ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges

View Author Information
Electrochemistry Laboratory, General Energy Research Department, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
Laboratory of Physical Chemistry, Electrochemistry Group, ETH Zürich, CH-8093 Zürich, Switzerland
Cite this: ACS Catal. 2012, 2, 5, 864–890
Publication Date (Web):March 26, 2012
https://doi.org/10.1021/cs3000864
Copyright © 2012 American Chemical Society

    Article Views

    10697

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (6 MB)

    Abstract

    Abstract Image

    Fuel cell technology is currently shifting very fast from fundamental research to real development. In addition to other aspects, this transition is possible because of the important improvements achieved in the field of electrocatalysis in the past decade. This perspective will give a focused overview summarizing the most outstanding contributions in the last 10 years in terms of activity and durability of the catalyst materials for ethanol oxidation and oxygen reduction reaction, respectively. In addition, it provides an outlook about new catalyst support materials with improved performance/stability, advanced characterization techniques, and fundamental studies of reaction mechanisms and degradation processes. All the studies referred to in this perspective significantly contribute to reaching the technical targets for PEFC commercialization.

    Cited By

    This article is cited by 696 publications.

    1. Jiahuan Zhong, Zhaogen Zhu, Qianqun Xu, Lijuan Peng, Kaifen Luo, Dingsheng Yuan. FeCo Alloy Nanoparticles Supported on Co–N–C Cubes Derived from Imidazolate Frameworks as a Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. Energy & Fuels 2023, 37 (17) , 13489-13497. https://doi.org/10.1021/acs.energyfuels.3c02221
    2. Yuebing Wang, Guanghua Tan, Qingfeng Yi, Can Fang, Ruowei Yi. N-Doped Hollow Carbon Sphere and Polyhedral Carbon Composite Supported Pt/Fe Nanoparticles as Highly Efficient Cathodic Catalysts of Proton-Exchange Membrane Fuel Cells. ACS Applied Energy Materials 2023, 6 (3) , 1228-1238. https://doi.org/10.1021/acsaem.2c02838
    3. Cui Wang, Juan Herranz, René Hübner, Thomas J. Schmidt, Alexander Eychmüller. Element Distributions in Bimetallic Aerogels. Accounts of Chemical Research 2023, 56 (3) , 237-247. https://doi.org/10.1021/acs.accounts.2c00491
    4. Michael Gonzalez, Michael N. Groves. A Systematic Search for the Adsorption Motif of All Stereoisomers of Propylene Glycol on a Palladium(111) Surface for Fuel Cell Applications. Langmuir 2023, 39 (1) , 119-128. https://doi.org/10.1021/acs.langmuir.2c02281
    5. Ashok Singh, Srimanta Pakhira. Unraveling the Electrocatalytic Activity of Platinum Doped Zirconium Disulfide toward the Oxygen Reduction Reaction. Energy & Fuels 2023, 37 (1) , 567-579. https://doi.org/10.1021/acs.energyfuels.2c02831
    6. Melissa E. Kreider, Gaurav A. Kamat, José A. Zamora Zeledón, Lingze Wei, Dimosthenis Sokaras, Alessandro Gallo, Michaela Burke Stevens, Thomas F. Jaramillo. Understanding the Stability of Manganese Chromium Antimonate Electrocatalysts through Multimodal In Situ and Operando Measurements. Journal of the American Chemical Society 2022, 144 (49) , 22549-22561. https://doi.org/10.1021/jacs.2c08600
    7. Shailendra K. Jha Niki S. Jha . Electrocatalysts and Electrocatalysis: From Fundamental Mechanisms to Fuel Cell Applications. , 53-71. https://doi.org/10.1021/bk-2022-1431.ch003
    8. Xiaoxiang Xu, Kun Lin, Fengrui Jia, Shuang Li, Zuhong He, Xiong Chen. Defect-Rich and Single-Crystalline PdCu Ultrathin Nanowires Promoting Ethanol Oxidation Electrocatalysis. ACS Applied Energy Materials 2022, 5 (8) , 10233-10239. https://doi.org/10.1021/acsaem.2c01952
    9. Yuebing Wang, Aling Chen, Can Fang, Qingfeng Yi. Nitrogen/Phosphorus/Boron-Codoped Hollow Carbon Spheres as Highly Efficient Electrocatalysts for Zn–Air Batteries. Industrial & Engineering Chemistry Research 2022, 61 (30) , 10969-10981. https://doi.org/10.1021/acs.iecr.2c01350
    10. Katsutoshi Sato, Shuhei Zaitsu, Godai Kitayama, Sho Yagi, Yuto Kayada, Yoshihide Nishida, Yuichiro Wada, Katsutoshi Nagaoka. Operando Spectroscopic Study of the Dynamics of Ru Catalyst during Preferential Oxidation of CO and the Prevention of Ammonia Poisoning by Pt. JACS Au 2022, 2 (7) , 1627-1637. https://doi.org/10.1021/jacsau.2c00195
    11. Roberto Della Pergola, Luigi Garlaschelli, Piero Macchi, Irene Facchinetti, Riccardo Ruffo, Stefano Racioppi, Angelo Sironi. From Small Metal Clusters to Molecular Nanoarchitectures with a Core–Shell Structure: The Synthesis, Redox Fingerprint, Theoretical Analysis, and Solid-State Structure of [Co38As12(CO)50]4–. Inorganic Chemistry 2022, 61 (26) , 9888-9896. https://doi.org/10.1021/acs.inorgchem.2c00506
    12. Anuj Kumar, Kai Sun, Xinxuan Duan, Shubo Tian, Xiaoming Sun. Construction of Dual-Atom Fe via Face-to-Face Assembly of Molecular Phthalocyanine for Superior Oxygen Reduction Reaction. Chemistry of Materials 2022, 34 (12) , 5598-5606. https://doi.org/10.1021/acs.chemmater.2c00775
    13. Francisco Zaera. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews 2022, 122 (9) , 8594-8757. https://doi.org/10.1021/acs.chemrev.1c00905
    14. Regina M. Kluge, Eleftherios Psaltis, Richard W. Haid, Shujin Hou, Thorsten O. Schmidt, Oliver Schneider, Batyr Garlyyev, Federico Calle-Vallejo, Aliaksandr S. Bandarenka. Revealing the Nature of Active Sites on Pt–Gd and Pt–Pr Alloys during the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2022, 14 (17) , 19604-19613. https://doi.org/10.1021/acsami.2c03604
    15. Luyu Zhu, Kai Song, Chenglin Yi. One-Pot Aqueous Synthesis of Porous Hollow PdCu Alloy Nanoparticles for Enhanced Ethanol Electrooxidation. Inorganic Chemistry 2022, 61 (14) , 5474-5478. https://doi.org/10.1021/acs.inorgchem.2c00486
    16. Naomi Helsel, Pabitra Choudhury. Regulating Electronic Descriptors for the Enhanced ORR Activity of FePc-Functionalized Graphene via Substrate Doping and/or Ligand Exchange: A Theoretical Study. The Journal of Physical Chemistry C 2022, 126 (9) , 4458-4471. https://doi.org/10.1021/acs.jpcc.2c00252
    17. Yu-Jui Lin, Jui-En Tsai, Cheng-Che Huang, Yong-Song Chen, Yuan-Yao Li. Highly Porous Iron-Doped Nitrogen–Carbon Framework on Reduced Graphene Oxide as an Excellent Oxygen Reduction Catalyst for Proton-Exchange Membrane Fuel Cells. ACS Applied Energy Materials 2022, 5 (2) , 1822-1832. https://doi.org/10.1021/acsaem.1c03245
    18. Suzhen Ren, Fufu Di, Lianlian Zhao, Jialin Zhao, Sumbal Fraid. Hydrothermal Synthesis of Fe3+/3-Aminophenol–Formaldehyde as an Oxygen Electroreduction Catalyst in Alkaline Conditions. ACS Applied Energy Materials 2022, 5 (2) , 1595-1606. https://doi.org/10.1021/acsaem.1c03012
    19. Hirosuke Matsui, Shinobu Takao, Kotaro Higashi, Takuma Kaneko, Gabor Samjeské, Tomoya Uruga, Mizuki Tada, Yasuhiro Iwasawa. Operando Imaging of Ce Radical Scavengers in a Practical Polymer Electrolyte Fuel Cell by 3D Fluorescence CT–XAFS and Depth-Profiling Nano-XAFS–SEM/EDS Techniques. ACS Applied Materials & Interfaces 2022, 14 (5) , 6762-6776. https://doi.org/10.1021/acsami.1c22336
    20. Colleen Jackson, Xiaoqian Lin, Pieter B. J. Levecque, Anthony R. J. Kucernak. Toward Understanding the Utilization of Oxygen Reduction Electrocatalysts under High Mass Transport Conditions and High Overpotentials. ACS Catalysis 2022, 12 (1) , 200-211. https://doi.org/10.1021/acscatal.1c03908
    21. Pandiaraj Sekar, Nithya Murugesh, Ramasamy Shanmugam, Shanmugam Senthil Kumar, Stefano Agnoli, Narendraraj Chandran, Seenuvasan Vedachalam, Ramasamy Karvembu. Phosphazene-Based Covalent Organic Polymer Decorated with NiCo2O4 Nanocuboids as a Trifunctional Electrocatalyst: A Unique Replacement for the Conventional Electrocatalysts. ACS Applied Energy Materials 2021, 4 (9) , 9341-9352. https://doi.org/10.1021/acsaem.1c01550
    22. J. Knossalla, J. Mielby, D. Göhl, F. R. Wang, D. Jalalpoor, A. Hopf, K. J. J. Mayrhofer, M. Ledendecker, F. Schüth. Chemical Vapor Deposition of Hollow Graphitic Spheres for Improved Electrochemical Durability. ACS Applied Energy Materials 2021, 4 (6) , 5840-5847. https://doi.org/10.1021/acsaem.1c00643
    23. Guoyu Shi, Tetsuro Tano, Donald A. Tryk, Akihiro Iiyama, Makoto Uchida, Katsuyoshi Kakinuma. Temperature Dependence of Oxygen Reduction Activity at Pt/Nb-Doped SnO2 Catalysts with Varied Pt Loading. ACS Catalysis 2021, 11 (9) , 5222-5230. https://doi.org/10.1021/acscatal.0c05157
    24. Ádám Ganyecz, Mihály Kállay. Oxygen Reduction Reaction on N-Doped Graphene: Effect of Positions and Scaling Relations of Adsorption Energies. The Journal of Physical Chemistry C 2021, 125 (16) , 8551-8561. https://doi.org/10.1021/acs.jpcc.0c11340
    25. Koki Matsumoto, Akira Onoda, Tomoyuki Kitano, Takao Sakata, Hidehiro Yasuda, Stéphane Campidelli, Takashi Hayashi. Thermally Controlled Construction of Fe–Nx Active Sites on the Edge of a Graphene Nanoribbon for an Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2021, 13 (13) , 15101-15112. https://doi.org/10.1021/acsami.0c21321
    26. Eliran Rephael Hamo, Reut Saporta, Brian A. Rosen. Active and Stable Oxygen Reduction Catalysts Prepared by Electrodeposition of Platinum on Mo2C at Low Overpotential. ACS Applied Energy Materials 2021, 4 (3) , 2130-2137. https://doi.org/10.1021/acsaem.0c02615
    27. Casey E. Beall, Emiliana Fabbri, Thomas J. Schmidt. Perovskite Oxide Based Electrodes for the Oxygen Reduction and Evolution Reactions: The Underlying Mechanism. ACS Catalysis 2021, 11 (5) , 3094-3114. https://doi.org/10.1021/acscatal.0c04473
    28. Chen Liu, Tomoki Uchiyama, Noriyuki Nagata, Masazumi Arao, Kentaro Yamamoto, Toshiki Watanabe, Xiao Gao, Hideto Imai, Syota Katayama, Seiho Sugawara, Kazuhiko Shinohara, Koichiro Oshima, Shigeki Sakurai, Yoshiharu Uchimoto. Operando X-ray Absorption Spectroscopic Study on the Influence of Specific Adsorption of the Sulfo Group in the Perfluorosulfonic Acid Ionomer on the Oxygen Reduction Reaction Activity of the Pt/C Catalyst. ACS Applied Energy Materials 2021, 4 (2) , 1143-1149. https://doi.org/10.1021/acsaem.0c02326
    29. Chen Liu, Tomoki Uchiyama, Kentaro Yamamoto, Toshiki Watanabe, Xiao Gao, Hideto Imai, Masashi Matsumoto, Seiho Sugawara, Kazuhiko Shinohara, Koichiro Oshima, Shigeki Sakurai, Yoshiharu Uchimoto. Effect of Temperature on Oxygen Reduction Reaction Kinetics for Pd Core–Pt Shell Catalyst with Different Core Size. ACS Applied Energy Materials 2021, 4 (1) , 810-818. https://doi.org/10.1021/acsaem.0c02708
    30. Kentaro Ichihashi, Satoshi Muratsugu, Hirosuke Matsui, Kotaro Higashi, Oki Sekizawa, Tomoya Uruga, Mizuki Tada. Oxygen Reduction Reaction Performance Tuning on Pt Nanoparticle/MWCNT Catalysts by Gd Species. The Journal of Physical Chemistry C 2020, 124 (49) , 26925-26936. https://doi.org/10.1021/acs.jpcc.0c09308
    31. Yuxuan Wang, Hongyang Su, Yanghua He, Ligui Li, Shangqian Zhu, Hao Shen, Pengfei Xie, Xianbiao Fu, Guangye Zhou, Chen Feng, Dengke Zhao, Fei Xiao, Xiaojing Zhu, Yachao Zeng, Minhua Shao, Shaowei Chen, Gang Wu, Jie Zeng, Chao Wang. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews 2020, 120 (21) , 12217-12314. https://doi.org/10.1021/acs.chemrev.0c00594
    32. Xian-Yin Ma, Chen Ding, Hong Li, Kun Jiang, Sai Duan, Wen-Bin Cai. Revisiting the Acetaldehyde Oxidation Reaction on a Pt Electrode by High-Sensitivity and Wide-Frequency Infrared Spectroscopy. The Journal of Physical Chemistry Letters 2020, 11 (20) , 8727-8734. https://doi.org/10.1021/acs.jpclett.0c02558
    33. Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad, Kent O. Kirlikovali, Quyet Van Le, Ho Won Jang, Rajender S. Varma, Omar K. Farha, Mohammadreza Shokouhimehr. Recent Electrochemical Applications of Metal–Organic Framework-Based Materials. Crystal Growth & Design 2020, 20 (10) , 7034-7064. https://doi.org/10.1021/acs.cgd.0c00601
    34. Min Yang, Xianzhuo Lao, Jing Sun, Ning Ma, Shuqing Wang, Wanneng Ye, Peizhi Guo. Assembly of Bimetallic PdAg Nanosheets and Their Enhanced Electrocatalytic Activity toward Ethanol Oxidation. Langmuir 2020, 36 (37) , 11094-11101. https://doi.org/10.1021/acs.langmuir.0c02102
    35. Cong Huang, Lirong Zheng, Wenshuai Feng, Aimin Guo, Xiaohui Gao, Zhen Long, Xiaoqing Qiu. Copper Isolated Sites on N-Doped Carbon Nanoframes for Efficient Oxygen Reduction. ACS Sustainable Chemistry & Engineering 2020, 8 (37) , 14030-14038. https://doi.org/10.1021/acssuschemeng.0c04094
    36. Zhangyan Mu, Miao Yang, Wen He, Yanghang Pan, Panke Zhang, Xuefei Li, Xuejun Wu, Mengning Ding. On-Chip Electrical Transport Investigation of Metal Nanoparticles: Characteristic Acidic and Alkaline Adsorptions Revealed on Pt and Au Surface. The Journal of Physical Chemistry Letters 2020, 11 (14) , 5798-5806. https://doi.org/10.1021/acs.jpclett.0c01282
    37. Fumiaki Amano, Yoshiyuki Furusho, Young-Min Hwang. Amorphous Iridium and Tantalum Oxide Layers Coated on Titanium Felt for Electrocatalytic Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (5) , 4531-4538. https://doi.org/10.1021/acsaem.0c00208
    38. Yanan Meng, Yan Gao, Kai Li, Hao Tang, Ying Wang, Zhijian Wu. FeRh and Nitrogen Codoped Graphene, a Highly Efficient Bifunctional Catalyst toward Oxygen Reduction and Oxygen Evolution Reactions. The Journal of Physical Chemistry C 2020, 124 (17) , 9142-9150. https://doi.org/10.1021/acs.jpcc.0c00249
    39. Shan Yuan, Miaomiao Weng, Dajun Liu, Xingquan He, Li−Li Cui, Tewodros Asefa. Hollow Spherical (Co, Zn)/N, S-Doped Carbons: Efficient Catalysts for Oxygen Reduction in Both Alkaline and Acidic Media. ACS Sustainable Chemistry & Engineering 2019, 7 (23) , 18912-18925. https://doi.org/10.1021/acssuschemeng.9b04244
    40. Victoria Manzi-Orezzoli, Adrian Mularczyk, Pavel Trtik, Jonathan Halter, Jens Eller, Thomas J. Schmidt, Pierre Boillat. Coating Distribution Analysis on Gas Diffusion Layers for Polymer Electrolyte Fuel Cells by Neutron and X-ray High-Resolution Tomography. ACS Omega 2019, 4 (17) , 17236-17243. https://doi.org/10.1021/acsomega.9b01763
    41. Yanan Meng, Cong Yin, Kai Li, Hao Tang, Ying Wang, Zhijian Wu. Improved Oxygen Reduction Activity in Heteronuclear FeCo-Codoped Graphene: A Theoretical Study. ACS Sustainable Chemistry & Engineering 2019, 7 (20) , 17273-17281. https://doi.org/10.1021/acssuschemeng.9b04058
    42. Hao Lv, Lizhi Sun, Aaron Lopes, Dongdong Xu, Ben Liu. Insights into Compositional and Structural Effects of Bimetallic Hollow Mesoporous Nanospheres toward Ethanol Oxidation Electrocatalysis. The Journal of Physical Chemistry Letters 2019, 10 (18) , 5490-5498. https://doi.org/10.1021/acs.jpclett.9b02218
    43. Melissa E. Kreider, Alessandro Gallo, Seoin Back, Yunzhi Liu, Samira Siahrostami, Dennis Nordlund, Robert Sinclair, Jens K. Nørskov, Laurie A. King, Thomas F. Jaramillo. Precious Metal-Free Nickel Nitride Catalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2019, 11 (30) , 26863-26871. https://doi.org/10.1021/acsami.9b07116
    44. Hyunwoong Na, Hanshin Choi, Ji-Won Oh, Ye Seul Jung, Yong Soo Cho. Enhanced CO Oxidation and Cyclic Activities in Three-Dimensional Platinum/Indium Tin Oxide/Carbon Black Electrocatalysts Processed by Cathodic Arc Deposition. ACS Applied Materials & Interfaces 2019, 11 (28) , 25179-25185. https://doi.org/10.1021/acsami.9b06159
    45. Venkataramana Imandi, Abhijit Chatterjee. Effect of Surface Ni on Oxygen Reduction Reaction in Dealloyed Nanoporous Pt–Ni. Industrial & Engineering Chemistry Research 2019, 58 (18) , 7438-7447. https://doi.org/10.1021/acs.iecr.8b05204
    46. Kathrin Ebner, Juan Herranz, Viktoriia A. Saveleva, Bae-Jung Kim, Sebastian Henning, Marlène Demicheli, Frank Krumeich, Maarten Nachtegaal, Thomas J. Schmidt. Fe-Based O2-Reduction Catalysts Synthesized Using Na2CO3 as a Pore-Inducing Agent. ACS Applied Energy Materials 2019, 2 (2) , 1469-1479. https://doi.org/10.1021/acsaem.8b02036
    47. Kai Deng, You Xu, Chunjie Li, Ziqiang Wang, Hairong Xue, Xiaonian Li, Liang Wang, Hongjing Wang. PtPdRh Mesoporous Nanospheres: An Efficient Catalyst for Methanol Electro-Oxidation. Langmuir 2019, 35 (2) , 413-419. https://doi.org/10.1021/acs.langmuir.8b03656
    48. Kan Li, Xingxing Li, Hongwen Huang, Laihao Luo, Xu Li, Xupeng Yan, Chao Ma, Rui Si, Jinlong Yang, Jie Zeng. One-Nanometer-Thick PtNiRh Trimetallic Nanowires with Enhanced Oxygen Reduction Electrocatalysis in Acid Media: Integrating Multiple Advantages into One Catalyst. Journal of the American Chemical Society 2018, 140 (47) , 16159-16167. https://doi.org/10.1021/jacs.8b08836
    49. Jinhui Tong, Wenyan Li, Jiangping Ma, Wenhui Wang, Lili Bo, Ziqiang Lei, Abdulla Mahboob. Nitrogen and Sulfur Dual Self-Doped Graphitic Carbon with Highly Catalytic Activity for Oxygen Reduction Reaction. ACS Applied Energy Materials 2018, 1 (10) , 5746-5754. https://doi.org/10.1021/acsaem.8b01333
    50. Siwen Wang, Noushin Omidvar, Emily Marx, Hongliang Xin. Overcoming Site Heterogeneity In Search of Metal Nanocatalysts. ACS Combinatorial Science 2018, 20 (10) , 567-572. https://doi.org/10.1021/acscombsci.8b00070
    51. Anchu Ashok, Anand Kumar, Md Abdul Matin, Faris Tarlochan. Synthesis of Highly Efficient Bifunctional Ag/Co3O4 Catalyst for Oxygen Reduction and Oxygen Evolution Reactions in Alkaline Medium. ACS Omega 2018, 3 (7) , 7745-7756. https://doi.org/10.1021/acsomega.8b00799
    52. Kulbir K. Ghuman, Tsuyohiko Fujigaya. Electronic Structure of a Polybenzimidazole-Wrapped Single-Wall Carbon Nanotube. The Journal of Physical Chemistry C 2018, 122 (28) , 15979-15985. https://doi.org/10.1021/acs.jpcc.8b00247
    53. Kun Cheng, Kang Zhu, Shengli Liu, Mengxue Li, Jinhua Huang, Lihuan Yu, Zhuo Xia, Chang Zhu, Xiaobo Liu, Wenhui Li, Wangting Lu, Feng Wei, Youhua Zhou, Wanquan Zheng, Shichun Mu. A Spatially Confined gC3N4–Pt Electrocatalyst with Robust Stability. ACS Applied Materials & Interfaces 2018, 10 (25) , 21306-21312. https://doi.org/10.1021/acsami.8b03832
    54. Annett Rabis, Tobias Binninger, Emiliana Fabbri, Thomas J. Schmidt. Impact of Support Physicochemical Properties on the CO Oxidation and the Oxygen Reduction Reaction Activity of Pt/SnO2 Electrocatalysts. The Journal of Physical Chemistry C 2018, 122 (9) , 4739-4746. https://doi.org/10.1021/acs.jpcc.7b09976
    55. Yanxia Ma, Lisi Yin, Tao Yang, Qingli Huang, Maoshuai He, Hong Zhao, Dongen Zhang, Mingyan Wang, and Zhiwei Tong . One-Pot Synthesis of Concave Platinum–Cobalt Nanocrystals and Their Superior Catalytic Performances for Methanol Electrochemical Oxidation and Oxygen Electrochemical Reduction. ACS Applied Materials & Interfaces 2017, 9 (41) , 36164-36172. https://doi.org/10.1021/acsami.7b10209
    56. Kotaro Higashi, Gabor Samjeské, Shinobu Takao, Takuma Kaneko, Oki Sekizawa, Tomoya Uruga, and Yasuhiro Iwasawa . The Relationship between the Active Pt Fraction in a PEFC Pt/C Catalyst and the ECSA and Mass Activity during Start-Up/Shut-Down Degradation by in Situ Time-Resolved XAFS Technique. The Journal of Physical Chemistry C 2017, 121 (40) , 22164-22177. https://doi.org/10.1021/acs.jpcc.7b07264
    57. Huan Ren, Ying Wang, Yao Yang, Xun Tang, Yanqiu Peng, Hanqing Peng, Li Xiao, Juntao Lu, Héctor D. Abruña, and Lin Zhuang . Fe/N/C Nanotubes with Atomic Fe Sites: A Highly Active Cathode Catalyst for Alkaline Polymer Electrolyte Fuel Cells. ACS Catalysis 2017, 7 (10) , 6485-6492. https://doi.org/10.1021/acscatal.7b02340
    58. Pavel M. Usov, Brittany Huffman, Charity C. Epley, Matthew C. Kessinger, Jie Zhu, William A. Maza, and Amanda J. Morris . Study of Electrocatalytic Properties of Metal–Organic Framework PCN-223 for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2017, 9 (39) , 33539-33543. https://doi.org/10.1021/acsami.7b01547
    59. Minjeh Ahn, In Young Cha, Jinwon Cho, Hyung Chul Ham, Yung-Eun Sung, and Sung Jong Yoo . Rhodium–Tin Binary Nanoparticle—A Strategy to Develop an Alternative Electrocatalyst for Oxygen Reduction. ACS Catalysis 2017, 7 (9) , 5796-5801. https://doi.org/10.1021/acscatal.7b02402
    60. Rengin Peköz and Davide Donadio . Dissociative Adsorption of Water at (211) Stepped Metallic Surfaces by First-Principles Simulations. The Journal of Physical Chemistry C 2017, 121 (31) , 16783-16791. https://doi.org/10.1021/acs.jpcc.7b03226
    61. Jared L. Kneebone, Stephanie L. Daifuku, Jeffrey A. Kehl, Gang Wu, Hoon T. Chung, Michael Y. Hu, E. Ercan Alp, Karren L. More, Piotr Zelenay, Edward F. Holby, and Michael L. Neidig . A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst. The Journal of Physical Chemistry C 2017, 121 (30) , 16283-16290. https://doi.org/10.1021/acs.jpcc.7b03779
    62. Xiao Zhao, Shinobu Takao, Kotaro Higashi, Takuma Kaneko, Gabor Samjeskè, Oki Sekizawa, Tomohiro Sakata, Yusuke Yoshida, Tomoya Uruga, and Yasuhiro Iwasawa . Simultaneous Improvements in Performance and Durability of an Octahedral PtNix/C Electrocatalyst for Next-Generation Fuel Cells by Continuous, Compressive, and Concave Pt Skin Layers. ACS Catalysis 2017, 7 (7) , 4642-4654. https://doi.org/10.1021/acscatal.7b00964
    63. Hongwen Huang, Kan Li, Zhao Chen, Laihao Luo, Yuqian Gu, Dongyan Zhang, Chao Ma, Rui Si, Jinlong Yang, Zhenmeng Peng, and Jie Zeng . Achieving Remarkable Activity and Durability toward Oxygen Reduction Reaction Based on Ultrathin Rh-Doped Pt Nanowires. Journal of the American Chemical Society 2017, 139 (24) , 8152-8159. https://doi.org/10.1021/jacs.7b01036
    64. Fernando Godínez-Salomón, Rubén Mendoza-Cruz, M. Josefina Arellano-Jimenez, Miguel Jose-Yacaman, and Christopher P. Rhodes . Metallic Two-Dimensional Nanoframes: Unsupported Hierarchical Nickel–Platinum Alloy Nanoarchitectures with Enhanced Electrochemical Oxygen Reduction Activity and Stability. ACS Applied Materials & Interfaces 2017, 9 (22) , 18660-18674. https://doi.org/10.1021/acsami.7b00043
    65. Nicholas U. Day and Carl C. Wamser . Poly-tetrakis-5,10,15,20-(4-aminophenyl)porphyrin Films as Two-Electron Oxygen Reduction Photoelectrocatalysts for the Production of H2O2. The Journal of Physical Chemistry C 2017, 121 (21) , 11076-11082. https://doi.org/10.1021/acs.jpcc.7b01071
    66. Tobias Binninger, Rhiyaad Mohamed, Alexandra Patru, Kay Waltar, Eike Gericke, Xenia Tuaev, Emiliana Fabbri, Pieter Levecque, Armin Hoell, and Thomas J. Schmidt . Stabilization of Pt Nanoparticles Due to Electrochemical Transistor Switching of Oxide Support Conductivity. Chemistry of Materials 2017, 29 (7) , 2831-2843. https://doi.org/10.1021/acs.chemmater.6b04851
    67. Dong Young Chung, Min Jeong Kim, Narae Kang, Ji Mun Yoo, Heejong Shin, Ok-Hee Kim, and Yung-Eun Sung . Low-Temperature and Gram-Scale Synthesis of Two-Dimensional Fe–N–C Carbon Sheets for Robust Electrochemical Oxygen Reduction Reaction. Chemistry of Materials 2017, 29 (7) , 2890-2898. https://doi.org/10.1021/acs.chemmater.6b05113
    68. Alaina L. Strickler, Ariel Jackson, and Thomas F. Jaramillo . Active and Stable Ir@Pt Core–Shell Catalysts for Electrochemical Oxygen Reduction. ACS Energy Letters 2017, 2 (1) , 244-249. https://doi.org/10.1021/acsenergylett.6b00585
    69. Stefano Mezzavilla, Claudio Baldizzone, Ann-Christin Swertz, Nejc Hodnik, Enrico Pizzutilo, George Polymeros, Gareth P. Keeley, Johannes Knossalla, Marc Heggen, Karl J. J. Mayrhofer, and Ferdi Schüth . Structure–Activity–Stability Relationships for Space-Confined PtxNiy Nanoparticles in the Oxygen Reduction Reaction. ACS Catalysis 2016, 6 (12) , 8058-8068. https://doi.org/10.1021/acscatal.6b02221
    70. Hidenori Kuroki, Takanori Tamaki, Masashi Matsumoto, Masazumi Arao, Kei Kubobuchi, Hideto Imai, and Takeo Yamaguchi . Platinum–Iron–Nickel Trimetallic Catalyst with Superlattice Structure for Enhanced Oxygen Reduction Activity and Durability. Industrial & Engineering Chemistry Research 2016, 55 (44) , 11458-11466. https://doi.org/10.1021/acs.iecr.6b02298
    71. Qiurong Shi, Chengzhou Zhu, Yijing Li, Haibing Xia, Mark H. Engelhard, Shaofang Fu, Dan Du, and Yuehe Lin . A Facile Method for Synthesizing Dendritic Core–Shell Structured Ternary Metallic Aerogels and Their Enhanced Electrochemical Performances. Chemistry of Materials 2016, 28 (21) , 7928-7934. https://doi.org/10.1021/acs.chemmater.6b03549
    72. Sandra E. Temmel, Emiliana Fabbri, Daniele Pergolesi, Thomas Lippert, and Thomas J. Schmidt . Investigating the Role of Strain toward the Oxygen Reduction Activity on Model Thin Film Pt Catalysts. ACS Catalysis 2016, 6 (11) , 7566-7576. https://doi.org/10.1021/acscatal.6b01836
    73. Xiaoming Ge, Yonghua Du, Bing Li, T. S. Andy Hor, Melinda Sindoro, Yun Zong, Hua Zhang, and Zhaolin Liu . Intrinsically Conductive Perovskite Oxides with Enhanced Stability and Electrocatalytic Activity for Oxygen Reduction Reactions. ACS Catalysis 2016, 6 (11) , 7865-7871. https://doi.org/10.1021/acscatal.6b02493
    74. Takuma Kaneko, Gabor Samjeské, Shin-ichi Nagamatsu, Kotaro Higashi, Oki Sekizawa, Shinobu Takao, Takashi Yamamoto, Xiao Zhao, Tomohiro Sakata, Tomoya Uruga, and Yasuhiro Iwasawa . Key Structural Kinetics for Carbon Effects on the Performance and Durability of Pt/Carbon Cathode Catalysts in Polymer Electrolyte Fuel Cells Characterized by In Situ Time-Resolved X-ray Absorption Fine Structure. The Journal of Physical Chemistry C 2016, 120 (42) , 24250-24264. https://doi.org/10.1021/acs.jpcc.6b08569
    75. Wei Liu, Danny Haubold, Bogdan Rutkowski, Martin Oschatz, René Hübner, Matthias Werheid, Christoph Ziegler, Luisa Sonntag, Shaohua Liu, Zhikun Zheng, Anne-Kristin Herrmann, Dorin Geiger, Bürgehan Terlan, Thomas Gemming, Lars Borchardt, Stefan Kaskel, Aleksandra Czyrska-Filemonowicz, and Alexander Eychmüller . Self-Supporting Hierarchical Porous PtAg Alloy Nanotubular Aerogels as Highly Active and Durable Electrocatalysts. Chemistry of Materials 2016, 28 (18) , 6477-6483. https://doi.org/10.1021/acs.chemmater.6b01394
    76. Seul Lee, Da-Hee Kwak, Sang-Beom Han, Young-Woo Lee, Jin-Yeon Lee, In-Ae Choi, Hyun-Suk Park, Jin-Young Park, and Kyung-Won Park . Bimodal Porous Iron/Nitrogen-Doped Highly Crystalline Carbon Nanostructure as a Cathode Catalyst for the Oxygen Reduction Reaction in an Acid Medium. ACS Catalysis 2016, 6 (8) , 5095-5102. https://doi.org/10.1021/acscatal.5b02721
    77. Viktor Čolić and Aliaksandr S. Bandarenka . Pt Alloy Electrocatalysts for the Oxygen Reduction Reaction: From Model Surfaces to Nanostructured Systems. ACS Catalysis 2016, 6 (8) , 5378-5385. https://doi.org/10.1021/acscatal.6b00997
    78. Jiong Wang, Ting-Ting Wang, Feng-Bin Wang, Dong-Yang Zhang, Kang Wang, and Xing-Hua Xia . Exploration of the Copper Active Sites in Electrooxidation of Glucose on a Copper/Nitrogen Doped Graphene Nanocomposite. The Journal of Physical Chemistry C 2016, 120 (29) , 15593-15599. https://doi.org/10.1021/acs.jpcc.5b05142
    79. Justin A. Bordley and Mostafa A. El-Sayed . Enhanced Electrocatalytic Activity toward the Oxygen Reduction Reaction through Alloy Formation: Platinum–Silver Alloy Nanocages. The Journal of Physical Chemistry C 2016, 120 (27) , 14643-14651. https://doi.org/10.1021/acs.jpcc.6b03032
    80. Lei Du, Chunyu Du, Guangyu Chen, Fanpeng Kong, Geping Yin, and Yong Wang . Metal–Organic Coordination Networks: Prussian Blue and Its Synergy with Pt Nanoparticles to Enhance Oxygen Reduction Kinetics. ACS Applied Materials & Interfaces 2016, 8 (24) , 15250-15257. https://doi.org/10.1021/acsami.6b02630
    81. Minhua Shao, Qiaowan Chang, Jean-Pol Dodelet, and Regis Chenitz . Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews 2016, 116 (6) , 3594-3657. https://doi.org/10.1021/acs.chemrev.5b00462
    82. Sean Mussell and Pabitra Choudhury . Density Functional Theory Study of Iron Phthalocyanine Porous Layer Deposited on Graphene Substrate: A Pt-Free Electrocatalyst for Hydrogen Fuel Cells. The Journal of Physical Chemistry C 2016, 120 (10) , 5384-5391. https://doi.org/10.1021/acs.jpcc.5b10327
    83. Xue Wang, Legna Figueroa-Cosme, Xuan Yang, Ming Luo, Jingyue Liu, Zhaoxiong Xie, and Younan Xia . Pt-Based Icosahedral Nanocages: Using a Combination of {111} Facets, Twin Defects, and Ultrathin Walls to Greatly Enhance Their Activity toward Oxygen Reduction. Nano Letters 2016, 16 (2) , 1467-1471. https://doi.org/10.1021/acs.nanolett.5b05140
    84. Christian Gutsche, Christoph J. Moeller, Martin Knipper, Holger Borchert, Juergen Parisi, and Thorsten Plaggenborg . Synthesis, Structure, and Electrochemical Stability of Ir-Decorated RuO2 Nanoparticles and Pt Nanorods as Oxygen Catalysts. The Journal of Physical Chemistry C 2016, 120 (2) , 1137-1146. https://doi.org/10.1021/acs.jpcc.5b11437
    85. Qiang Fu, Luis César Colmenares Rausseo, Umberto Martinez, Paul Inge Dahl, Juan Maria García Lastra, Per Erik Vullum, Ingeborg-Helene Svenum, and Tejs Vegge . Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO2 Interface: A Synergetic Computational and Experimental Study. ACS Applied Materials & Interfaces 2015, 7 (50) , 27782-27795. https://doi.org/10.1021/acsami.5b08966
    86. Shan Wang, Guang Yang, and Shengchun Yang . Pt-Frame@Ni quasi Core–Shell Concave Octahedral PtNi3 Bimetallic Nanocrystals for Electrocatalytic Methanol Oxidation and Hydrogen Evolution. The Journal of Physical Chemistry C 2015, 119 (50) , 27938-27945. https://doi.org/10.1021/acs.jpcc.5b10083
    87. Christopher P. Deming, Rene Mercado, Vamsi Gadiraju, Samantha W. Sweeney, Mohammad Khan, and Shaowei Chen . Graphene Quantum Dots-Supported Palladium Nanoparticles for Efficient Electrocatalytic Reduction of Oxygen in Alkaline Media. ACS Sustainable Chemistry & Engineering 2015, 3 (12) , 3315-3323. https://doi.org/10.1021/acssuschemeng.5b00927
    88. Jintao Zhang and Liming Dai . Heteroatom-Doped Graphitic Carbon Catalysts for Efficient Electrocatalysis of Oxygen Reduction Reaction. ACS Catalysis 2015, 5 (12) , 7244-7253. https://doi.org/10.1021/acscatal.5b01563
    89. Yuyan Shao, Yingwen Cheng, Wentao Duan, Wei Wang, Yuehe Lin, Yong Wang, and Jun Liu . Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review. ACS Catalysis 2015, 5 (12) , 7288-7298. https://doi.org/10.1021/acscatal.5b01737
    90. Megan Buonaiuto, Antonio G. De Crisci, Thomas F. Jaramillo, and Robert M. Waymouth . Electrooxidation of Alcohols with Electrode-Supported Transfer Hydrogenation Catalysts. ACS Catalysis 2015, 5 (12) , 7343-7349. https://doi.org/10.1021/acscatal.5b01830
    91. Valeri Petkov, Binay Prasai, Sarvjit Shastri, and Tsan-Yao Chen . 3D Atomic Arrangement at Functional Interfaces Inside Nanoparticles by Resonant High-Energy X-ray Diffraction. ACS Applied Materials & Interfaces 2015, 7 (41) , 23265-23277. https://doi.org/10.1021/acsami.5b07391
    92. Kensaku Nagasawa, Shinobu Takao, Shin-ichi Nagamatsu, Gabor Samjeské, Oki Sekizawa, Takuma Kaneko, Kotaro Higashi, Takashi Yamamoto, Tomoya Uruga, and Yasuhiro Iwasawa . Surface-Regulated Nano-SnO2/Pt3Co/C Cathode Catalysts for Polymer Electrolyte Fuel Cells Fabricated by a Selective Electrochemical Sn Deposition Method. Journal of the American Chemical Society 2015, 137 (40) , 12856-12864. https://doi.org/10.1021/jacs.5b04256
    93. Lianming Zhao, Shengping Wang, Qiuyue Ding, Wenbin Xu, Pengpeng Sang, Yuhua Chi, Xiaoqing Lu, and Wenyue Guo . The Oxidation of Methanol on PtRu(111): A Periodic Density Functional Theory Investigation. The Journal of Physical Chemistry C 2015, 119 (35) , 20389-20400. https://doi.org/10.1021/acs.jpcc.5b03951
    94. Dai Dang, Haobin Zou, Zi’ang Xiong, Sanying Hou, Ting Shu, Haoxiong Nan, Xiaoyuan Zeng, Jianhuang Zeng, and Shijun Liao . High-Performance, Ultralow Platinum Membrane Electrode Assembly Fabricated by In Situ Deposition of a Pt Shell Layer on Carbon-Supported Pd Nanoparticles in the Catalyst Layer Using a Facile Pulse Electrodeposition Approach. ACS Catalysis 2015, 5 (7) , 4318-4324. https://doi.org/10.1021/acscatal.5b00030
    95. Matthew L. Rigsby, Derek J. Wasylenko, Michael L. Pegis, and James M. Mayer . Medium Effects Are as Important as Catalyst Design for Selectivity in Electrocatalytic Oxygen Reduction by Iron–Porphyrin Complexes. Journal of the American Chemical Society 2015, 137 (13) , 4296-4299. https://doi.org/10.1021/jacs.5b00359
    96. Wei Liu, Anne-Kristin Herrmann, Nadja C. Bigall, Paramaconi Rodriguez, Dan Wen, Mehtap Oezaslan, Thomas J. Schmidt, Nikolai Gaponik, and Alexander Eychmüller . Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts. Accounts of Chemical Research 2015, 48 (2) , 154-162. https://doi.org/10.1021/ar500237c
    97. Qingying Jia, Keegan Caldwell, Kara Strickland, Joseph M. Ziegelbauer, Zhongyi Liu, Zhiqiang Yu, David E. Ramaker, and Sanjeev Mukerjee . Improved Oxygen Reduction Activity and Durability of Dealloyed PtCox Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects. ACS Catalysis 2015, 5 (1) , 176-186. https://doi.org/10.1021/cs501537n
    98. Chunzhen Yang, Ming Zhou, and Liang Gao . Highly Alloyed PtRu Nanoparticles Confined in Porous Carbon Structure as a Durable Electrocatalyst for Methanol Oxidation. ACS Applied Materials & Interfaces 2014, 6 (21) , 18938-18950. https://doi.org/10.1021/am504821h
    99. Carolina Galeano, Josef C. Meier, Mario Soorholtz, Hans Bongard, Claudio Baldizzone, Karl J. J. Mayrhofer, and Ferdi Schüth . Nitrogen-Doped Hollow Carbon Spheres as a Support for Platinum-Based Electrocatalysts. ACS Catalysis 2014, 4 (11) , 3856-3868. https://doi.org/10.1021/cs5003492
    100. Nastaran Ranjbar Sahraie, Jens Peter Paraknowitsch, Caren Göbel, Arne Thomas, and Peter Strasser . Noble-Metal-Free Electrocatalysts with Enhanced ORR Performance by Task-Specific Functionalization of Carbon using Ionic Liquid Precursor Systems. Journal of the American Chemical Society 2014, 136 (41) , 14486-14497. https://doi.org/10.1021/ja506553r
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect