang . Monitoring and Inhibition of Insulin Fibrillation by a Small Organic Fluorogen with Aggregation-Induced Emission Characteristics. Journal of the American Chemical Society 2012, 134 (3) , 1680-1689. https://doi.org/10.1021/ja208720a
    54. C. Cabaleiro-Lago, O. Szczepankiewicz, and S. Linse . The Effect of Nanoparticles on Amyloid Aggregation Depends on the Protein Stability and Intrinsic Aggregation Rate. Langmuir 2012, 28 (3) , 1852-1857. https://doi.org/10.1021/la203078w
    55. Adrian Keller, Monika Fritzsche, Ye-Ping Yu, Qian Liu, Yan-Mei Li, Mingdong Dong, and Flemming Besenbacher . Influence of Hydrophobicity on the Surface-Catalyzed Assembly of the Islet Amyloid Polypeptide. ACS Nano 2011, 5 (4) , 2770-2778. https://doi.org/10.1021/nn1031998
    56. Charles H. Vannoy and Roger M. Leblanc. Effects of DHLA-Capped CdSe/ZnS Quantum Dots on the Fibrillation of Human Serum Albumin. The Journal of Physical Chemistry B 2010, 114 (33) , 10881-10888. https://doi.org/10.1021/jp1045904
    57. Samaneh Aminyavari, Amir R. Afshari, Seyed Sajad Ahmadi, Prashant Kesharwani, Mehdi Sanati, Amirhossein Sahebkar. Unveiling the theranostic potential of SPIONs in Alzheimer's disease management. Journal of Psychiatric Research 2024, 179 , 244-256. https://doi.org/10.1016/j.jpsychires.2024.09.022
    58. Phuong-Trang Nguyen-Thi, Thanh-Tam Ho, Thuy Trang Nguyen, Giau Van Vo. Nanotechnology-based Drug Delivery for Alzheimer's and Parkinson's Diseases. Current Drug Delivery 2024, 21 (7) , 917-931. https://doi.org/10.2174/1567201820666230707113405
    59. Radha P. Somarathne, Dhanush L. Amarasekara, Chathuri S. Kariyawasam, Harley A. Robertson, Railey Mayatt, Steven R. Gwaltney, Nicholas C. Fitzkee. Protein Binding Leads to Reduced Stability and Solvated Disorder in the Polystyrene Nanoparticle Corona. Small 2024, 20 (26) https://doi.org/10.1002/smll.202305684
    60. Zitong Wei, Xiaoyan Dong, Yan Sun. Quercetin-derived red emission carbon dots: A multifunctional theranostic nano-agent against Alzheimer’s β-amyloid fibrillogenesis. Colloids and Surfaces B: Biointerfaces 2024, 238 , 113907. https://doi.org/10.1016/j.colsurfb.2024.113907
    61. Shirin Jalili, Mohammad Panji, Mohsen Mahdavimehr, Ali Mohseni Ahangar, Hadi Shirzad, Seyed Amin Mousavi Nezhad, Fernando L. Palhano. Enhancing anti-amyloidogenic properties and antioxidant effects of Scutellaria baicalensis polyphenols through novel nanoparticle formation. International Journal of Biological Macromolecules 2024, 262 , 130003. https://doi.org/10.1016/j.ijbiomac.2024.130003
    62. Haitao Lan, Ying Wang, Wei Liu, Xiaoyan Dong, Yan Sun. Composite of KLVFF-Transthyretin-Penetratin and Manganese Dioxide Nanoclusters: A Multifunctional Agent against Alzheimer’s β-Amyloid Fibrillogenesis. Molecules 2024, 29 (6) , 1405. https://doi.org/10.3390/molecules29061405
    63. T.T.M. Thu, H.N.T. Phung, N.T. Co, A. Kloczkowski, M.S. Li. Key Factors Controlling Fibril Formation of Proteins. Acta Physica Polonica A 2024, 145 (3) , 21-36. https://doi.org/10.12693/APhysPolA.145.S21
    64. Goutami Naidu, Nupur Nagar, Krishna Mohan Poluri. Mechanistic Insights into Cellular and Molecular Basis of Protein‐Nanoplastic Interactions. Small 2024, 20 (5) https://doi.org/10.1002/smll.202305094
    65. Abhijeet Puri, Popat Mohite, Showkhiya Khan, Sudarshan Singh. Breaking the barriers in management of Alzheimer's disease through cationic nanoformulation: A review. Results in Chemistry 2024, 7 , 101463. https://doi.org/10.1016/j.rechem.2024.101463
    66. Alexander J. Dear, Georg Meisl, Christopher G. Taylor, Umberto Capasso Palmiero, Susanne Nordby Stubbe, Qian Liu, Paolo Arosio, Sara Linse, Tuomas P. J. Knowles, Maria Andreasen. Surface effects on functional amyloid formation. Nanoscale 2024, 75 https://doi.org/10.1039/D4NR01496K
    67. Dahabada Lopes, Farnaz Younesi sisi, Amin Mehrabian, Mohsen Davoudkhani, Maryam Noroozian, Ayaz M. Khawaja, John D. Heiss. Applications of Nanotechnology in Degenerative Disorders of the Brain. 2024, 497-523. https://doi.org/10.1007/978-3-030-80662-0_30
    68. François Gagné, Eva Roubeau-Dumont, Chantale André, Joëlle Auclair. Micro and Nanoplastic Contamination and Its Effects on Freshwater Mussels Caged in an Urban Area. Journal of Xenobiotics 2023, 13 (4) , 761-774. https://doi.org/10.3390/jox13040048
    69. Rajeswara Babu Mythri, M.R. Aishwarya. BIOPOLYMERS AS PROMISING VEHICLES FOR DRUG DELIVERY TO THE BRAIN. Drug Metabolism Reviews 2023, , 1-40. https://doi.org/10.1080/03602532.2023.2281855
    70. Danish Alam, Farha Naaz, Asimul Islam, Meryam Sardar, Tokeer Ahmad. Role of sugar osmolytes and their nano-counterparts as inhibitors in protein fibrillation. Journal of Molecular Liquids 2023, 386 , 122479. https://doi.org/10.1016/j.molliq.2023.122479
    71. Chantale André, Samuel Turgeon, Caroline Peyrot, Kevin James Wilkinson, Joëlle Auclair, Nadia Ménard, François Gagné. Comparative toxicity of micro and nanopolystyrene particles in Mya arenaria clams. Marine Pollution Bulletin 2023, 192 , 115052. https://doi.org/10.1016/j.marpolbul.2023.115052
    72. Yulun Chen, Qingrun Liu, Shuna Mi, Shaofeng Yuan, Hang Yu, Yahui Guo, Yuliang Cheng, He Qian, Yunfei Xie, Weirong Yao. The impact of modified polystyrene on lysozyme fibrillation studied by surface-enhanced Raman spectroscopy (SERS). International Journal of Biological Macromolecules 2023, 242 , 124937. https://doi.org/10.1016/j.ijbiomac.2023.124937
    73. Bhushan D. Khairnar, Anjali Jha, Jyutika M. Rajwade. Rationally designed cyclic peptides and nanomaterials as ‘next-generation’ anti-amyloid therapeutics. Journal of Materials Science 2023, 58 (24) , 9834-9860. https://doi.org/10.1007/s10853-023-08654-6
    74. Yuxi Lin, So-Hyeon Park, Eugene Bok, Yunseok Heo, Seong-Bin Yang, Yoon-Sun Yi, Jun-Hyuck Lee, Donghyun Seo, Eunae Jo, Sungsu Lim, Yun Kyung Kim, József Kardos, Kyoung-Seok Ryu, Jaekwang Kim, Jooho Park, Young-Ho Lee. An amphiphilic material arginine–arginine–bile acid promotes α-synuclein amyloid formation. Nanoscale 2023, 15 (21) , 9315-9328. https://doi.org/10.1039/D3NR01468A
    75. GS Meghana, DV Gowda, Saravana Babu Chidambaram, Riyaz Ali Osmani. Amyloid –β pathology in Alzheimer’s disease: A nano delivery approach. Vibrational Spectroscopy 2023, 126 , 103510. https://doi.org/10.1016/j.vibspec.2023.103510
    76. F. Gagné, C. André, S. Turgeon, N. Ménard. Evidence of polystyrene nanoplastic contamination and potential impacts in Mya arenaria clams in the Saint-Lawrence estuary (Canada). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 2023, 266 , 109563. https://doi.org/10.1016/j.cbpc.2023.109563
    77. Pandurangan Kalipillai, E. Raghuram, Ethayaraja Mani. Effect of substrate charge density on the adsorption of intrinsically disordered protein amyloid β40: a molecular dynamics study. Soft Matter 2023, 19 (8) , 1642-1652. https://doi.org/10.1039/D2SM01581A
    78. Rupali, Blessy Joseph, Sabu Thomas, Newton Sen, André Paschold, Wolfgang H. Binder, Sonu Kumar. Bioinspired synthetic polymers-based inhibitors of Alzheimer's amyloid-β peptide aggregation. Polymer Chemistry 2023, 14 (4) , 392-411. https://doi.org/10.1039/D2PY01217K
    79. Silvia Gabbrielli, Luca Colnaghi, Gemma Mazzuoli-Weber, Alberto Cesare Luigi Redaelli, Alfonso Gautieri. In Silico Analysis of Nanoplastics’ and β-amyloid Fibrils’ Interactions. Molecules 2023, 28 (1) , 388. https://doi.org/10.3390/molecules28010388
    80. Xu Shao, Chaoren Yan, Chao Wang, Chaoli Wang, Yue Cao, Yang Zhou, Ping Guan, Xiaoling Hu, Wenlei Zhu, Shichao Ding. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation. Nanoscale Advances 2022, 5 (1) , 46-80. https://doi.org/10.1039/D2NA00625A
    81. Jiaxing Zhang, Pin Yao, Shengping You, Wei Qi, Rongxin Su, Zhimin He. Study of the kinetics and mechanism of ferrocene-tripeptide inhibiting insulin aggregation. Journal of Materials Chemistry B 2022, 10 (38) , 7780-7788. https://doi.org/10.1039/D2TB01085B
    82. Yulun Chen, Qingrun Liu, Fangwei Yang, Hang Yu, Yunfei Xie, Weirong Yao. Submicron-size polystyrene modulates amyloid fibril formation: From the perspective of protein corona. Colloids and Surfaces B: Biointerfaces 2022, 218 , 112736. https://doi.org/10.1016/j.colsurfb.2022.112736
    83. Torsten John, Juliane Adler, Christian Elsner, Johannes Petzold, Martin Krueger, Lisandra L. Martin, Daniel Huster, Herre Jelger Risselada, Bernd Abel. Mechanistic insights into the size-dependent effects of nanoparticles on inhibiting and accelerating amyloid fibril formation. Journal of Colloid and Interface Science 2022, 622 , 804-818. https://doi.org/10.1016/j.jcis.2022.04.134
    84. Joseph Windheim, Laura Colombo, Nora C. Battajni, Luca Russo, Alfredo Cagnotto, Luisa Diomede, Paolo Bigini, Elena Vismara, Ferdinando Fiumara, Silvia Gabbrielli, Alfonso Gautieri, Gemma Mazzuoli-Weber, Mario Salmona, Luca Colnaghi. Micro- and Nanoplastics’ Effects on Protein Folding and Amyloidosis. International Journal of Molecular Sciences 2022, 23 (18) , 10329. https://doi.org/10.3390/ijms231810329
    85. Nasser A. Hassan, Asma K. Alshamari, Allam A. Hassan, Mohamed G. Elharrif, Abdullah M. Alhajri, Mohammed Sattam, Reham R. Khattab. Advances on Therapeutic Strategies for Alzheimer’s Disease: From Medicinal Plant to Nanotechnology. Molecules 2022, 27 (15) , 4839. https://doi.org/10.3390/molecules27154839
    86. Yan-ming Ji, Wenyan Zhang, Jing-dong Zhang, Xia-fen Li, Fan-dong Yu, Cui-yun Li, Guang-jian Liu, Guo-wen Xing. Dual functional amphiphilic sugar-coated AIE-active fluorescent organic nanoparticles for the monitoring and inhibition of insulin amyloid fibrillation based on carbohydrate–protein interactions. Journal of Materials Chemistry B 2022, 10 (29) , 5602-5611. https://doi.org/10.1039/D2TB01070D
    87. Hitesh Chopra, Shabana Bibi, Inderbir Singh, Mohammad Amjad Kamal, Fahadul Islam, Fahad A. Alhumaydhi, Talha Bin Emran, Simona Cavalu. Nanomedicines in the Management of Alzheimer’s Disease: Current View and Future Prospects. Frontiers in Aging Neuroscience 2022, 14 https://doi.org/10.3389/fnagi.2022.879114
    88. Yuxi Lin, Dai Ito, Je Min Yoo, Mi Hee Lim, Wookyung Yu, Yasushi Kawata, Young-Ho Lee. Dual Effects of Presynaptic Membrane Mimetics on α-Synuclein Amyloid Aggregation. Frontiers in Cell and Developmental Biology 2022, 10 https://doi.org/10.3389/fcell.2022.707417
    89. Kieran P. Somers, David L. Cheung. The Amyloidogenic Peptide Amyloid Beta(16–22) Displays Facet Dependent Conformation on Metal Surfaces. Biophysica 2022, 2 (2) , 135-153. https://doi.org/10.3390/biophysica2020015
    90. Yulun Chen, Qingrun Liu, Fangwei Yang, Hang Yu, Yunfei Xie, Weirong Yao. Lysozyme amyloid fibril: Regulation, application, hazard analysis, and future perspectives. International Journal of Biological Macromolecules 2022, 200 , 151-161. https://doi.org/10.1016/j.ijbiomac.2021.12.163
    91. Shilin Wang, Jiaojiao Zheng, Liang Ma, Robert B. Petersen, Li Xu, Kun Huang. Inhibiting protein aggregation with nanomaterials: The underlying mechanisms and impact factors. Biochimica et Biophysica Acta (BBA) - General Subjects 2022, 1866 (2) , 130061. https://doi.org/10.1016/j.bbagen.2021.130061
    92. Joelle Auclair, Caroline Peyrot, Kevin J. Wilkinson, François Gagné. The Influence of Silver Nanoparticle Form on the Toxicity in Freshwater Mussels. Applied Sciences 2022, 12 (3) , 1429. https://doi.org/10.3390/app12031429
    93. Nguyen Truong Co, Mai Suan Li, Pawel Krupa. Computational Models for the Study of Protein Aggregation. 2022, 51-78. https://doi.org/10.1007/978-1-0716-1546-1_4
    94. Sajjad Ghahari, Saeid Ghahari, Somayeh Ghahari, Ghorban Ali Nematzadeh, Arabinda Baruah, Jyoti Ahlawat, Mahesh Narayan, Hemen Sarma. Engineered Nanomaterials as Drug Delivery Systems and Biomedicines. 2022, 1-27. https://doi.org/10.1007/978-3-030-82918-6_1
    95. Sonali Jena, Sonali Mohanty, Monalisha Ojha, Kumari Subham, Suman Jha. Nanotechnology: An Emerging Field in Protein Aggregation and Cancer Therapeutics. 2022, 177-207. https://doi.org/10.1007/978-981-16-2516-9_11
    96. Haniyeh Nouri, Arezou Ghahghaei, Milad Lagzian. Impact of Synthesized AuNPs from Crocin Against Aggregation and Conformational Change in α-Lactalbumin. International Journal of Peptide Research and Therapeutics 2021, 27 (4) , 2275-2289. https://doi.org/10.1007/s10989-021-10252-6
    97. Tanaya Chatterjee, Gaurav Das, Surajit Ghosh, Pinak Chakrabarti. Effect of gold nanoparticles on the structure and neuroprotective function of protein L-isoaspartyl methyltransferase (PIMT). Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-93752-1
    98. Mengmeng Ma, Zhenqi Liu, Nan Gao, Kai Dong, Zifeng Pi, Lihua Kang, Xiubo Du, Jinsong Ren, Xiaogang Qu. Near-infrared target enhanced peripheral clearance of amyloid-β in Alzheimer's disease model. Biomaterials 2021, 276 , 121065. https://doi.org/10.1016/j.biomaterials.2021.121065
    99. Pandurangan Kalipillai, Ethayaraja Mani. Adsorption of the amyloid β40 monomer on charged gold nanoparticles and slabs: a molecular dynamics study. Physical Chemistry Chemical Physics 2021, 23 (34) , 18618-18627. https://doi.org/10.1039/D1CP01652K
    100. Andreas Tapia-Arellano, Eduardo Gallardo-Toledo, Freddy Celis, Rodrigo Rivera, Italo Moglia, Marcelo Campos, Natàlia Carulla, Mauricio Baez, Marcelo J. Kogan. The curvature of gold nanoparticles influences the exposure of amyloid-β and modulates its aggregation process. Materials Science and Engineering: C 2021, 128 , 112269. https://doi.org/10.1016/j.msec.2021.112269
    Load more citations

    ACS Chemical Neuroscience

    Cite this: ACS Chem. Neurosci. 2010, 1, 4, 279–287
    Click to copy citationCitation copied!
    https://doi.org/10.1021/cn900027u
    Published January 27, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    3066

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.