ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Protein Analysis by Shotgun/Bottom-up Proteomics

View Author Information
Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
*Phone: +1-858-784-8862. Fax: +1-858-784-8883. E-mail: [email protected]
Cite this: Chem. Rev. 2013, 113, 4, 2343–2394
Publication Date (Web):February 26, 2013
https://doi.org/10.1021/cr3003533
Copyright © 2013 American Chemical Society

    Article Views

    27488

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 1051 publications.

    1. Ahmed Mohamed, Abhijit Rana, Evan Perez, Franziska Dahlmann, Allison Fry, Fabian S. Menges, Michael van Stipdonk, Svenja Jäger, Mark A. Boyer, Anne B. McCoy, Mark A. Johnson. Characterization of the Oxazolone and Macrocyclic Motifs in the bn (n = 2–5) Product Ions from Collision-Induced Dissociation of Protonated Oligoglycine Peptides with Isomer-Selective, Cryogenic Vibrational Spectroscopy. Journal of the American Society for Mass Spectrometry 2024, 35 (2) , 326-332. https://doi.org/10.1021/jasms.3c00372
    2. Jianbai Ye, Xiangnan He, Shujuan Wang, Meng-Qiu Dong, Feng Wu, Shan Lu, Fuli Feng. Test-Time Training for Deep MS/MS Spectrum Prediction Improves Peptide Identification. Journal of Proteome Research 2024, 23 (2) , 550-559. https://doi.org/10.1021/acs.jproteome.3c00229
    3. Zhen Wu, Xirui Huang, Lin Huang, Xumin Zhang. 102-Plex Approach for Accurate and Multiplexed Proteome Quantification. Analytical Chemistry 2024, 96 (4) , 1402-1409. https://doi.org/10.1021/acs.analchem.3c03036
    4. Liang Shan, Yiman Huang, Jing Zhang, Yue Su, Yinlong Guo. Inhibiting Protein Aggregation Using Cellulose Nanocrystal in MALDI-TOF MS Analysis: Improving the Sensitivity and Repeatability of Intact Protein in Pueraria. Journal of Agricultural and Food Chemistry 2023, 71 (50) , 20146-20154. https://doi.org/10.1021/acs.jafc.3c04650
    5. Hao Chen, Yuefei Zhang, Haichao Zhou, Weiran Chen, Jiayi Peng, Yang Feng, Linyuan Fan, Jun Li, Jin Zi, Yan Ren, Qidan Li, Siqi Liu. Routine Workflow of Spatial Proteomics on Micro-formalin-Fixed Paraffin-Embedded Tissues. Analytical Chemistry 2023, 95 (45) , 16733-16743. https://doi.org/10.1021/acs.analchem.3c03848
    6. Jessica L. Moore, Georgia Charkoftaki. A Guide to MALDI Imaging Mass Spectrometry for Tissues. Journal of Proteome Research 2023, 22 (11) , 3401-3417. https://doi.org/10.1021/acs.jproteome.3c00167
    7. Pandi Boomathi Pandeswari, Arnold Emerson Isaac, Varatharajan Sabareesh. Database Creator for Mass Analysis of Peptides and Proteins, DC-MAPP: A Standalone Tool for Simplifying Manual Analysis of Mass Spectral Data to Identify Peptide/Protein Sequences. Journal of the American Society for Mass Spectrometry 2023, 34 (9) , 1962-1969. https://doi.org/10.1021/jasms.3c00030
    8. Haijian Zhang, Joel R. Steele, Hossein Valipour Kahrood, Deanna Deveson Lucas, Anup D. Shah, Ralf B. Schittenhelm. Phospho-Analyst: An Interactive, Easy-to-Use Web Platform To Analyze Quantitative Phosphoproteomics Data. Journal of Proteome Research 2023, 22 (9) , 2890-2899. https://doi.org/10.1021/acs.jproteome.3c00186
    9. Estelle Blochouse, Rony Eid, Nahla Araji, Wei Tuo, Rémi Châtre, Sébastien Papot, Nicolas Lévêque, Raphaël Thuillier, Pauline Poinot. VOC-Based Probes, a New Set of Analytical Tools to Monitor Patient Health from Blood Sample. Proof of Concept on Tracking COVID-19 Infection. Analytical Chemistry 2023, 95 (31) , 11572-11577. https://doi.org/10.1021/acs.analchem.3c01732
    10. Steven R. Shuken. An Introduction to Mass Spectrometry-Based Proteomics. Journal of Proteome Research 2023, 22 (7) , 2151-2171. https://doi.org/10.1021/acs.jproteome.2c00838
    11. Qibin Wu, Zhenxiang Li, Jingtao Yang, Fu Xu, Xueqin Fu, Liping Xu, Chuihuai You, Dongjiao Wang, Yachun Su, Youxiong Que. Deciphering the Atlas of Post-Translational Modification in Sugarcane. Journal of Agricultural and Food Chemistry 2023, 71 (26) , 10004-10017. https://doi.org/10.1021/acs.jafc.3c01886
    12. Kyle J. Juetten, Jennifer S. Brodbelt. Top-Down Analysis of Supercharged Proteins Using Collision-, Electron-, and Photon-Based Activation Methods. Journal of the American Society for Mass Spectrometry 2023, 34 (7) , 1467-1476. https://doi.org/10.1021/jasms.3c00138
    13. Selvam Paramasivan, Janna L. Morrison, Mitchell C. Lock, Jack R. T. Darby, Roberto A. Barrero, Paul C. Mills, Pawel Sadowski. Automated Proteomics Workflows for High-Throughput Library Generation and Biomarker Detection Using Data-Independent Acquisition. Journal of Proteome Research 2023, 22 (6) , 2018-2029. https://doi.org/10.1021/acs.jproteome.3c00074
    14. David E. Salazar Marcano, Nada D. Savić, Shorok A. M. Abdelhameed, Francisco de Azambuja, Tatjana N. Parac-Vogt. Exploring the Reactivity of Polyoxometalates toward Proteins: From Interactions to Mechanistic Insights. JACS Au 2023, 3 (4) , 978-990. https://doi.org/10.1021/jacsau.3c00011
    15. Yang Zhao, Qian Xue, Man Wang, Bo Meng, You Jiang, Rui Zhai, Yong Zhang, Xinhua Dai, Xiang Fang. Evolution of Mass Spectrometry Instruments and Techniques for Blood Proteomics. Journal of Proteome Research 2023, 22 (4) , 1009-1023. https://doi.org/10.1021/acs.jproteome.3c00102
    16. Zhen Wu, Weirong Xiang, Lin Huang, Shuwei Li, Xumin Zhang. Hyperplexing Approaches for up to 45-Plex Quantitative Proteomic Analysis. Analytical Chemistry 2023, 95 (12) , 5169-5175. https://doi.org/10.1021/acs.analchem.3c00237
    17. Emily A. Chapman, Timothy J. Aballo, Jake A. Melby, Tianhua Zhou, Scott J. Price, Kalina J. Rossler, Ienglam Lei, Paul C. Tang, Ying Ge. Defining the Sarcomeric Proteoform Landscape in Ischemic Cardiomyopathy by Top-Down Proteomics. Journal of Proteome Research 2023, 22 (3) , 931-941. https://doi.org/10.1021/acs.jproteome.2c00729
    18. Jason Derks, Nikolai Slavov. Strategies for Increasing the Depth and Throughput of Protein Analysis by plexDIA. Journal of Proteome Research 2023, 22 (3) , 697-705. https://doi.org/10.1021/acs.jproteome.2c00721
    19. Pablo M. Scrosati, Lars Konermann. Atomistic Details of Peptide Reversed-Phase Liquid Chromatography from Molecular Dynamics Simulations. Analytical Chemistry 2023, 95 (7) , 3892-3900. https://doi.org/10.1021/acs.analchem.2c05667
    20. Sebastian Dorl, Stephan Winkler, Karl Mechtler, Viktoria Dorfer. MS Ana: Improving Sensitivity in Peptide Identification with Spectral Library Search. Journal of Proteome Research 2023, 22 (2) , 462-470. https://doi.org/10.1021/acs.jproteome.2c00658
    21. Xinhao Shao, Christopher Grams, Yu Gao. Sequence Coverage Visualizer: A Web Application for Protein Sequence Coverage 3D Visualization. Journal of Proteome Research 2023, 22 (2) , 343-349. https://doi.org/10.1021/acs.jproteome.2c00358
    22. Yuming Jiang, Alexandre Hutton, Caleb W. Cranney, Jesse G. Meyer. Label-Free Quantification from Direct Infusion Shotgun Proteome Analysis (DISPA-LFQ) with CsoDIAq Software. Analytical Chemistry 2023, 95 (2) , 677-685. https://doi.org/10.1021/acs.analchem.2c02249
    23. Taylor Battellino, Kosuke Ogata, Victor Spicer, Yasushi Ishihama, Oleg Krokhin. Acetic Acid Ion Pairing Additive for Reversed-Phase HPLC Improves Detection Sensitivity in Bottom-up Proteomics Compared to Formic Acid. Journal of Proteome Research 2023, 22 (1) , 272-278. https://doi.org/10.1021/acs.jproteome.2c00388
    24. Guillaume Gabant, Martin Stekovic, Matej Nemcic, Justine Pinêtre, Martine Cadene. A sDOE (Simple Design-of-Experiment) Approach for Parameter Optimization in Mass Spectrometry. Part 1. Parameter Selection and Interference Effects in Top-Down ETD Fragmentation of Proteins in a UHR-QTOF Instrument. Journal of the American Society for Mass Spectrometry 2023, 34 (1) , 27-35. https://doi.org/10.1021/jasms.2c00215
    25. Hui He, Lingli Zhou, Zhanchen Guo, Pengfei Li, Song Gao, Zhen Liu. Dual Biomimetic Recognition-Driven Plasmonic Nanogap-Enhanced Raman Scattering for Ultrasensitive Protein Fingerprinting and Quantitation. Nano Letters 2022, 22 (23) , 9664-9671. https://doi.org/10.1021/acs.nanolett.2c03857
    26. Molly S. Blevins, Kyle J. Juetten, Virginia K. James, Jamie P. Butalewicz, Edwin E. Escobar, Michael B. Lanzillotti, James D. Sanders, Kyle L. Fort, Jennifer S. Brodbelt. Nanohydrophobic Interaction Chromatography Coupled to Ultraviolet Photodissociation Mass Spectrometry for the Analysis of Intact Proteins in Low Charge States. Journal of Proteome Research 2022, 21 (10) , 2493-2503. https://doi.org/10.1021/acs.jproteome.2c00450
    27. Dimitris Papanastasiou, Diamantis Kounadis, Alexandros Lekkas, Ioannis Orfanopoulos, Andreas Mpozatzidis, Athanasios Smyrnakis, Elias Panagiotopoulos, Mariangela Kosmopoulou, Maria Reinhardt-Szyba, Kyle Fort, Alexander Makarov, Roman A. Zubarev. The Omnitrap Platform: A Versatile Segmented Linear Ion Trap for Multidimensional Multiple-Stage Tandem Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2022, 33 (10) , 1990-2007. https://doi.org/10.1021/jasms.2c00214
    28. Mark V. Ivanov, Julia A. Bubis, Vladimir Gorshkov, Irina A. Tarasova, Lev I. Levitsky, Elizaveta M. Solovyeva, Anastasiya V. Lipatova, Frank Kjeldsen, Mikhail V. Gorshkov. DirectMS1Quant: Ultrafast Quantitative Proteomics with MS/MS-Free Mass Spectrometry. Analytical Chemistry 2022, 94 (38) , 13068-13075. https://doi.org/10.1021/acs.analchem.2c02255
    29. David M. Kennes-Veiga, Alba Trueba-Santiso, Valentina Gallardo-Garay, Sabela Balboa, Marta Carballa, Juan M. Lema. Sulfamethoxazole Enhances Specific Enzymatic Activities under Aerobic Heterotrophic Conditions: A Metaproteomic Approach. Environmental Science & Technology 2022, 56 (18) , 13152-13159. https://doi.org/10.1021/acs.est.2c05001
    30. Christina Warinner, Kristine Korzow Richter, Matthew J. Collins. Paleoproteomics. Chemical Reviews 2022, 122 (16) , 13401-13446. https://doi.org/10.1021/acs.chemrev.1c00703
    31. Chao Wang, Yu Liang, Xue Yang, Bowen Zhong, Xiaodan Zhang, Baofeng Zhao, Zhen Liang, Lihua Zhang, Yukui Zhang. Surface-Charged Hybrid Monolithic Column for MS-Compatible Peptide Separation with High Peak Capacity and Its Application in Proteomic Analysis. Analytical Chemistry 2022, 94 (27) , 9525-9529. https://doi.org/10.1021/acs.analchem.2c02084
    32. Samuel A. Miller, Kevin Jeanne Dit Fouque, Mark E. Ridgeway, Melvin A. Park, Francisco Fernandez-Lima. Trapped Ion Mobility Spectrometry, Ultraviolet Photodissociation, and Time-of-Flight Mass Spectrometry for Gas-Phase Peptide Isobars/Isomers/Conformers Discrimination. Journal of the American Society for Mass Spectrometry 2022, 33 (7) , 1267-1275. https://doi.org/10.1021/jasms.2c00091
    33. Ritu Chaturvedi, Ian K. Webb. Multiplexed Conformationally Selective, Localized Gas-Phase Hydrogen Deuterium Exchange of Protein Ions Enabled by Transmission-Mode Electron Capture Dissociation. Analytical Chemistry 2022, 94 (25) , 8975-8982. https://doi.org/10.1021/acs.analchem.2c00942
    34. Elnaz Aliyari, Lars Konermann. Formation of Gaseous Peptide Ions from Electrospray Droplets: Competition between the Ion Evaporation Mechanism and Charged Residue Mechanism. Analytical Chemistry 2022, 94 (21) , 7713-7721. https://doi.org/10.1021/acs.analchem.2c01355
    35. Wassim Gabriel, Matthew The, Daniel P. Zolg, Florian P. Bayer, Omar Shouman, Ludwig Lautenbacher, Karsten Schnatbaum, Johannes Zerweck, Tobias Knaute, Bernard Delanghe, Andreas Huhmer, Holger Wenschuh, Ulf Reimer, Guillaume Médard, Bernhard Kuster, Mathias Wilhelm. Prosit-TMT: Deep Learning Boosts Identification of TMT-Labeled Peptides. Analytical Chemistry 2022, 94 (20) , 7181-7190. https://doi.org/10.1021/acs.analchem.1c05435
    36. Camille Lombard-Banek, Kerstin I. Pohl, Edward J. Kwee, John T. Elliott, John E. Schiel. A Sensitive and Controlled Data-Independent Acquisition Method for Proteomic Analysis of Cell Therapies. Journal of Proteome Research 2022, 21 (5) , 1229-1239. https://doi.org/10.1021/acs.jproteome.1c00887
    37. Márkó Grabarics, Maike Lettow, Carla Kirschbaum, Kim Greis, Christian Manz, Kevin Pagel. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chemical Reviews 2022, 122 (8) , 7840-7908. https://doi.org/10.1021/acs.chemrev.1c00380
    38. Hongwei Chu, Qun Zhao, Yichu Shan, Shen Zhang, Zhigang Sui, Xiao Li, Fei Fang, Baofeng Zhao, Shijun Zhong, Zhen Liang, Lihua Zhang, Yukui Zhang. All-Ion Monitoring-Directed Low-Abundance Protein Quantification Reveals CALB2 as a Key Promoter in Hepatocellular Carcinoma Metastasis. Analytical Chemistry 2022, 94 (16) , 6102-6111. https://doi.org/10.1021/acs.analchem.1c03562
    39. Yu Liang, Chao Wang, Zhen Liang, Lihua Zhang, Yukui Zhang. C18-Functionalized Amine-Bridged Hybrid Monoliths for Mass Spectrometry-Friendly Peptide Separation and Highly Sensitive Proteomic Analysis. Analytical Chemistry 2022, 94 (16) , 6084-6088. https://doi.org/10.1021/acs.analchem.1c04405
    40. Kish R. Adoni, Debbie L. Cunningham, John K. Heath, Aneika C. Leney. FAIMS Enhances the Detection of PTM Crosstalk Sites. Journal of Proteome Research 2022, 21 (4) , 930-939. https://doi.org/10.1021/acs.jproteome.1c00721
    41. Zhiwei Wang, Ni Pan, Jiahao Yan, Jian Wan, Cuihong Wan. Systematic Identification of Microproteins during the Development of Drosophila melanogaster. Journal of Proteome Research 2022, 21 (4) , 1114-1123. https://doi.org/10.1021/acs.jproteome.2c00004
    42. Xiaoyan Liu, Mingming Dong, Yating Yao, Yan Wang, Jiawei Mao, Lianghai Hu, Lishan Yao, Mingliang Ye. A Tyrosine Phosphoproteome Analysis Approach Enabled by Selective Dephosphorylation with Protein Tyrosine Phosphatase. Analytical Chemistry 2022, 94 (10) , 4155-4164. https://doi.org/10.1021/acs.analchem.1c03704
    43. Sam B. Choi, Pablo Muñoz-LLancao, M. Chiara Manzini, Peter Nemes. Data-Dependent Acquisition Ladder for Capillary Electrophoresis Mass Spectrometry-Based Ultrasensitive (Neuro)Proteomics. Analytical Chemistry 2021, 93 (48) , 15964-15972. https://doi.org/10.1021/acs.analchem.1c03327
    44. Tirsa T. van Duijl, L. Renee Ruhaak, Nico P. M. Smit, Mervin M. Pieterse, Fred P. H. T. M. Romijn, Natasja Dolezal, Jan Wouter Drijfhout, Johan W. de Fijter, Christa M. Cobbaert. Development and Provisional Validation of a Multiplex LC-MRM-MS Test for Timely Kidney Injury Detection in Urine. Journal of Proteome Research 2021, 20 (12) , 5304-5314. https://doi.org/10.1021/acs.jproteome.1c00532
    45. Jingchuan Xue, Rico J. E. Derks, Linh Hoang, Martin Giera, Gary Siuzdak. Proteomics with Enhanced In-Source Fragmentation/Annotation: Applying XCMS-EISA Informatics and Q-MRM High-Sensitivity Quantification. Journal of the American Society for Mass Spectrometry 2021, 32 (11) , 2644-2654. https://doi.org/10.1021/jasms.1c00188
    46. Sabyasachi Baboo, Jolene K. Diedrich, Salvador Martínez-Bartolomé, Xiaoning Wang, Torben Schiffner, Bettina Groschel, William R. Schief, James C. Paulson, John R. Yates, III. DeGlyPHER: An Ultrasensitive Method for the Analysis of Viral Spike N-Glycoforms. Analytical Chemistry 2021, 93 (40) , 13651-13657. https://doi.org/10.1021/acs.analchem.1c03059
    47. Clarisse Gotti, Florence Roux-Dalvai, Charles Joly-Beauparlant, Loïc Mangnier, Mickaël Leclercq, Arnaud Droit. Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software Tools Using a Complex Proteomic Standard. Journal of Proteome Research 2021, 20 (10) , 4801-4814. https://doi.org/10.1021/acs.jproteome.1c00490
    48. Ivan Birukou, Michal Zawadzki, Gerson Graser, Scott Young. Protein Characterization by MALDI In-Source Decay Mass Spectrometry in Support of Safety Assessments of Genetically Modified Crops. Journal of Agricultural and Food Chemistry 2021, 69 (35) , 10358-10370. https://doi.org/10.1021/acs.jafc.1c00512
    49. Taran Driver, Vitali Averbukh, Leszek J. Frasiński, Jon P. Marangos, Marina Edelson-Averbukh. Two-Dimensional Partial Covariance Mass Spectrometry for the Top–Down Analysis of Intact Proteins. Analytical Chemistry 2021, 93 (31) , 10779-10788. https://doi.org/10.1021/acs.analchem.1c00332
    50. Timothy J. Aballo, David S. Roberts, Jake A. Melby, Kevin M. Buck, Kyle A. Brown, Ying Ge. Ultrafast and Reproducible Proteomics from Small Amounts of Heart Tissue Enabled by Azo and timsTOF Pro. Journal of Proteome Research 2021, 20 (8) , 4203-4211. https://doi.org/10.1021/acs.jproteome.1c00446
    51. Simon K. Gammelgaard, Steffen B. Petersen, Kim F. Haselmann, Peter Kresten Nielsen. Characterization of Insulin Dimers by Top-Down Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2021, 32 (8) , 1910-1918. https://doi.org/10.1021/jasms.0c00257
    52. Binwen Sun, Ji Lv, Jin Chen, Zheyi Liu, Ye Zhou, Lin Liu, Yan Jin, Fangjun Wang. Size-Selective VAILase Proteolysis Provides Dynamic Insights into Protein Structures. Analytical Chemistry 2021, 93 (30) , 10653-10660. https://doi.org/10.1021/acs.analchem.1c02042
    53. Wen Li, Qian Zhang, Xiaobin Wang, Hanlin Wang, Wenxin Zuo, Hongliang Xie, Jianming Tang, Mengmeng Wang, Zhipeng Zeng, Wanxia Cai, Donge Tang, Yong Dai. Comparative Proteomic Analysis to Investigate the Pathogenesis of Oral Adenoid Cystic Carcinoma. ACS Omega 2021, 6 (29) , 18623-18634. https://doi.org/10.1021/acsomega.1c01270
    54. Kevin Jeanne Dit Fouque, Desmond Kaplan, Valery G. Voinov, Frederik H. V. Holck, Ole N. Jensen, Francisco Fernandez-Lima. Proteoform Differentiation using Tandem Trapped Ion Mobility, Electron Capture Dissociation, and ToF Mass Spectrometry. Analytical Chemistry 2021, 93 (27) , 9575-9582. https://doi.org/10.1021/acs.analchem.1c01735
    55. Jake A. Melby, David S. Roberts, Eli J. Larson, Kyle A. Brown, Elizabeth F. Bayne, Song Jin, Ying Ge. Novel Strategies to Address the Challenges in Top-Down Proteomics. Journal of the American Society for Mass Spectrometry 2021, 32 (6) , 1278-1294. https://doi.org/10.1021/jasms.1c00099
    56. Juan Qiao, Yuying Song, Chuanfang Chen, Li Qi. In Situ Determination of Sialic Acid on Cell Surface with a pH-Regulated Polymer Enzyme Nanoreactor. Analytical Chemistry 2021, 93 (19) , 7317-7322. https://doi.org/10.1021/acs.analchem.1c00880
    57. Kenneth Weke, Ashita Singh, Naomi Uwugiaren, Javier A. Alfaro, Tongjie Wang, Ted R. Hupp, J. Robert O’Neill, Borek Vojtesek, David R. Goodlett, Sarah M. Williams, Mowei Zhou, Ryan T. Kelly, Ying Zhu, Irena Dapic. MicroPOTS Analysis of Barrett’s Esophageal Cell Line Models Identifies Proteomic Changes after Physiologic and Radiation Stress. Journal of Proteome Research 2021, 20 (5) , 2195-2205. https://doi.org/10.1021/acs.jproteome.0c00629
    58. Alexander V. West, Giovanni Muncipinto, Hung-Yi Wu, Andrew C. Huang, Matthew T. Labenski, Lyn H. Jones, Christina M. Woo. Labeling Preferences of Diazirines with Protein Biomolecules. Journal of the American Chemical Society 2021, 143 (17) , 6691-6700. https://doi.org/10.1021/jacs.1c02509
    59. Vincent R. Gerbasi, Rafael D. Melani, Susan E. Abbatiello, Michael W. Belford, Romain Huguet, John P. McGee, Dawson Dayhoff, Paul M. Thomas, Neil L. Kelleher. Deeper Protein Identification Using Field Asymmetric Ion Mobility Spectrometry in Top-Down Proteomics. Analytical Chemistry 2021, 93 (16) , 6323-6328. https://doi.org/10.1021/acs.analchem.1c00402
    60. Kaiwen Yu, Mingming Niu, Hong Wang, Yuxin Li, Zhiping Wu, Bin Zhang, Vahram Haroutunian, Junmin Peng. Global Profiling of Lysine Accessibility to Evaluate Protein Structure Changes in Alzheimer’s Disease. Journal of the American Society for Mass Spectrometry 2021, 32 (4) , 936-945. https://doi.org/10.1021/jasms.0c00450
    61. Francisco de Azambuja, Jens Moons, Tatjana N. Parac-Vogt. The Dawn of Metal-Oxo Clusters as Artificial Proteases: From Discovery to the Present and Beyond. Accounts of Chemical Research 2021, 54 (7) , 1673-1684. https://doi.org/10.1021/acs.accounts.0c00666
    62. Rachel M. Miller, Khairina Ibrahim, Lloyd M. Smith. ProteaseGuru: A Tool for Protease Selection in Bottom-Up Proteomics. Journal of Proteome Research 2021, 20 (4) , 1936-1942. https://doi.org/10.1021/acs.jproteome.0c00954
    63. Julian Uszkoreit, Dirk Winkelhardt, Katalin Barkovits, Maximilian Wulf, Sascha Roocke, Katrin Marcus, Martin Eisenacher. MaCPepDB: A Database to Quickly Access All Tryptic Peptides of the UniProtKB. Journal of Proteome Research 2021, 20 (4) , 2145-2150. https://doi.org/10.1021/acs.jproteome.0c00967
    64. Noemi Procopio, Rachel J.A. Hopkins, Virginia L. Harvey, Michael Buckley. Proteome Variation with Collagen Yield in Ancient Bone. Journal of Proteome Research 2021, 20 (3) , 1754-1769. https://doi.org/10.1021/acs.jproteome.0c01014
    65. Francis Berthias, Matthew A. Baird, Alexandre A. Shvartsburg. Differential Ion Mobility Separations of d/l Peptide Epimers. Analytical Chemistry 2021, 93 (8) , 4015-4022. https://doi.org/10.1021/acs.analchem.0c05023
    66. Tessa B. Moyer, Jessie L. Allen, Lindsey N. Shaw, Leslie M. Hicks. Multiple Classes of Antimicrobial Peptides in Amaranthus tricolor Revealed by Prediction, Proteomics, and Mass Spectrometric Characterization. Journal of Natural Products 2021, 84 (2) , 444-452. https://doi.org/10.1021/acs.jnatprod.0c01203
    67. Junfeng Ma, Ci Wu, Gerald W. Hart. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chemical Reviews 2021, 121 (3) , 1513-1581. https://doi.org/10.1021/acs.chemrev.0c00884
    68. Michael Tuck, Landry Blanc, Rita Touti, Nathan Heath Patterson, Sebastiaan Van Nuffel, Sandrine Villette, Jean-Christophe Taveau, Andreas Römpp, Alain Brunelle, Sophie Lecomte, Nicolas Desbenoit. Multimodal Imaging Based on Vibrational Spectroscopies and Mass Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review. Analytical Chemistry 2021, 93 (1) , 445-477. https://doi.org/10.1021/acs.analchem.0c04595
    69. Emma R. Guiberson, Andy Weiss, Daniel J. Ryan, Andrew J. Monteith, Kavya Sharman, Danielle B. Gutierrez, William J. Perry, Richard M. Caprioli, Eric P. Skaar, Jeffrey M. Spraggins. Spatially Targeted Proteomics of the Host–Pathogen Interface during Staphylococcal Abscess Formation. ACS Infectious Diseases 2021, 7 (1) , 101-113. https://doi.org/10.1021/acsinfecdis.0c00647
    70. Elizaveta M. Solovyeva, Sergei A. Moshkovskii, Mikhail V. Gorshkov. Identification-Free Control over the Precursor Isotopic Mass Misassignment in Orbitrap-Based Proteomics. Journal of the American Society for Mass Spectrometry 2021, 32 (1) , 218-224. https://doi.org/10.1021/jasms.0c00281
    71. Xiaoyue Yang, Yu Xia. Mapping Complex Disulfide Bonds via Implementing Photochemical Reduction Online with Liquid Chromatography–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2021, 32 (1) , 307-314. https://doi.org/10.1021/jasms.0c00324
    72. John R. Corbett, Dana E. Robinson, Steven M. Patrie. Robustness and Ruggedness of Isoelectric Focusing and Superficially Porous Liquid Chromatography with Fourier Transform Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2021, 32 (1) , 346-354. https://doi.org/10.1021/jasms.0c00355
    73. Danting Liu, Shu Yang, Kanisha Kavdia, Jeffrey M. Sifford, Zhiping Wu, Boer Xie, Zhen Wang, Vishwajeeth R. Pagala, Hong Wang, Kaiwen Yu, Kaushik Kumar Dey, Anthony A. High, Geidy E. Serrano, Thomas G. Beach, Junmin Peng. Deep Profiling of Microgram-Scale Proteome by Tandem Mass Tag Mass Spectrometry. Journal of Proteome Research 2021, 20 (1) , 337-345. https://doi.org/10.1021/acs.jproteome.0c00426
    74. Harrison Specht, Nikolai Slavov. Optimizing Accuracy and Depth of Protein Quantification in Experiments Using Isobaric Carriers. Journal of Proteome Research 2021, 20 (1) , 880-887. https://doi.org/10.1021/acs.jproteome.0c00675
    75. Alyssa Q. Stiving, Sophie R. Harvey, Benjamin J. Jones, Bruno Bellina, Jeffery M. Brown, Perdita E. Barran, Vicki H. Wysocki. Coupling 193 nm Ultraviolet Photodissociation and Ion Mobility for Sequence Characterization of Conformationally-Selected Peptides. Journal of the American Society for Mass Spectrometry 2020, 31 (11) , 2313-2320. https://doi.org/10.1021/jasms.0c00259
    76. Rovshan G. Sadygov. Partial Isotope Profiles Are Sufficient for Protein Turnover Analysis Using Closed-Form Equations of Mass Isotopomer Dynamics. Analytical Chemistry 2020, 92 (21) , 14747-14753. https://doi.org/10.1021/acs.analchem.0c03343
    77. Jürgen Bartel, Adithi R. Varadarajan, Thomas Sura, Christian H. Ahrens, Sandra Maaß, Dörte Becher. Optimized Proteomics Workflow for the Detection of Small Proteins. Journal of Proteome Research 2020, 19 (10) , 4004-4018. https://doi.org/10.1021/acs.jproteome.0c00286
    78. Xiaobo Tian, Marcel P. de Vries, Hjalmar P. Permentier, Rainer Bischoff. A Collision-Induced Dissociation Cleavable Isobaric Tag for Peptide Fragment Ion-Based Quantification in Proteomics. Journal of Proteome Research 2020, 19 (9) , 3817-3824. https://doi.org/10.1021/acs.jproteome.0c00371
    79. Nicholas McKitterick, Frida Braathen, Magdalena A. Switnicka-Plak, Peter A. G. Cormack, Léon Reubsaet, Trine Grønhaug Halvorsen. Magnetic Synthetic Receptors for Selective Clean-Up in Protein Biomarker Quantification. Journal of Proteome Research 2020, 19 (8) , 3573-3582. https://doi.org/10.1021/acs.jproteome.0c00258
    80. Robert A. D’Ippolito, Maria C. Panepinto, Keira E. Mahoney, Dina L. Bai, Jeffrey Shabanowitz, Donald F. Hunt. Sequencing a Bispecific Antibody by Controlling Chain Concentration Effects When Using an Immobilized Nonspecific Protease. Analytical Chemistry 2020, 92 (15) , 10470-10477. https://doi.org/10.1021/acs.analchem.0c01126
    81. Cosima D. Calvano, Elena C.L. Rigante, Tommaso R.I. Cataldi, Luigia Sabbatini. In Situ Hydrogel Extraction with Dual-Enzyme Digestion of Proteinaceous Binders: the Key for Reliable Mass Spectrometry Investigations of Artworks. Analytical Chemistry 2020, 92 (15) , 10257-10261. https://doi.org/10.1021/acs.analchem.0c01898
    82. Praveen Kumar, James E. Johnson, Caleb Easterly, Subina Mehta, Ray Sajulga, Brook Nunn, Pratik D. Jagtap, Timothy J. Griffin. A Sectioning and Database Enrichment Approach for Improved Peptide Spectrum Matching in Large, Genome-Guided Protein Sequence Databases. Journal of Proteome Research 2020, 19 (7) , 2772-2785. https://doi.org/10.1021/acs.jproteome.0c00260
    83. Massamba M. Ndiaye, Ha Phuong Ta, Giovanni Chiappetta, Joëlle Vinh. On-Chip Sample Preparation Using a ChipFilter Coupled to NanoLC-MS/MS for Bottom-Up Proteomics. Journal of Proteome Research 2020, 19 (7) , 2654-2663. https://doi.org/10.1021/acs.jproteome.9b00832
    84. Niveda Sundararaman, James Go, Aaron E. Robinson, José M. Mato, Shelly C. Lu, Jennifer E. Van Eyk, Vidya Venkatraman. PINE: An Automation Tool to Extract and Visualize Protein-Centric Functional Networks. Journal of the American Society for Mass Spectrometry 2020, 31 (7) , 1410-1421. https://doi.org/10.1021/jasms.0c00032
    85. Abdul Rehman Basharat, Xia Ning, Xiaowen Liu. EnvCNN: A Convolutional Neural Network Model for Evaluating Isotopic Envelopes in Top-Down Mass-Spectral Deconvolution. Analytical Chemistry 2020, 92 (11) , 7778-7785. https://doi.org/10.1021/acs.analchem.0c00903
    86. Xiaobo Tian, Marcel P. de Vries, Susan W. J. Visscher, Hjalmar P. Permentier, Rainer Bischoff. Selective Maleylation-Directed Isobaric Peptide Termini Labeling for Accurate Proteome Quantification. Analytical Chemistry 2020, 92 (11) , 7836-7844. https://doi.org/10.1021/acs.analchem.0c01059
    87. Xiaoran Roger Liu, Mengru Mira Zhang, Michael L. Gross. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chemical Reviews 2020, 120 (10) , 4355-4454. https://doi.org/10.1021/acs.chemrev.9b00815
    88. Mowei Zhou, Naomi Uwugiaren, Sarah M. Williams, Ronald J. Moore, Rui Zhao, David Goodlett, Irena Dapic, Ljiljana Paša-Tolić, Ying Zhu. Sensitive Top-Down Proteomics Analysis of a Low Number of Mammalian Cells Using a Nanodroplet Sample Processing Platform. Analytical Chemistry 2020, 92 (10) , 7087-7095. https://doi.org/10.1021/acs.analchem.0c00467
    89. Zhen Wang, Kaiwen Yu, Haiyan Tan, Zhiping Wu, Ji-Hoon Cho, Xian Han, Huan Sun, Thomas G. Beach, Junmin Peng. 27-Plex Tandem Mass Tag Mass Spectrometry for Profiling Brain Proteome in Alzheimer’s Disease. Analytical Chemistry 2020, 92 (10) , 7162-7170. https://doi.org/10.1021/acs.analchem.0c00655
    90. Spencer Chiang, Wenpeng Zhang, Charles Farnsworth, Yiying Zhu, Kimberly Lee, Zheng Ouyang. Targeted Quantification of Peptides Using Miniature Mass Spectrometry. Journal of Proteome Research 2020, 19 (5) , 2043-2052. https://doi.org/10.1021/acs.jproteome.9b00875
    91. Simone Nicolardi, David P. A. Kilgour, Natasja Dolezal, Jan W. Drijfhout, Manfred Wuhrer, Yuri E. M. van der Burgt. Evaluation of Sibling and Twin Fragment Ions Improves the Structural Characterization of Proteins by Top-Down MALDI In-Source Decay Mass Spectrometry. Analytical Chemistry 2020, 92 (8) , 5871-5881. https://doi.org/10.1021/acs.analchem.9b05683
    92. Jennifer S. Brodbelt, Lindsay J. Morrison, Inês Santos. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chemical Reviews 2020, 120 (7) , 3328-3380. https://doi.org/10.1021/acs.chemrev.9b00440
    93. Julianus Pfeuffer, Timo Sachsenberg, Tjeerd M. H. Dijkstra, Oliver Serang, Knut Reinert, Oliver Kohlbacher. EPIFANY: A Method for Efficient High-Confidence Protein Inference. Journal of Proteome Research 2020, 19 (3) , 1060-1072. https://doi.org/10.1021/acs.jproteome.9b00566
    94. Wai Tuck Soh, Fatih Demir, Elfriede Dall, Andreas Perrar, Sven O. Dahms, Maithreyan Kuppusamy, Hans Brandstetter, Pitter F. Huesgen. ExteNDing Proteome Coverage with Legumain as a Highly Specific Digestion Protease. Analytical Chemistry 2020, 92 (4) , 2961-2971. https://doi.org/10.1021/acs.analchem.9b03604
    95. Lei J. Ding, Hannah M. Schlüter, Matthew J. Szucs, Rushdy Ahmad, Zheyang Wu, Weifeng Xu. Comparison of Statistical Tests and Power Analysis for Phosphoproteomics Data. Journal of Proteome Research 2020, 19 (2) , 572-582. https://doi.org/10.1021/acs.jproteome.9b00280
    96. Pavel V. Shliaha, Vladimir Gorshkov, Sergey I. Kovalchuk, Veit Schwämmle, Matthew A. Baird, Alexandre A. Shvartsburg, Ole N. Jensen. Middle-Down Proteomic Analyses with Ion Mobility Separations of Endogenous Isomeric Proteoforms. Analytical Chemistry 2020, 92 (3) , 2364-2368. https://doi.org/10.1021/acs.analchem.9b05011
    97. Binwen Sun, Zheyi Liu, Zheng Fang, Wei Dong, Yang Yu, Mingliang Ye, Lin Liu, Hongda Wang, Fangjun Wang. Probing the Proteomics Dark Regions by VAILase Cleavage at Aliphatic Amino Acids. Analytical Chemistry 2020, 92 (3) , 2770-2777. https://doi.org/10.1021/acs.analchem.9b05048
    98. Suttipong Suttapitugsakul, Fangxu Sun, Ronghu Wu. Recent Advances in Glycoproteomic Analysis by Mass Spectrometry. Analytical Chemistry 2020, 92 (1) , 267-291. https://doi.org/10.1021/acs.analchem.9b04651
    99. Luis A. Macias, Inês C. Santos, Jennifer S. Brodbelt. Ion Activation Methods for Peptides and Proteins. Analytical Chemistry 2020, 92 (1) , 227-251. https://doi.org/10.1021/acs.analchem.9b04859
    100. Laura Restrepo-Pérez, Gang Huang, Peggy R. Bohländer, Nathalie Worp, Rienk Eelkema, Giovanni Maglia, Chirlmin Joo, Cees Dekker. Resolving Chemical Modifications to a Single Amino Acid within a Peptide Using a Biological Nanopore. ACS Nano 2019, 13 (12) , 13668-13676. https://doi.org/10.1021/acsnano.9b05156
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect