ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

From Organometallic Zinc and Copper Complexes to Highly Active Colloidal Catalysts for the Conversion of CO2 to Methanol

View Author Information
Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
The UK Catalysis Hub, Research Complex at Harwell, Harwell, Oxon OX11 0FA, United Kingdom
§ Kathleen Lonsdale Building, Department of Chemistry, University College London, Gordon Street, London WC1H 0AJ, United Kingdom
Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
Cite this: ACS Catal. 2015, 5, 5, 2895–2902
Publication Date (Web):April 3, 2015
https://doi.org/10.1021/cs502038y
Copyright © 2015 American Chemical Society
ACS AuthorChoiceACS AuthorChoicewith CC-BYlicense
Article Views
4806
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (3 MB)
Supporting Info (1)»

Abstract

A series of zinc oxide and copper(0) colloidal nanocatalysts, produced by a one-pot synthesis, are shown to catalyze the hydrogenation of carbon dioxide to methanol. The catalysts are produced by the reaction between diethyl zinc and bis(carboxylato/phosphinato)copper(II) precursors. The reaction leads to the formation of a precatalyst solution, characterized using various spectroscopic (NMR, UV–vis spectroscopy) and X-ray diffraction/absorption (powder XRD, EXAFS, XANES) techniques. The combined characterization methods indicate that the precatalyst solution contains copper(0) nanoparticles and a mixture of diethyl zinc and an ethyl zinc stearate cluster compound [Et4Zn5(stearate)6]. The catalysts are applied, at 523 K with a 50 bar total pressure of a 3:1 mixture of H2/CO2, in the solution phase, quasi-homogeneous, hydrogenation of carbon dioxide, and they show high activities (>55 mmol/gZnOCu/h of methanol). The postreaction catalyst solution is characterized using a range of spectroscopies, X-ray diffraction techniques, and transmission electron microscopy (TEM). These analyses show the formation of a mixture of zinc oxide nanoparticles, of size 2–7 nm and small copper nanoparticles. The catalyst composition can be easily adjusted, and the influence of the relative loadings of ZnO/Cu, the precursor complexes and the total catalyst concentration on the catalytic activity are all investigated. The optimum system, comprising a 55:45 loading of ZnO/Cu, shows equivalent activity to a commercial, activated methanol synthesis catalyst. These findings indicate that using diethyl zinc to reduce copper precursors in situ leads to catalysts with excellent activities for the production of methanol from carbon dioxide.

Introduction

ARTICLE SECTIONS
Jump To

Using waste CO2 is a high priority: among the most promising options are the synthesis of polymers and the reduction to alcohols which may serve as fuels. (1) By applying renewable or off-peak power to make hydrogen, for example, via electrolysis of water, it is envisaged that carbon dioxide hydrogenation to methanol could reduce our dependence on fossil fuels. (2) Methanol is an attractive energy vector and a promising renewable transport fuel, particularly because its use is compatible with existing fuels infrastructures. (3) In China, methanol is already being applied, in blends with gasoline, as a fuel. (4)
Methanol is currently produced on a huge scale (>40 million tonnes, globally in 2009), mostly from synthesis gas (CO/H2), generated by coal gasification or methane reforming, converted using ternary heterogeneous Cu/ZnO/Al2O3 catalysts. (5) There is also a good precedent for these same catalysts to be used for the hydrogenation of carbon dioxide. (3b, 6) They are generally prepared by metal salt coprecipitation, following by calcination, aging, nanostructuring, and reduction cycles. (7) Controlling the conditions for these steps is essential to maximize catalyst activity. Detailed investigations indicate that maximizing the ZnO/Cu interface is crucial, through controlling the Zn/Cu loading, introducing a suitable support, and ensuring intimate mixing of the phases, on the nanometre scale. (5e, 7) However, current synthesis methods require the preformation of mineral phases, most commonly zincian malachite, which fundamentally limit the loading of Zn/Cu (in the case of zincian malachite, to 3:7) and predetermine the products of aging and, hence, the extent and quality of the interface. (5b) Furthermore, such coprecipitation routes require forcing conditions to decompose the mineral, thereby limiting the nanomorphology of the catalyst. Recent elegant structural studies of these ternary catalysts have revealed that some surface sites are dynamic. (5c-5e) For these reasons, there is an impetus to develop new catalyst syntheses. (8) For example, Tsang and co-workers have mixed (in the solid state) isolated nanoparticles of ZnO and Cu to produce high-activity CO2 hydrogenation heterogeneous catalysts and have correlated activity to exposure of particular crystal facets. (9)
Methanol can also be efficiently produced by slurry phase methods, whereby the active catalyst is dissolved or suspended in a high-boiling solvent (such as squalane). (10) Of particular interest is the use of inorganic/organometallic precursor compounds to produce well-defined, quasi-homogeneous nanoparticles for catalysis. The groups of Fischer and Schüth have pioneered the application of colloidal solutions of nanoparticles (Cu and/or ZnO) as high-activity catalysts for such solution phase syn-gas to methanol processes. (11) Simon et al. reported, as early as 1988 that the reaction between Cu(acac)2 and Et2Zn in the presence of 1,3-butadiene in an organic solvent formed an efficient syn-gas catalyst system with a high selectivity for ethanol and methanol formation. (12) Corker and Evans used EXAFS to investigate the precatalyst solution. They proposed it comprised a mixture of colloidal copper and an oxozinc cluster compound (of undefined structure and stoichiometry); however, detailed characterization of the cluster and changes to the system during and after catalysis were not carried out. (13)
In the past 10 years, Fischer and co-workers have pioneered various routes to catalytic nanoparticles, including hydrothermal decomposition, hydrogenolysis, photochemical decomposition, chemical vapor deposition (CVD), and atomic layer deposition (ALD), using organo-Zn and Cu precursors. (11a-11q) In 2005, Schüth and co-workers applied trioctyl aluminum reagents as the reductants and ligands for copper nanoparticles; these systems showed high activities for liquid phase methanol catalysis. (11r) Fischer and Muhler have also applied colloidal nanoparticles of ZnO/Cu prepared by hydrothermal decomposition of well-defined inorganic compounds, (11b, 11g, 11k, 11n, 11p) some of which show excellent activities for the liquid phase synthesis of methanol from syn-gas. (11i) In 2006, they reported a high-activity system prepared by the addition of diethyl zinc to a hot (200 °C) solution of a copper(II) alkoxide precursor. This system formed small, unsupported nanoparticles of both Cu and ZnO and showed up to 85% of the activity, in a squalane suspension, of the ternary reference. (11i) Other alkyl zinc alkoxides were also shown to undergo thermolysis in the presence of amine surfactants to yield quasi-homogeneous ZnO nanoparticles. (11k) Subsequently, Fischer and co-workers reduced Cu/Zn stearate mixtures with hydrogen gas to produce copper nanoparticles, stabilized by zinc stearate. (11n)
Our group has focused on CO2 rather than syn-gas as the carbon source. An alternative zinc oxide synthesis involving the hydrolysis of diethyl zinc, in the presence of substoichiometric quantities of zinc carboxylates/phosphinates produces 3–5 nm ZnO nanoparticles which are soluble in various organic solvents/polymers. (14) A high-activity carbon dioxide hydrogenation catalyst system was prepared by combining solutions of ZnO nanoparticles, surface coordinated by di(octyl)phosphinate groups, with copper nanoparticles, surface-coordinated with stearate groups. (15) However, the optimum composition and nature of the precatalyst solution remains under-investigated. Furthermore, uncovering the relative importance of particle sizes, oxidation states of the metals, and interfaces between particles are central to improving catalytic activity. One drawback of this system is the requirement to pre-prepare separate solutions of the nanoparticles. A “one-pot” method to prepare the catalyst would be desirable, as would be the replacement of hydrazine as the reductant in the preparation of copper nanoparticles. This paper presents a “one-pot” approach to catalyst synthesis, applying diethyl zinc as both the reductant to produce copper nanoparticles and the precursor to zinc oxide (by hydrolysis of Zn–C bonds). This method provides highly active carbon dioxide reduction catalysts, and through characterization of the pre- and postcatalyst solutions, the effects of organometallic precursor compound, relative loading, and metal oxidation state can be explored.

Results and Discussion

ARTICLE SECTIONS
Jump To

Precatalyst Synthesis and Characterization

An in situ, one-pot catalyst preparation method that involved mixing together equimolar quantities of copper(II) bis(stearate) and diethyl zinc in toluene at 298 K (Scheme 1) was discovered. This solution showed several color changes consistent with the reduction of the copper(II) precursor and formation of a red/brown solution and characteristic of Cu(0) nanoparticles. It is proposed that ligand exchange occurs between the copper and zinc complexes, leading to transient formation of copper–alkyl species which are known to undergo rapid decomposition at room temperature to produce copper(0) species. (16) Ligand exchange would also be expected to lead to the formation of some zinc carboxylate species; such species have recently been shown to react with any excess dialkyl zinc to form heteroleptic alkyl zinc carboxylate complexes. (14b, 14d) The characterization data (vide infra) support this proposed ligand exchange and indicate the reaction proceeds to the formation of a solution containing copper(0) nanoparticles and well-defined zinc organometallic complexes.

Scheme 1

Scheme 1. Representation of the Formation of the Ligand-Stabilized Cu and ZnO Nanoparticles from Diethyl Zinc and Bis(stearate)copper(II) Precursor Using the One-Pot Synthesis Method
The UV–vis spectrum of the red solution confirmed the formation of copper nanoparticles, with a copper surface plasmon absorbance observed at 580 nm (Figure S1). (17) The spectrum also clearly indicated the complete consumption of the Cu(II) precursor complex, as shown by the disappearance of its characteristic absorbance at 700 nm.
The speciation of the zinc was revealed by 1H NMR spectroscopy (Figure S2), which showed the complete consumption of the paramagnetic species (e.g., Cu(II)) and the formation of well resolved signals consistent with the presence of diethyl zinc and an ethyl zinc stearate cluster compound, Zn5Et4(stearate)6, the structure of which has been reported previously. (14b, 14d) The pentanuclear zinc cluster compound is known to form by reaction between diethyl zinc and bis(stearate)zinc and to retain its structure in noncoordinating solvent solutions. (14b, 14d) Analysis of the peak integrals in the 1H NMR spectrum revealed a 3:2 molar ratio of Et2Zn/[Et4Zn5(stearate)6] (Figure S2). We have also previously established that the hydrolysis of mixtures of diethyl zinc and the zinc stearate cluster, at analogous molar loadings, leads to the efficient formation of 3–5 nm zinc oxide nanoparticles, capped with stearate ligands. (14c)

Figure 1

Figure 1. Normalized XANES spectra of Cu(stearate)2 (black), CuO (red), Cu2O (green), the precatalyst solution (light blue), the post catalysis solution (blue), and Cu foil (yellow).

The precatalyst solution was also analyzed by XAFS measurements, conducted in toluene solutions, under an inert atmosphere. The copper speciation was studied (Figure 1) by comparing the Cu K-edge X-ray absorption near edge structure (XANES) spectra of the catalyst colloids with appropriate reference compounds, including Cu(stearate)2, CuO, Cu2O, and Cu metal. The precatalyst solution spectrum shows features similar to the Cu foil reference, implying the presence of metallic copper. Moreover, the XANES spectra lack any features typically associated with oxidic forms of Cu, primarily the peak at 8983.5 eV, indicative of linear Cu2O (1s → 4px,y), and the peak at 8986.5 eV, which is evidence for CuO (1s → 4pz). (18a) The main edge peaks are less well resolved than those of the copper foil, likely due to the nanoparticle size. Theoretical XANES simulations and experimental measurements of copper clusters have shown related effects, attributed to the absence of higher coordination shells and to a reduced particle size. (18)
The EXAFS data and calculated fitting parameters are evidence of the formation of copper nanoparticles and are illustrated in Figure S3 and Table S1. These data also indicate that the precatalyst solution contains small copper nanoparticles, again with no evidence for the formation of either of the oxides. The first-shell Cu–Cu coordination number can be used to estimate the particle size, according to the method developed by Beale et al. (19) The estimated mean particle size, from the EXAFS data, is 1.2 nm, consistent with the plasmon absorption observed in the UV–vis spectrum. (20)

Figure 2

Figure 2. Normalized XANES spectra of diethyl zinc (black), the precatalyst solution (red), Zn(stearate)2 (green), the post catalysis solution (light blue), ZnO nanoparticles with stearate capping groups (dark blue), and Zn foil (yellow).

The zinc XANES spectrum (Figure 2) of the precatalyst solution shows features in the absorption edge that are consistent with the presence of both bis(stearate) zinc and diethyl zinc. A linear combination fit of the XANES data was calculated using Zn(stearate)2 and diethyl zinc as reference compounds (Figure S4). A reasonable fit was obtained, having an R factor of 0.0025, based on a composition of ∼84% diethyl zinc and ∼16% Zn(stearate)2. This estimation shows close agreement with the relative ratio of ethyl/stearate groups determined by analysis of the integrals for Et2Zn and Et4Zn5(stearate)6 in the 1H NMR spectrum (∼86% of signals are due to zinc bound ethyl groups; ∼14% of signals, to zinc bound stearate moieties). It is apparent that the anaerobic techniques were sufficiently robust because the organozinc carboxylate cluster compound (Et4Zn5(stearate)6) was successfully detected, a compound that is known to hydrolyze readily in the presence moisture. (14b, 14d) Furthermore, the zinc carbon bond lengths determined by the fits to the EXAFS data are in good agreement with those obtained for a sample of diethyl zinc (Table S2, Figure S5), providing good support for the presence of zinc–ethyl moieties in the precatalyst solution. The large Debye–Waller factor, compared with diethyl zinc, is also indicative of other species having Zn–C or Zn–O bonds, as would be expected from the ethyl zinc stearate cluster compound.
X-ray diffraction measurements were conducted on the precatalyst solution (after removal of all volatiles including diethyl zinc) (Figure S6). The samples are only weakly diffracting, but do confirm the presence of crystalline Cu metal. Some oxidation peaks (for CuO and Cu2O) are observed, likely as a result of air exposure during sample preparation and measurement. The average copper particle size, determined for the Cu (111) peak using the Scherrer equation, is 4.8 nm, somewhat larger than the value obtained by EXAFS. However, EXAFS is more sensitive to detection of smaller clusters and particles, and XRD is volume-weighted to larger particles; therefore, a difference in the obtained particle size between the two measurements is to be expected in a polydisperse system. The XRD measurements also showed additional peaks at low angle, which correspond to signals expected for zinc-bound stearate groups, consistent with the presence of the ethyl zinc stearate cluster.
The combined spectroscopic data, therefore, indicate that the red precatalyst solution contains a mixture of 1–5 nm copper nanoparticles, presumably surface-capped with stearate ligands, and a mixture of diethyl zinc and ethyl zinc stearate clusters. Britten and co-workers have previously studied the reaction between diethyl zinc and Cu(II) precursors. (16) They established that diethyl zinc rapidly and irreversibly reduced the Cu(II) species to Cu, which formed as a mirror. This reaction was attributed to rapid ligand exchange and the instability of the resulting copper alkyl complexes, which underwent decomposition even at very low temperatures, purportedly by one-electron/radical processes. In the present case, the mechanisms are proposed to be similar, with the stearate ligands capping the nanoparticles and preventing copper mirror formation.

Carbon Dioxide Hydrogenation Catalysis

Catalyst Composition

The precatalyst solution was injected into a degassed solution of squalane in a continuously stirred tank reactor (CSTR), under an atmosphere of N2 at 298 K. A 3:1 H2/CO2 mixture, at 50 bar, was added, and the reactor was heated to 523 K. The reaction was monitored using an in-line GC to detect the formation of methanol. During the first 120 min, the quantity of methanol produced steadily increased (a phenomenon partly resulting from reactor parameters, which introduce a delay in methanol detection by the GC instrument), reaching a steady state after ∼2 h and remaining at this level for the duration of each experiment (12 h). Initially, ethane was also detected, but production ceased by 5 h (Figure S7). It is proposed that the ethane evolution results from the reaction of zinc ethyl groups in the precatalyst with water, which either is formed by carbon dioxide hydrogenation or is present in sufficient quantities in the gases/solvents. Indeed, a control experiment in which the precatalyst solution was exposed only to a continuous nitrogen flow in the reactor also resulted in ethane evolution over 5 h, after which time the introduction of the reaction gases (CO2/H2) resulted in a catalyst system showing equivalent activity. Regardless of the source of the moisture, the hydrolysis reaction is expected to generate the ZnO nanoparticles, which in combination with the copper nanoparticles comprise the active catalyst (vide infra).
The method was applied to prepare a series of precatalyst solutions, using different molar ratios of diethyl zinc/copper(stearate)2 precursors, while keeping the overall loading of metals constant. The catalytic activities were benchmarked against the total mass of Cu and ZnO present, deduced from the molar quantities of the precursors and assuming complete conversions. The activities obtained using the precatalyst solutions were high and also very reproducible. For example, when a 1:1 molar mixture of diethyl zinc and copper stearate (55:45 weight ratio of ZnO/Cu) was applied, a methanol activity of 60 mmol gZnOCu–1 h–1 (133 mmol gCu–1 h–1) was obtained (Table 1, Figure S7). This activity is similar to that obtained using a heterogeneous ternary syn-gas catalyst (preactivated according to the standard protocols) (21) as a benchmark material; however, after 10 h, the best catalyst system showed activity superior to the ternary heterogeneous catalyst control. These findings underscore the stability of the colloidal catalyst because the peak activity does not diminish significantly over the run (12 h), unlike the reference system.
Table 1. Effect of Varying the Weight Ratio ZnO/Cu on the Catalytic Activity for Carbon Dioxide Hydrogenation to Methanolb
entrymolar ratio precursors: ZnEt2/Cu(stearate)2expected weight ratio ZnO/Cumethanol peak activity, mmol gZnOCu–1 h–1methanol activity after 12 h, mmol gZnOCu–1 h–1
11:330:703939
21:155:456058
32:170:304337
47:190:101813
5ternary benchmarka (expected weight ratio of ZnO/Cu is 1:2)6046
a

Alfa Aesar ternary methanol synthesis catalyst (product code: 45776), comprising (by weight) 24.7% ZnO, 63.5% CuO, 11.4% Al2O3, and MgO; see ESI for catalyst preactivation details and activity calculations. Error for each measurement is ±4.5% as determined by runs in triplicate. Figures S7 and S8 illustrate the stability of the catalysts showing activity vs time.

b

Reaction conditions: 523 K, 50 bar (3:1, H2/CO2), in a solution of squalane/toluene (90:10) at a fixed total volume of 100 mL, a total gas flow of 166 mL min–1, over 16 h. The total catalyst concentration (ZnO + Cu) was constant at 0.20 g dm–3.

It is clear that activity is strongly dependent on the relative quantities of zinc oxide and copper, at a fixed overall metal concentration (Figure S8). Optimum activities were observed for a 1:1 molar ratio of ZnEt2/Cu(stearate)2 precursors, which corresponds to an expected weight ratio of 55:45 ZnO/Cu, assuming complete conversions to the relevant oxide/metal nanoparticles (as indicated by the spectroscopic data). The activity rapidly decreased when either an excess of diethyl zinc (therefore, an increase in the ZnO loading) or an excess of copper stearate was applied. On one hand, sufficient diethyl zinc is required to reduce the copper completely; on the other hand, sufficient stearate (initially coordinated to the copper precursor) is required for nanoparticle stabilization. The colloidal nanoparticle catalysts show good stability over 12 h of the run, with activities remaining at or only slightly lower than the peak value for the duration of the run in the best case. In contrast, the ternary heterogeneous suspension shows a significant loss in activity after 12 h on-stream. Furthermore, in cases where an excess of diethyl zinc is added, significant deactivation is also observed. This is tentatively attributed to a reduction in the stability of the colloidal particles due to the reduced amount of stearate capping ligand available to stabilize the particles.

Catalyst Concentration

The influence of overall nanoparticle concentration in the reactor was investigated at the optimum ratio of ZnO/Cu, 55:45 (1:1, Et2Zn/Cu(stearate)2) (Figure 3 and Table S3). As the nanoparticle concentration increases from 0 to 0.2 gZnOCu/L, the activity also steadily increases, presumably as the probability of an interaction between particles increases, allowing the formation of a catalytically active interface between ZnO and Cu. However, at nanoparticle concentrations above 0.2 gZnOCu/L, the activity decreases. At the relatively higher concentrations, aggregation of the nanoparticles appears to increase, presumably reducing the availability of active sites (which must be on the catalyst surface) and thereby reducing activity. (22)

Figure 3

Figure 3. Influence of the overall catalyst concentration (ZnO + Cu in gZnOCu/L) on the methanol synthesis activity (mmol gZnOCu–1 h–1). The error for each measurement is ±4.5% as determined by runs in triplicate. The complete data set is presented in Table S3, and plots for each concentration of activity vs time are presented in Figure S9.

Influence of the Organometallic Precursor Complexes

Various copper(II) and di(organo)zinc precursor complexes were investigated to establish the generality of the protocol to synthesize the catalyst (Table 2, Figure S10). All the complexes resulted in the formation of effective catalysts for methanol synthesis, with the activity depending weakly on the nature of the precursor. In all cases, the catalysts operated in the same manner, with the evolution of ethane and formation of methanol over the first 5 h, followed by a steady state methanol production that does not significantly decrease over the following 12 h (Figure S10). Substituting diethyl zinc with diphenyl zinc, using bis(stearate) copper(II) as the copper source reduced the catalytic activity by ∼25%. This reduction is tentatively attributed to differences in the reactivity of diphenyl zinc, both toward the Cu(II) precursor and toward water during the formation of zinc oxide in the reactor.
Table 2. Influence of the Organometallic Precursor Complexes on Methanol Catalytic Activitya
copper precursorzinc precursormethanol peak activity, mmol gZnOCu–1h–1
Cu(stearate)2ZnEt242
Cu(stearate)2ZnPh232
Cu(laurate)2ZnEt243
Cu(octanoate)2ZnEt244
Cu(2-ethyl hexanoate)2ZnEt239
Cu(dioctyl phosphinate)2ZnEt250
a

Reaction conditions: 523 K, 50 bar (3:1, H2/CO2), in squalane/toluene (90:10) at a fixed total volume of 100 mL, a total gas flow of 166 mL min–1, over 16 h. The weight ratio of ZnO/Cu was fixed at 55:45, assuming complete conversion of the precursor complexes, and the overall catalyst concentration (ZnO + Cu) was fixed at 0.4 gZnOCu/L. Error for each measurement is 4.5% as determined by runs in triplicate. Figure S10 shows the activity vs time data for all catalysts.

The influence of the copper precursor on catalytic activity, using diethyl zinc as the zinc oxide source, was more subtle. Using bis(laurate) or bis(octanoate) copper(II) precursors resulted in slightly more active catalysts than using bis(stearate) copper(II). It is likely that this effect relates to the balance between optimum solubility of the nanoparticles and steric hindrance and protection of the surface active sites. Thus, the optimum C-chain length for these carboxylate capped nanoparticles appears to be 8 (octanoate).
We have previously reported a catalyst system prepared by mixing solutions of preformed nanoparticles of ZnO/Cu. (15) In that system, it was observed that increasing the reductive stability of the zinc oxide nanoparticle capping ligand by substituting carboxylate for di(octyl)phosphinate resulted in increased catalytic activity. (15) In this study, changing the copper precursor to di(octyl)phosphinate has a much lesser influence on activity, resulting in only a small increase. The Et2Zn/Cu(di(octyl)phosphinate)2 system was also tested at the 0.2 gZnOCu/L catalyst concentration (optimum for stearate), resulting in a peak activity of 60 mmol gZnOCu–1 h–1, which is close to the value for the Cu(stearate)2 precursor (Figure S11).

Characterization

The optimum precatalyst solution was formed by the in situ reduction of copper stearate/phosphinate complexes with diethyl zinc. TEM analysis showed small nanoparticles (5–10 nm in diameter) in agglomerates containing from two to hundreds of nanoparticles (Figure 4). Some agglomeration is likely to occur during the catalyst precipitation, washing, and deposition required for TEM sample preparation, but the primary nanoparticles do appear to be intrinsically fused to form small clusters (Figure 4). Measurements of the lattice spacings in the high-resolution TEM images reveal that the nanoparticles consist of ZnO, Cu0, and Cu2O (Figure 4). Some nanoparticles showed a spacing of only ∼2.47 Å, which corresponds to either ZnO(101) or Cu2O(111). Such nanoparticles cannot be identified unambiguously. A lattice is not resolved in the remaining unidentified nanoparticles. Phases with larger lattice spacings are easier to resolve and, hence, easier to identify. ZnO(100) corresponds to a spacing 35% larger than Cu(111), which may be why the concentration of ZnO appears higher.
The high-resolution imaging was performed using an environmental TEM holder that prevented any exposure of the sample to air. Although the direct oxidation of Cu0 to Cu2O by water or CO2 is unlikely, dissociative adsorption of CO2 onto Cu0, interacting with ZnO or other promoters, has been frequently reported (23) to form Cu2O. Nevertheless, it is possible that trace O2 during the washing sample preparation could also contribute to Cu oxidation. HAADF STEM–EDX further confirms that Cu-, Zn-, and O-containing nanoparticles are in close proximity (Figure S12). Intimate interaction between the copper and zinc oxide surfaces is thought to be important for highly active methanol synthesis catalysts (5c, 7, 24) and should be encouraged by the formation of zinc oxide in situ with the copper nanoparticles. The presence of a contact interface between Cu-containing and ZnO nanoparticles is clearly observed in Figure 4.

Figure 4

Figure 4. TEM images of the catalyst postreaction. (left) Low-resolution TEM image of discrete nanostructures. (right) High-resolution image of a nanoparticle cluster containing ZnO, Cu, and Cu2O; colors indicate the phase where unambiguously identified by lattice analysis. Catalysis conditions: 1:1 ZnEt2/Cu(stearate)2 at fixed concentration (0.2 g dm–3), 523 K, 50 bar (3:1, H2/CO2), in squalane at a fixed total volume of 100 mL, a total gas flow of 166 mLmin–1, over 16 h.

The Zn K-edge XANES spectrum of the postcatalysis solution (Figure 2) also indicates that ZnO is present. The main edge peak observed at 9669 eV and a feature at 9663 eV are entirely consistent with the 1s → 4px,y and the 1s → 4pz transitions of ZnO. (25) The Cu K-edge XANES spectrum of the same postcatalysis mixture indicates that the major copper-containing species continue to be Cu(0) nanoparticles (Figure 1). Indeed, the spectrum is essentially the same as that for the precatalysis mixture. On the other hand, the EXAFS data for the postcatalysis copper species demonstrate a small component of oxidic Cu species (as evidenced by the feature at ∼1.8 Å in the Fourier transform data) as well as the Cu(0) species. The distance (1.84 Å) is consistent with a Cu(I)–O bond length, suggesting there may be minor contamination by Cu2O in the postcatalysis sample (Figure S3, Table S1), consistent with the TEM observations. The EXAFS also shows features at R > 3 Å, which are indicative of metallic Cu. These features are more pronounced compared with the precatalysis mixture, likely due to an increase in nanoparticle size after catalysis; however, because of the mixed speciation of the copper postcatalysis, it is not possible to accurately quantify the copper nanoparticle size.
Powder X-ray diffraction measurements, conducted on the samples after centrifugation, also confirmed the presence of ZnO and copper nanoparticles in the postreaction mixtures. Figures S13–S15 illustrate the XRD patterns obtained for different loadings of ZnO/Cu; an illustrative example at 55:45 ZnO/Cu is shown in Figure 5. In every case, there are clearly peaks that can be indexed against the patterns expected for ZnO and copper nanoparticles. In most spectra, some copper oxidic species are also present (both Cu2O and CuO), although the oxidation is proposed to occur predominantly during sample preparation, because the quantities present differ nonuniformly, and in one case, these species are absent (30:70, ZnO/Cu). The Scherrer equation can be used to estimate the relative particle sizes, and Table S4 lists these values for the various different loadings. In all cases, ∼7 nm ZnO nanoparticles are estimated; on the other hand, the size of the Cu particles appears rather more variable with low loadings of either ZnO/Cu (relating to lower molar quantities of either Et2Zn or Cu(stearate)2), resulting in the formation of significantly larger copper nanoparticles (∼12–15 nm). When the relative loading of ZnO/Cu is more closely balanced (e.g., 55:45), then the sizes of the nanoparticles are also close, both being ∼7 nm. This value is slightly higher than in the precatalyst solution, in line with the TEM images. It is tentatively proposed that the matching between the ZnO and Cu nanoparticle sizes may in part rationalize the improved activity shown at these loadings, possibly by maximizing the active interface between the two components.

Figure 5

Figure 5. XRD of postcatalysis material for 55:45 ZnO/Cu (Table 1, entry 2). The spectrum is referenced to Cu (PDF no. 01-0851326 ICDD), Cu2O (PDF no. 034-1354 ICDD), CuO (PDF no. 045-0937 ICDD), and ZnO (PDF no. 36-1451, ICDD).

Conclusions

ARTICLE SECTIONS
Jump To

Highly active, quasi-homogeneous CO2 hydrogenation catalysts were produced by reaction between discrete inorganic complexes, namely, bis(carboxylate) copper(II) and diethyl zinc, to form precatalyst solutions. These solutions were applied (at 523 K, 50 bar of a 1:3 mixture of CO2/H2) to produce methanol in a continuously stirred slurry reactor (squalane) with in-line GC detection equipment. The pre- and postcatalysis solutions were characterized using UV–vis, EXAFS, and XANES spectroscopy; microscopy (TEM); and, where possible, by 1H NMR spectroscopy. The combined techniques indicate that the precatalysis mixture contains small (1–4 nm) copper nanoparticles and organometallic zinc complexes (diethyl zinc and ethyl zinc stearate cluster). On the other hand, after catalysis, the organozinc reagents were hydrolyzed to produce zinc oxide nanoparticles and the copper nanoparticles of sizes <10 nm. These spectroscopic findings are in line with ethane evolution (consistent with ethyl–zinc bond hydrolysis) during the initial phase of catalysis. The catalyst synthesis method was easily tuned, and the influence of the relative loadings of ZnO/Cu, the nature of the precursor compounds, and the effect of overall catalyst concentration were reported.
The best systems, which were formed using equimolar ratios of diethyl zinc/bis(stearate) copper in dry toluene gave activities for methanol production equivalent to those observed with a commercially available heterogeneous catalyst benchmark (mostly comprising ZnO, CuO, and Al2O3 mixtures). Thus, it is clear that formation of the copper nanoparticles, by reduction with diethyl zinc and subsequent in situ hydrolysis of the organozinc complexes results in a highly active and selective catalyst mixture. It is tentatively proposed that this increased activity may result from a preferential formation of ZnO/Cu interfaces using the in situ methodology (as compared with mixing together discrete solutions of nanoparticles). The facility with which variables can be changed as well as the ease of catalyst preparation make this route a rather attractive method for further optimization and investigation. In contrast to other (high temperature) methods to prepare Cu/ZnO particles, this synthesis operates at room temperature in organic solvents and yields highly reproducible, small nanoparticles surface-capped with organic ligands. Given the synthetic simplicity and potential to form nonequilibrium products, this method may well be applicable to a range of different catalytic systems, including those used for the production of methanol from synthesis gas.

Supporting Information

ARTICLE SECTIONS
Jump To

The following file is available free of charge on the ACS Publications website at DOI: 10.1021/cs502038y.

  • Experimental details, 15 figures, 4 tables of results; additional references (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Milo S. P. Shaffer - Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom Email: [email protected]
    • Charlotte K. Williams - Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom Email: [email protected]
  • Authors
    • Neil J. Brown - Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
    • Andrés García-Trenco - Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
    • Jonathan Weiner - Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
    • Edward R. White - Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
    • Matthew Allinson - Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
    • Yuxin Chen - Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
    • Peter P. Wells - The UK Catalysis Hub, Research Complex at Harwell, Harwell, Oxon OX11 0FA, United KingdomKathleen Lonsdale Building, Department of Chemistry, University College London, Gordon Street, London WC1H 0AJ, United Kingdom
    • Emma K. Gibson - The UK Catalysis Hub, Research Complex at Harwell, Harwell, Oxon OX11 0FA, United KingdomKathleen Lonsdale Building, Department of Chemistry, University College London, Gordon Street, London WC1H 0AJ, United Kingdom
    • Klaus Hellgardt - Department of Chemical Engineering, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

At Imperial College London, the EPSRC are acknowledged for funding (EP/H046380, EP/K035274/1), as well as the Energy Futures Lab, the Alan Howard Studentship (Y.W.), and the EPSRC Centre for Doctoral Training in Plastic Electronics (M.A.). Dr Peter Wells and Emma Gibson acknowledge EPSRC funding for the XAFS measurements (EP/I019693/1, EP/K014714/1) and Diamond Light Source for provision of beamtime (SP8071-8). The RCaH are also acknowledged for use of facilities and support of their staff.

References

ARTICLE SECTIONS
Jump To

This article references 25 other publications.

  1. 1
    (a) MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P. Energy Environ. Sci. 2010, 3, 1645 1669 DOI: 10.1039/c004106h
    (b) Kember, M. R.; Buchard, A.; Williams, C. K. Chem. Commun. 2011, 47, 141 163 DOI: 10.1039/C0CC02207A
    (c) Aresta, M. Carbon Dioxide as a Chemical Feedstock. Wiley-VCH: Weinheim, 2010.
    (d) Darensbourg, D. J. Inorg. Chem. 2010, 49, 10765 10780 DOI: 10.1021/ic101800d
    (e) Peters, M.; Köhler, B.; Kuckshinrichs, W.; Leitner, W.; Markewitz, P.; Müller, T. E. ChemSusChem 2011, 4, 1216 1240 DOI: 10.1002/cssc.201000447
    (f) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499 7502 DOI: 10.1002/anie.201202320
    (g) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609 614 DOI: 10.1038/nchem.1089
    (h) Menard, G.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796 1797 DOI: 10.1021/ja9104792
  2. 2
    Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazabal, G. O.; Perez-Ramirez, J. Energy Environ. Sci. 2013, 6, 3112 3135 DOI: 10.1039/c3ee41272e
  3. 3
    (a) Olah, G. A. Angew. Chem., Int. Ed. 2013, 52, 104 107 DOI: 10.1002/anie.201204995
    (b) Pontzen, F.; Liebner, W.; Gronemann, V.; Rothaemel, M.; Ahlers, B. Catal. Today 2011, 171, 242 250 DOI: 10.1016/j.cattod.2011.04.049
    (c) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. J. Org. Chem. 2009, 74, 487 498 DOI: 10.1021/jo801260f
  4. 4
    Yang, C.-J.; Jackson, R. B. Energy Policy 2012, 41, 878 884 DOI: 10.1016/j.enpol.2011.11.037
  5. 5
    (a) Strunk, J.; Kähler, K.; Xia, X.; Muhler, M. Surf. Sci. 2009, 603, 1776 1783 DOI: 10.1016/j.susc.2008.09.063
    (b) Baltes, C.; Vukojevic, S.; Schuth, F. J. Catal. 2008, 258, 334 344 DOI: 10.1016/j.jcat.2008.07.004
    (c) Behrens, M.; Studt, F.; Kasatkin, I.; Kuhl, S.; Havecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L.; Tovar, M.; Fischer, R. W.; Norskov, J. K.; Schlogl, R. Science 2012, 336, 893 897 DOI: 10.1126/science.1219831
    (d) Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsoe, H. Science 2002, 295, 2053 2055 DOI: 10.1126/science.1069325
    (e) Fichtl, M. B.; Schumann, J.; Kasatkin, I.; Jacobsen, N.; Behrens, M.; Schlögl, R.; Muhler, M.; Hinrichsen, O. Angew. Chem., Int. Ed. 2014, 53, 7043 7047 DOI: 10.1002/anie.201400575
  6. 6
    (a) Saito, M.; Murata, K. Catal. Surv. Asia 2004, 8, 285 294 DOI: 10.1007/s10563-004-9119-y
    (b) Saito, M.; Takeuchi, M.; Fujitani, T.; Toyir, J.; Luo, S. C.; Wu, J. G.; Mabuse, H.; Ushikoshi, K.; Mori, K.; Watanabe, T. Appl. Organomet. Chem. 2000, 14, 763 772 DOI: 10.1002/1099-0739(200012)14:12<763::AID-AOC98>3.0.CO;2-4
    (c) Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703 3727 DOI: 10.1039/c1cs15008a
    (d) Wu, J. G.; Saito, M.; Takeuchi, M.; Watanabe, T. Appl. Catal., A 2001, 218, 235 240 DOI: 10.1016/S0926-860X(01)00650-0
    (e) Li, C.; Yuan, X.; Fujimoto, K. Appl. Catal., A 2014, 469, 306 311 DOI: 10.1016/j.apcata.2013.10.010
    (f) Natesakhawat, S.; Lekse, J. W.; Baltrus, J. P.; Ohodnicki, P. R.; Howard, B. H.; Deng, X. Y.; Matranga, C. ACS Catal. 2012, 2, 1667 1676 DOI: 10.1021/cs300008g
    (g) Saito, M.; Fujitani, T.; Takeuchi, M.; Watanabe, T. Appl. Catal., A 1996, 138, 311 318 DOI: 10.1016/0926-860X(95)00305-3
    (h) Fisher, I. A.; Bell, A. T. J. Catal. 1997, 172, 222 237 DOI: 10.1006/jcat.1997.1870
    (i) Liu, X. M.; Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518 6530 DOI: 10.1021/ie020979s
    (j) Fujita, S.; Usui, M.; Ito, H.; Takezawa, N. J. Catal. 1995, 157, 403 413 DOI: 10.1006/jcat.1995.1306
    (k) Koeppel, R. A.; Baiker, A.; Wokaun, A. Appl. Catal., A 1992, 84, 77 102 DOI: 10.1016/0926-860X(92)80340-I
    (l) Dutta, G.; Sokol, A. A.; Catlow, C. R. A.; Keal, T. W.; Sherwood, P. ChemPhysChem 2012, 13, 3453 3456 DOI: 10.1002/cphc.201200517
    (m) Grabow, L. C.; Mavrikakis, M. ACS Catal. 2011, 1, 365 384 DOI: 10.1021/cs200055d
  7. 7
    Behrens, M.; Schloegl, R. Z. Anorg. Allg. Chem. 2013, 639, 2683 2695 DOI: 10.1002/zaac.201300356
  8. 8
    Weiss, R.; Guo, Y. Z.; Vukojevic, S.; Khodeir, L.; Boese, R.; Schuth, F.; Muhler, M.; Epple, M. Eur. J. Inorg. Chem. 2006, 1796 1802 DOI: 10.1002/ejic.200600005
  9. 9
    (a) Liao, F. L.; Huang, Y. Q.; Ge, J. W.; Zheng, W. R.; Tedsree, K.; Collier, P.; Hong, X. L.; Tsang, S. C. Angew. Chem., Int. Ed. 2011, 50, 2162 2165 DOI: 10.1002/anie.201007108
    (b) Liao, F. L.; Zeng, Z. Y.; Eley, C.; Lu, Q.; Hong, X. L.; Tsang, S. C. E. Angew. Chem., Int. Ed. 2012, 51, 5832 5836 DOI: 10.1002/anie.201200903
    (c) Zhou, X. W.; Qu, J.; Xu, F.; Hu, J. P.; Foord, J. S.; Zeng, Z. Y.; Hong, X. L.; Tsang, S. C. E. Chem. Commun. 2013, 49, 1747 1749 DOI: 10.1039/c3cc38455a
  10. 10
    Lee, S. G.; Sardesai, A. Top. Catal. 2005, 32, 197 207 DOI: 10.1007/s11244-005-2891-8
  11. 11
    (a) Hambrock, J.; Rabe, S.; Merz, K.; Birkner, A.; Wohlfart, A.; Fischer, R. A.; Driess, M. J. Mater. Chem. 2003, 13, 1731 1736 DOI: 10.1039/b301172k
    (b) Hambrock, J.; Schroter, M. K.; Birkner, A.; Woll, C.; Fischer, R. A. Chem. Mater. 2003, 15, 4217 4222 DOI: 10.1021/cm0341383
    (c) Lu, L. H.; Wohlfart, A.; Parala, H.; Birkner, A.; Fischer, R. A. Chem. Commun. 2003, 40 41 DOI: 10.1039/b208988b
    (d) Tkachenko, O. P.; Klementiev, K. V.; Loffler, E.; Ritzkopf, I.; Schuth, F.; Bandyopadhyay, M.; Grabowski, S.; Gies, H.; Hagen, V.; Muhler, M.; Lu, L. H.; Fischer, R. A.; Grunert, W. Phys. Chem. Chem. Phys. 2003, 5, 4325 4334 DOI: 10.1039/b303429a
    (e) Kurtz, M.; Bauer, N.; Buscher, C.; Wilmer, H.; Hinrichsen, O.; Becker, R.; Rabe, S.; Merz, K.; Driess, M.; Fischer, R. A.; Muhler, M. Catal. Lett. 2004, 92, 49 52 DOI: 10.1023/B:CATL.0000011085.88267.a6
    (f) Lu, L. H.; Fischer, R. A. Chem. Lett. 2004, 33, 1318 1319 DOI: 10.1246/cl.2004.1318
    (g) Cokoja, M.; Parala, H.; Schroter, M. K.; Birkner, A.; van den Berg, M. W. E.; Klementiev, K. V.; Grunert, W.; Fischer, R. A. J. Mater. Chem. 2006, 16, 2420 2428 DOI: 10.1039/b602871c
    (h) Schroeder, F.; Hermes, S.; Parala, H.; Hikov, T.; Muhler, M.; Fischer, R. A. J. Mater. Chem. 2006, 16, 3565 3574 DOI: 10.1039/b606814f
    (i) Schroter, M. K.; Khodeir, L.; van den Berg, M. W. E.; Hikov, T.; Cokoja, M.; Miao, S. J.; Grunert, W.; Muhler, M.; Fischer, R. A. Chem. Commun. 2006, 2498 2500 DOI: 10.1039/b602261h
    (j) Lu, L.; Hu, S.; Lee, H.-I.; Woell, C.; Fischer, R. A. J. Nanoparticle Res. 2007, 9, 491 496 DOI: 10.1007/s11051-006-9087-4
    (k) Hikov, T.; Rittermeier, A.; Luedemann, M.-B.; Herrmann, C.; Muhler, M.; Fischer, R. A. J. Mater. Chem. 2008, 18, 3325 3331 DOI: 10.1039/b801304g
    (l) Mueller, M.; Hermes, S.; Kaehler, K.; van den Berg, M. W. E.; Muhler, M.; Fischer, R. A. Chem. Mater. 2008, 20, 4576 4587 DOI: 10.1021/cm703339h
    (m) Lee, B. H.; Hwang, J. K.; Nam, J. W.; Lee, S. U.; Kim, J. T.; Koo, S.-M.; Baunemann, A.; Fischer, R. A.; Sung, M. M. Angew. Chem., Int. Ed. 2009, 48, 4536 4539 DOI: 10.1002/anie.200900414
    (n) Rittermeier, A.; Miao, S.; Schroeter, M. K.; Zhang, X.; van den Berg, M. W. E.; Kundu, S.; Wang, Y.; Schimpf, S.; Loeffler, E.; Fischer, R. A.; Muhler, M. Phys. Chem. Chem. Phys. 2009, 11, 8358 8366 DOI: 10.1039/b908034a
    (o) Schimpf, S.; Rittermeier, A.; Zhang, X.; Li, Z.-A.; Spasova, M.; van den Berg, M. W. E.; Farle, M.; Wang, Y.; Fischer, R. A.; Muhler, M. ChemCatChem 2010, 2, 214 222 DOI: 10.1002/cctc.200900252
    (p) Sliem, M. A.; Hikov, T.; Li, Z.-A.; Spasova, M.; Farle, M.; Schmidt, D. A.; Havenith-Newen, M.; Fischer, R. A. Phys. Chem. Chem. Phys. 2010, 12, 9858 9866 DOI: 10.1039/c003861j
    (q) Sliem, M. A.; Turner, S.; Heeskens, D.; Kalidindi, S. B.; Van Tendeloo, G.; Muhler, M.; Fischer, R. A. Phys. Chem. Chem. Phys. 2012, 14, 8170 8178 DOI: 10.1039/c2cp40482f
    (r) Vukojevic, S.; Trapp, O.; Grunwaldt, J. D.; Kiener, C.; Schuth, F. Angew. Chem., Int. Ed. 2005, 44, 7978 7981 DOI: 10.1002/anie.200503169
  12. 12
    Simon, M.; Mortreux, A.; Petit, F. J. Chem. Soc., Chem. Commun. 1988, 1445 1446 DOI: 10.1039/c39880001445
  13. 13
    Corker, J. M.; Evans, J. J. Chem. Soc., Chem. Commun. 1994, 1027 1029 DOI: 10.1039/c39940001027
  14. 14
    (a) Gonzalez-Campo, A.; Orchard, K. L.; Sato, N.; Shaffer, M. S. P.; Williams, C. K. Chem. Commun. 2009, 4034 4036 DOI: 10.1039/b905353k
    (b) Orchard, K. L.; Harris, J. E.; White, A. J. P.; Shaffer, M. S. P.; Williams, C. K. Organometallics 2011, 30, 2223 2229 DOI: 10.1021/om200004a
    (c) Orchard, K. L.; Shaffer, M. S. P.; Williams, C. K. Chem. Mater. 2012, 24, 2443 2448 DOI: 10.1021/cm300058d
    (d) Orchard, K. L.; White, A. J. P.; Shaffer, M. S. P.; Williams, C. K. Organometallics 2009, 28, 5828 5832 DOI: 10.1021/om900683z
  15. 15
    Brown, N. J.; Weiner, J.; Hellgardt, K.; Shaffer, M. S. P.; Williams, C. K. Chem. Commun. 2013, 49, 11074 11076 DOI: 10.1039/c3cc46203j
  16. 16
    (a) Vidjayacoumar, B.; Emslie, D. J. H.; Blackwell, J. M.; Clendenning, S. B.; Britten, J. F. Chem. Mater. 2010, 22, 4854 4866 DOI: 10.1021/cm101443x
    (b) Vidjayacoumar, B.; Emslie, D. J. H.; Clendenning, S. B.; Blackwell, J. M.; Britten, J. F.; Rheingold, A. Chem. Mater. 2010, 22, 4844 4853 DOI: 10.1021/cm101442e
  17. 17
    (a) Curtis, A. C.; Duff, D. G.; Edwards, P. P.; Jefferson, D. A.; Johnson, B. F. G.; Kirkland, A. I.; Wallace, A. S. J. Phys. Chem. 1988, 92, 2270 2275 DOI: 10.1021/j100319a035
    (b) Papavassiliou, C.; Kokkinakis, T. J. Phys. F: Met. Phys. 1974, 4, L67 DOI: 10.1088/0305-4608/4/3/006
  18. 18
    (a) Rothe, J.; Hormes, J.; Bonnemann, H.; Brijoux, W.; Siepen, K. J. Am. Chem. Soc. 1998, 120, 6019 6023 DOI: 10.1021/ja972748w
    (b) Montano, P. A.; Shenoy, G. K.; Alp, E. E.; Schulze, W.; Urban, J. Phys. Rev. Lett. 1986, 56, 2076 2079 DOI: 10.1103/PhysRevLett.56.2076
  19. 19
    Beale, A. M.; Weckhuysen, B. M. Phys. Chem. Chem. Phys. 2010, 12, 5562 5574 DOI: 10.1039/b925206a
  20. 20
    Creighton, J. A.; Eadon, D. G. J. Chem. Soc., Faraday Trans. 1991, 87, 3881 3891 DOI: 10.1039/ft9918703881
  21. 21
    Sawant, A.; Ko, M. K.; Parameswaran, V.; Lee, S.; Kulik, C. J. Fuel Sci. Technol. 1987, 5, 77 88 DOI: 10.1080/08843758708915847
  22. 22
    (a) Selvam, N. C. S.; Narayanan, S.; Kennedy, L. J.; Vijaya, J. J. J. Environ. Sci. 2013, 25, 2157 2167 DOI: 10.1016/S1001-0742(12)60277-0
    (b) Huang, M.; Xu, C.; Wu, Z.; Huang, Y.; Lin, J.; Wu, J. Dyes Pigm. 2008, 77, 327 334 DOI: 10.1016/j.dyepig.2007.01.026
  23. 23
    (a) Fujitani, T.; Saito, M. Catal. Lett. 1994, 25, 271 276 DOI: 10.1007/BF00816307
    (b) Yurieva, T. M.; Plyasova, L. M.; Makarova, O. V.; Krieger, T. A. J. Mol. Catal. A: Chem. 1996, 113, 455 468 DOI: 10.1016/S1381-1169(96)00272-5
    (c) Chinchen, G. C.; Spencer, M. S.; Waugh, K. C.; Whan, D. A. J. Chem. Soc., Faraday Trans. 1987, 83, 2193 2212 DOI: 10.1039/f19878302193
    (d) Chinchen, G. C.; Waugh, K. C.; Whan, D. A. Appl. Catal. 1986, 25, 101 107 DOI: 10.1016/S0166-9834(00)81226-9
  24. 24
    (a) Behrens, M. J. Catal. 2009, 267, 24 29 DOI: 10.1016/j.jcat.2009.07.009
    (b) Behrens, M.; Zander, S.; Kurr, P.; Jacobsen, N.; Senker, J.; Koch, G.; Ressler, T.; Fischer, R. W.; Schlögl, R. J. Am. Chem. Soc. 2013, 135, 6061 6068 DOI: 10.1021/ja310456f
  25. 25
    Grandjean, D.; Castricum, H. L.; Van Den Heuvel, J. C.; Weckhuysen, B. M. J. Phys. Chem. B 2006, 110, 16892 16901 DOI: 10.1021/jp055820i

Cited By

This article is cited by 38 publications.

  1. Guangcheng Zhang, Mengran Liu, Guoli Fan, Lirong Zheng, Feng Li. Efficient Role of Nanosheet-Like Pr2O3 Induced Surface-Interface Synergistic Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO2 Hydrogenation. ACS Applied Materials & Interfaces 2022, 14 (2) , 2768-2781. https://doi.org/10.1021/acsami.1c20056
  2. Xin Li, Jiaguo Yu, Mietek Jaroniec, Xiaobo Chen. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6) , 3962-4179. https://doi.org/10.1021/acs.chemrev.8b00400
  3. Sebastian D. Pike, Edward R. White, Anna Regoutz, Nicholas Sammy, David J. Payne, Charlotte K. Williams, and Milo S. P. Shaffer . Reversible Redox Cycling of Well-Defined, Ultrasmall Cu/Cu2O Nanoparticles. ACS Nano 2017, 11 (3) , 2714-2723. https://doi.org/10.1021/acsnano.6b07694
  4. Bing An, Jingzheng Zhang, Kang Cheng, Pengfei Ji, Cheng Wang, and Wenbin Lin . Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal–Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO2. Journal of the American Chemical Society 2017, 139 (10) , 3834-3840. https://doi.org/10.1021/jacs.7b00058
  5. Andrés García-Trenco, Edward R. White, Anna Regoutz, David J. Payne, Milo S. P. Shaffer, and Charlotte K. Williams . Pd2Ga-Based Colloids as Highly Active Catalysts for the Hydrogenation of CO2 to Methanol. ACS Catalysis 2017, 7 (2) , 1186-1196. https://doi.org/10.1021/acscatal.6b02928
  6. Rajesh K. Srivastava, Prakash Kumar Sarangi, Latika Bhatia, Akhilesh Kumar Singh, Krushna Prasad Shadangi. Conversion of methane to methanol: technologies and future challenges. Biomass Conversion and Biorefinery 2022, 12 (5) , 1851-1875. https://doi.org/10.1007/s13399-021-01872-5
  7. Feng Sha, Xinyi Liu, Shan Tang, Jijie Wang, Can Li. Hydrogenation of CO 2 to Chemicals with Green Hydrogen. 2022, 1073-1184. https://doi.org/10.1002/9783527831883.ch25
  8. Soudeh Banivaheb, Stephan Pitter, Karla Herrera Delgado, Michael Rubin, Jörg Sauer, Roland Dittmeyer. Recent Progress in Direct DME Synthesis and Potential of Bifunctional Catalysts . Chemie Ingenieur Technik 2022, 94 (3) , 240-255. https://doi.org/10.1002/cite.202100167
  9. Indrajeet R. Warkad, Hanumant B. Kale, Manoj B. Gawande. Surface-modified nanomaterial-based catalytic materials for the production of liquid fuels. 2022, 131-169. https://doi.org/10.1016/B978-0-12-823386-3.00003-9
  10. Samrand Saeidi, Sara Najari, Volker Hessel, Karen Wilson, Frerich J. Keil, Patricia Concepción, Steven L. Suib, Alírio E. Rodrigues. Recent advances in CO2 hydrogenation to value-added products — Current challenges and future directions. Progress in Energy and Combustion Science 2021, 85 , 100905. https://doi.org/10.1016/j.pecs.2021.100905
  11. Rohit Chaudhary, Gerard van Rooij, Sirui Li, Qi Wang, Emiel Hensen, Volker Hessel. Low-temperature, atmospheric pressure reverse water-gas shift reaction in dielectric barrier plasma discharge, with outlook to use in relevant industrial processes. Chemical Engineering Science 2020, 225 , 115803. https://doi.org/10.1016/j.ces.2020.115803
  12. Kristian Stangeland, Hailong Li, Zhixin Yu. CO2 hydrogenation to methanol: the structure–activity relationships of different catalyst systems. Energy, Ecology and Environment 2020, 5 (4) , 272-285. https://doi.org/10.1007/s40974-020-00156-4
  13. Alice H. M. Leung, Andrés García-Trenco, Andreas Phanopoulos, Anna Regoutz, Manfred E. Schuster, Sebastian D. Pike, Milo S. P. Shaffer, Charlotte K. Williams. Cu/M:ZnO (M = Mg, Al, Cu) colloidal nanocatalysts for the solution hydrogenation of carbon dioxide to methanol. Journal of Materials Chemistry A 2020, 8 (22) , 11282-11291. https://doi.org/10.1039/D0TA00509F
  14. C.‐D. Frohning. methanol synthesis. 2020https://doi.org/10.1002/9783527809080.cataz10604
  15. Jiawei Zhong, Xiaofeng Yang, Zhilian Wu, Binglian Liang, Yanqiang Huang, Tao Zhang. State of the art and perspectives in heterogeneous catalysis of CO 2 hydrogenation to methanol. Chemical Society Reviews 2020, 49 (5) , 1385-1413. https://doi.org/10.1039/C9CS00614A
  16. Shanshan Dang, Haiyan Yang, Peng Gao, Hui Wang, Xiaopeng Li, Wei Wei, Yuhan Sun. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catalysis Today 2019, 330 , 61-75. https://doi.org/10.1016/j.cattod.2018.04.021
  17. Yuqing Han, Haitao Xu, Yuqun Su, Zhen-liang Xu, Kefu Wang, Wenzhong Wang. Noble metal (Pt, [email protected]) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. Journal of Catalysis 2019, 370 , 70-78. https://doi.org/10.1016/j.jcat.2018.12.005
  18. Francesco Dalena, Alessandro Senatore, Marco Basile, Sarra Knani, Angelo Basile, Adolfo Iulianelli. Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology. Membranes 2018, 8 (4) , 98. https://doi.org/10.3390/membranes8040098
  19. Ryo Watari, Yoshihito Kayaki. Copper Catalysts Unleashing the Potential for Hydrogenation of Carbon−Oxygen Bonds. Asian Journal of Organic Chemistry 2018, 7 (10) , 2005-2014. https://doi.org/10.1002/ajoc.201800436
  20. Xiaoyun Chen, Dong-Hau Kuo, Zong-Yan Wu, Hairus Abdullah, Jubin Zhang, Jinguo Lin. Bimetal Seleno-Sulfide Cu NiSe S Nanosheet Catalyst for Methylene Blue Degradation in the Dark. European Journal of Inorganic Chemistry 2018, 2018 (36) , 4053-4062. https://doi.org/10.1002/ejic.201800508
  21. M. Gentzen, D.E. Doronkin, T.L. Sheppard, J.-D. Grunwaldt, J. Sauer, S. Behrens. Bifunctional catalysts based on colloidal Cu/Zn nanoparticles for the direct conversion of synthesis gas to dimethyl ether and hydrocarbons. Applied Catalysis A: General 2018, 557 , 99-107. https://doi.org/10.1016/j.apcata.2018.03.008
  22. Abass A. Olajire. Recent progress on the nanoparticles-assisted greenhouse carbon dioxide conversion processes. Journal of CO2 Utilization 2018, 24 , 522-547. https://doi.org/10.1016/j.jcou.2018.02.012
  23. Andrés García-Trenco, Anna Regoutz, Edward R. White, David J. Payne, Milo S.P. Shaffer, Charlotte K. Williams. PdIn intermetallic nanoparticles for the Hydrogenation of CO2 to Methanol. Applied Catalysis B: Environmental 2018, 220 , 9-18. https://doi.org/10.1016/j.apcatb.2017.07.069
  24. Agnieszka Grala, Małgorzata Wolska-Pietkiewicz, Zbigniew Wróbel, Tomasz Ratajczyk, Joanna Kuncewicz, Janusz Lewiński. Remarkable water-soluble ZnO nanocrystals: from ‘click’ functionalization to a supramolecular aggregation enhanced emission phenomenon. Materials Chemistry Frontiers 2018, 2 (6) , 1104-1111. https://doi.org/10.1039/C7QM00586E
  25. Alice H. M. Leung, Sebastian D. Pike, Adam J. Clancy, Hin Chun Yau, Won Jun Lee, Katherine L. Orchard, Milo S. P. Shaffer, Charlotte K. Williams. Layered zinc hydroxide monolayers by hydrolysis of organozincs. Chemical Science 2018, 9 (8) , 2135-2146. https://doi.org/10.1039/C7SC04256F
  26. Run-Ping Ye, Ling Lin, Qiaohong Li, Zhangfeng Zhou, Tongtong Wang, Christopher K. Russell, Hertanto Adidharma, Zhenghe Xu, Yuan-Gen Yao, Maohong Fan. Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds. Catalysis Science & Technology 2018, 8 (14) , 3428-3449. https://doi.org/10.1039/C8CY00608C
  27. J. A. Garden, S. D. Pike. Hydrolysis of organometallic and metal–amide precursors: synthesis routes to oxo-bridged heterometallic complexes, metal-oxo clusters and metal oxide nanoparticles. Dalton Transactions 2018, 47 (11) , 3638-3662. https://doi.org/10.1039/C8DT00017D
  28. Xiaoyun Chen, Hairus Abdullah, Dong-Hau Kuo, Hsiu-Ni Huang, Cheng-Chung Fang. Abiotic Synthesis with the C-C Bond Formation in Ethanol from CO2 over (Cu,M)(O,S) Catalysts with M = Ni, Sn, and Co. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-10705-3
  29. K. Saravanan, Hyungwon Ham, Noritatsu Tsubaki, Jong Wook Bae. Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Applied Catalysis B: Environmental 2017, 217 , 494-522. https://doi.org/10.1016/j.apcatb.2017.05.085
  30. Małgorzata Wolska-Pietkiewicz, Agnieszka Grala, Iwona Justyniak, Dymitr Hryciuk, Maria Jędrzejewska, Justyna Grzonka, Krzysztof J. Kurzydłowski, Janusz Lewiński. From Well-Defined Alkylzinc Phosphinates to Quantum-Sized ZnO Nanocrystals. Chemistry - A European Journal 2017, 23 (49) , 11856-11865. https://doi.org/10.1002/chem.201701823
  31. Xi Liu, Mei-Yan Wang, Si-Yuan Wang, Qi Wang, Liang-Nian He. In Situ Generated Zinc(II) Catalyst for Incorporation of CO 2 into 2-Oxazolidinones with Propargylic Amines at Atmospheric Pressure. ChemSusChem 2017, 10 (6) , 1210-1216. https://doi.org/10.1002/cssc.201601469
  32. Mangesh D. Teli, Bhagyashri N. Annaldewar. Superhydrophobic and ultraviolet protective nylon fabrics by modified nano silica coating. The Journal of The Textile Institute 2017, 108 (3) , 460-466. https://doi.org/10.1080/00405000.2016.1171028
  33. Andreas Weilhard, Gabriel Abarca, Janine Viscardi, Martin H. G. Prechtl, Jackson D. Scholten, Fabiano Bernardi, Daniel L. Baptista, Jairton Dupont. Challenging Thermodynamics: Hydrogenation of Benzene to 1,3-Cyclohexadiene by [email protected] Nanoparticles. ChemCatChem 2017, 9 (1) , 204-211. https://doi.org/10.1002/cctc.201601196
  34. Haitao Xu, Yansong Li, Xikuo Luo, Zhenliang Xu, Jianping Ge. Monodispersed gold nanoparticles supported on a zirconium-based porous metal–organic framework and their high catalytic ability for the reverse water–gas shift reaction. Chemical Communications 2017, 53 (56) , 7953-7956. https://doi.org/10.1039/C7CC02130E
  35. Sebastian D. Pike, Andrés García-Trenco, Edward R. White, Alice H. M. Leung, Jonathan Weiner, Milo S. P. Shaffer, Charlotte K. Williams. Colloidal Cu/ZnO catalysts for the hydrogenation of carbon dioxide to methanol: investigating catalyst preparation and ligand effects. Catalysis Science & Technology 2017, 7 (17) , 3842-3850. https://doi.org/10.1039/C7CY01191A
  36. Siti Nurhanna Riduan, Jackie Y. Ying, Yugen Zhang. Solid poly-N-heterocyclic carbene catalyzed CO2 reduction with hydrosilanes. Journal of Catalysis 2016, 343 , 46-51. https://doi.org/10.1016/j.jcat.2015.09.009
  37. A. García-Trenco, E. R. White, M. S. P. Shaffer, C. K. Williams. A one-step Cu/ZnO quasi-homogeneous catalyst for DME production from syn-gas. Catalysis Science & Technology 2016, 6 (12) , 4389-4397. https://doi.org/10.1039/C5CY01994J
  38. Xiangming Li, Yingmo Hu, Qi An, Xinglong Luan, Qian Zhang, Yihe Zhang. Fuzzy, copper-based multi-functional composite particles serving simultaneous catalytic and signal-enhancing roles. Nanoscale 2016, 8 (17) , 9376-9381. https://doi.org/10.1039/C6NR02022D
  • Abstract

    Scheme 1

    Scheme 1. Representation of the Formation of the Ligand-Stabilized Cu and ZnO Nanoparticles from Diethyl Zinc and Bis(stearate)copper(II) Precursor Using the One-Pot Synthesis Method

    Figure 1

    Figure 1. Normalized XANES spectra of Cu(stearate)2 (black), CuO (red), Cu2O (green), the precatalyst solution (light blue), the post catalysis solution (blue), and Cu foil (yellow).

    Figure 2

    Figure 2. Normalized XANES spectra of diethyl zinc (black), the precatalyst solution (red), Zn(stearate)2 (green), the post catalysis solution (light blue), ZnO nanoparticles with stearate capping groups (dark blue), and Zn foil (yellow).

    Figure 3

    Figure 3. Influence of the overall catalyst concentration (ZnO + Cu in gZnOCu/L) on the methanol synthesis activity (mmol gZnOCu–1 h–1). The error for each measurement is ±4.5% as determined by runs in triplicate. The complete data set is presented in Table S3, and plots for each concentration of activity vs time are presented in Figure S9.

    Figure 4

    Figure 4. TEM images of the catalyst postreaction. (left) Low-resolution TEM image of discrete nanostructures. (right) High-resolution image of a nanoparticle cluster containing ZnO, Cu, and Cu2O; colors indicate the phase where unambiguously identified by lattice analysis. Catalysis conditions: 1:1 ZnEt2/Cu(stearate)2 at fixed concentration (0.2 g dm–3), 523 K, 50 bar (3:1, H2/CO2), in squalane at a fixed total volume of 100 mL, a total gas flow of 166 mLmin–1, over 16 h.

    Figure 5

    Figure 5. XRD of postcatalysis material for 55:45 ZnO/Cu (Table 1, entry 2). The spectrum is referenced to Cu (PDF no. 01-0851326 ICDD), Cu2O (PDF no. 034-1354 ICDD), CuO (PDF no. 045-0937 ICDD), and ZnO (PDF no. 36-1451, ICDD).

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 25 other publications.

    1. 1
      (a) MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C. S.; Williams, C. K.; Shah, N.; Fennell, P. Energy Environ. Sci. 2010, 3, 1645 1669 DOI: 10.1039/c004106h
      (b) Kember, M. R.; Buchard, A.; Williams, C. K. Chem. Commun. 2011, 47, 141 163 DOI: 10.1039/C0CC02207A
      (c) Aresta, M. Carbon Dioxide as a Chemical Feedstock. Wiley-VCH: Weinheim, 2010.
      (d) Darensbourg, D. J. Inorg. Chem. 2010, 49, 10765 10780 DOI: 10.1021/ic101800d
      (e) Peters, M.; Köhler, B.; Kuckshinrichs, W.; Leitner, W.; Markewitz, P.; Müller, T. E. ChemSusChem 2011, 4, 1216 1240 DOI: 10.1002/cssc.201000447
      (f) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499 7502 DOI: 10.1002/anie.201202320
      (g) Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609 614 DOI: 10.1038/nchem.1089
      (h) Menard, G.; Stephan, D. W. J. Am. Chem. Soc. 2010, 132, 1796 1797 DOI: 10.1021/ja9104792
    2. 2
      Kondratenko, E. V.; Mul, G.; Baltrusaitis, J.; Larrazabal, G. O.; Perez-Ramirez, J. Energy Environ. Sci. 2013, 6, 3112 3135 DOI: 10.1039/c3ee41272e
    3. 3
      (a) Olah, G. A. Angew. Chem., Int. Ed. 2013, 52, 104 107 DOI: 10.1002/anie.201204995
      (b) Pontzen, F.; Liebner, W.; Gronemann, V.; Rothaemel, M.; Ahlers, B. Catal. Today 2011, 171, 242 250 DOI: 10.1016/j.cattod.2011.04.049
      (c) Olah, G. A.; Goeppert, A.; Prakash, G. K. S. J. Org. Chem. 2009, 74, 487 498 DOI: 10.1021/jo801260f
    4. 4
      Yang, C.-J.; Jackson, R. B. Energy Policy 2012, 41, 878 884 DOI: 10.1016/j.enpol.2011.11.037
    5. 5
      (a) Strunk, J.; Kähler, K.; Xia, X.; Muhler, M. Surf. Sci. 2009, 603, 1776 1783 DOI: 10.1016/j.susc.2008.09.063
      (b) Baltes, C.; Vukojevic, S.; Schuth, F. J. Catal. 2008, 258, 334 344 DOI: 10.1016/j.jcat.2008.07.004
      (c) Behrens, M.; Studt, F.; Kasatkin, I.; Kuhl, S.; Havecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L.; Tovar, M.; Fischer, R. W.; Norskov, J. K.; Schlogl, R. Science 2012, 336, 893 897 DOI: 10.1126/science.1219831
      (d) Hansen, P. L.; Wagner, J. B.; Helveg, S.; Rostrup-Nielsen, J. R.; Clausen, B. S.; Topsoe, H. Science 2002, 295, 2053 2055 DOI: 10.1126/science.1069325
      (e) Fichtl, M. B.; Schumann, J.; Kasatkin, I.; Jacobsen, N.; Behrens, M.; Schlögl, R.; Muhler, M.; Hinrichsen, O. Angew. Chem., Int. Ed. 2014, 53, 7043 7047 DOI: 10.1002/anie.201400575
    6. 6
      (a) Saito, M.; Murata, K. Catal. Surv. Asia 2004, 8, 285 294 DOI: 10.1007/s10563-004-9119-y
      (b) Saito, M.; Takeuchi, M.; Fujitani, T.; Toyir, J.; Luo, S. C.; Wu, J. G.; Mabuse, H.; Ushikoshi, K.; Mori, K.; Watanabe, T. Appl. Organomet. Chem. 2000, 14, 763 772 DOI: 10.1002/1099-0739(200012)14:12<763::AID-AOC98>3.0.CO;2-4
      (c) Wang, W.; Wang, S. P.; Ma, X. B.; Gong, J. L. Chem. Soc. Rev. 2011, 40, 3703 3727 DOI: 10.1039/c1cs15008a
      (d) Wu, J. G.; Saito, M.; Takeuchi, M.; Watanabe, T. Appl. Catal., A 2001, 218, 235 240 DOI: 10.1016/S0926-860X(01)00650-0
      (e) Li, C.; Yuan, X.; Fujimoto, K. Appl. Catal., A 2014, 469, 306 311 DOI: 10.1016/j.apcata.2013.10.010
      (f) Natesakhawat, S.; Lekse, J. W.; Baltrus, J. P.; Ohodnicki, P. R.; Howard, B. H.; Deng, X. Y.; Matranga, C. ACS Catal. 2012, 2, 1667 1676 DOI: 10.1021/cs300008g
      (g) Saito, M.; Fujitani, T.; Takeuchi, M.; Watanabe, T. Appl. Catal., A 1996, 138, 311 318 DOI: 10.1016/0926-860X(95)00305-3
      (h) Fisher, I. A.; Bell, A. T. J. Catal. 1997, 172, 222 237 DOI: 10.1006/jcat.1997.1870
      (i) Liu, X. M.; Lu, G. Q.; Yan, Z. F.; Beltramini, J. Ind. Eng. Chem. Res. 2003, 42, 6518 6530 DOI: 10.1021/ie020979s
      (j) Fujita, S.; Usui, M.; Ito, H.; Takezawa, N. J. Catal. 1995, 157, 403 413 DOI: 10.1006/jcat.1995.1306
      (k) Koeppel, R. A.; Baiker, A.; Wokaun, A. Appl. Catal., A 1992, 84, 77 102 DOI: 10.1016/0926-860X(92)80340-I
      (l) Dutta, G.; Sokol, A. A.; Catlow, C. R. A.; Keal, T. W.; Sherwood, P. ChemPhysChem 2012, 13, 3453 3456 DOI: 10.1002/cphc.201200517
      (m) Grabow, L. C.; Mavrikakis, M. ACS Catal. 2011, 1, 365 384 DOI: 10.1021/cs200055d
    7. 7
      Behrens, M.; Schloegl, R. Z. Anorg. Allg. Chem. 2013, 639, 2683 2695 DOI: 10.1002/zaac.201300356
    8. 8
      Weiss, R.; Guo, Y. Z.; Vukojevic, S.; Khodeir, L.; Boese, R.; Schuth, F.; Muhler, M.; Epple, M. Eur. J. Inorg. Chem. 2006, 1796 1802 DOI: 10.1002/ejic.200600005
    9. 9
      (a) Liao, F. L.; Huang, Y. Q.; Ge, J. W.; Zheng, W. R.; Tedsree, K.; Collier, P.; Hong, X. L.; Tsang, S. C. Angew. Chem., Int. Ed. 2011, 50, 2162 2165 DOI: 10.1002/anie.201007108
      (b) Liao, F. L.; Zeng, Z. Y.; Eley, C.; Lu, Q.; Hong, X. L.; Tsang, S. C. E. Angew. Chem., Int. Ed. 2012, 51, 5832 5836 DOI: 10.1002/anie.201200903
      (c) Zhou, X. W.; Qu, J.; Xu, F.; Hu, J. P.; Foord, J. S.; Zeng, Z. Y.; Hong, X. L.; Tsang, S. C. E. Chem. Commun. 2013, 49, 1747 1749 DOI: 10.1039/c3cc38455a
    10. 10
      Lee, S. G.; Sardesai, A. Top. Catal. 2005, 32, 197 207 DOI: 10.1007/s11244-005-2891-8
    11. 11
      (a) Hambrock, J.; Rabe, S.; Merz, K.; Birkner, A.; Wohlfart, A.; Fischer, R. A.; Driess, M. J. Mater. Chem. 2003, 13, 1731 1736 DOI: 10.1039/b301172k
      (b) Hambrock, J.; Schroter, M. K.; Birkner, A.; Woll, C.; Fischer, R. A. Chem. Mater. 2003, 15, 4217 4222 DOI: 10.1021/cm0341383
      (c) Lu, L. H.; Wohlfart, A.; Parala, H.; Birkner, A.; Fischer, R. A. Chem. Commun. 2003, 40 41 DOI: 10.1039/b208988b
      (d) Tkachenko, O. P.; Klementiev, K. V.; Loffler, E.; Ritzkopf, I.; Schuth, F.; Bandyopadhyay, M.; Grabowski, S.; Gies, H.; Hagen, V.; Muhler, M.; Lu, L. H.; Fischer, R. A.; Grunert, W. Phys. Chem. Chem. Phys. 2003, 5, 4325 4334 DOI: 10.1039/b303429a
      (e) Kurtz, M.; Bauer, N.; Buscher, C.; Wilmer, H.; Hinrichsen, O.; Becker, R.; Rabe, S.; Merz, K.; Driess, M.; Fischer, R. A.; Muhler, M. Catal. Lett. 2004, 92, 49 52 DOI: 10.1023/B:CATL.0000011085.88267.a6
      (f) Lu, L. H.; Fischer, R. A. Chem. Lett. 2004, 33, 1318 1319 DOI: 10.1246/cl.2004.1318
      (g) Cokoja, M.; Parala, H.; Schroter, M. K.; Birkner, A.; van den Berg, M. W. E.; Klementiev, K. V.; Grunert, W.; Fischer, R. A. J. Mater. Chem. 2006, 16, 2420 2428 DOI: 10.1039/b602871c
      (h) Schroeder, F.; Hermes, S.; Parala, H.; Hikov, T.; Muhler, M.; Fischer, R. A. J. Mater. Chem. 2006, 16, 3565 3574 DOI: 10.1039/b606814f
      (i) Schroter, M. K.; Khodeir, L.; van den Berg, M. W. E.; Hikov, T.; Cokoja, M.; Miao, S. J.; Grunert, W.; Muhler, M.; Fischer, R. A. Chem. Commun. 2006, 2498 2500 DOI: 10.1039/b602261h
      (j) Lu, L.; Hu, S.; Lee, H.-I.; Woell, C.; Fischer, R. A. J. Nanoparticle Res. 2007, 9, 491 496 DOI: 10.1007/s11051-006-9087-4
      (k) Hikov, T.; Rittermeier, A.; Luedemann, M.-B.; Herrmann, C.; Muhler, M.; Fischer, R. A. J. Mater. Chem. 2008, 18, 3325 3331 DOI: 10.1039/b801304g
      (l) Mueller, M.; Hermes, S.; Kaehler, K.; van den Berg, M. W. E.; Muhler, M.; Fischer, R. A. Chem. Mater. 2008, 20, 4576 4587 DOI: 10.1021/cm703339h
      (m) Lee, B. H.; Hwang, J. K.; Nam, J. W.; Lee, S. U.; Kim, J. T.; Koo, S.-M.; Baunemann, A.; Fischer, R. A.; Sung, M. M. Angew. Chem., Int. Ed. 2009, 48, 4536 4539 DOI: 10.1002/anie.200900414
      (n) Rittermeier, A.; Miao, S.; Schroeter, M. K.; Zhang, X.; van den Berg, M. W. E.; Kundu, S.; Wang, Y.; Schimpf, S.; Loeffler, E.; Fischer, R. A.; Muhler, M. Phys. Chem. Chem. Phys. 2009, 11, 8358 8366 DOI: 10.1039/b908034a
      (o) Schimpf, S.; Rittermeier, A.; Zhang, X.; Li, Z.-A.; Spasova, M.; van den Berg, M. W. E.; Farle, M.; Wang, Y.; Fischer, R. A.; Muhler, M. ChemCatChem 2010, 2, 214 222 DOI: 10.1002/cctc.200900252
      (p) Sliem, M. A.; Hikov, T.; Li, Z.-A.; Spasova, M.; Farle, M.; Schmidt, D. A.; Havenith-Newen, M.; Fischer, R. A. Phys. Chem. Chem. Phys. 2010, 12, 9858 9866 DOI: 10.1039/c003861j
      (q) Sliem, M. A.; Turner, S.; Heeskens, D.; Kalidindi, S. B.; Van Tendeloo, G.; Muhler, M.; Fischer, R. A. Phys. Chem. Chem. Phys. 2012, 14, 8170 8178 DOI: 10.1039/c2cp40482f
      (r) Vukojevic, S.; Trapp, O.; Grunwaldt, J. D.; Kiener, C.; Schuth, F. Angew. Chem., Int. Ed. 2005, 44, 7978 7981 DOI: 10.1002/anie.200503169
    12. 12
      Simon, M.; Mortreux, A.; Petit, F. J. Chem. Soc., Chem. Commun. 1988, 1445 1446 DOI: 10.1039/c39880001445
    13. 13
      Corker, J. M.; Evans, J. J. Chem. Soc., Chem. Commun. 1994, 1027 1029 DOI: 10.1039/c39940001027
    14. 14
      (a) Gonzalez-Campo, A.; Orchard, K. L.; Sato, N.; Shaffer, M. S. P.; Williams, C. K. Chem. Commun. 2009, 4034 4036 DOI: 10.1039/b905353k
      (b) Orchard, K. L.; Harris, J. E.; White, A. J. P.; Shaffer, M. S. P.; Williams, C. K. Organometallics 2011, 30, 2223 2229 DOI: 10.1021/om200004a
      (c) Orchard, K. L.; Shaffer, M. S. P.; Williams, C. K. Chem. Mater. 2012, 24, 2443 2448 DOI: 10.1021/cm300058d
      (d) Orchard, K. L.; White, A. J. P.; Shaffer, M. S. P.; Williams, C. K. Organometallics 2009, 28, 5828 5832 DOI: 10.1021/om900683z
    15. 15
      Brown, N. J.; Weiner, J.; Hellgardt, K.; Shaffer, M. S. P.; Williams, C. K. Chem. Commun. 2013, 49, 11074 11076 DOI: 10.1039/c3cc46203j
    16. 16
      (a) Vidjayacoumar, B.; Emslie, D. J. H.; Blackwell, J. M.; Clendenning, S. B.; Britten, J. F. Chem. Mater. 2010, 22, 4854 4866 DOI: 10.1021/cm101443x
      (b) Vidjayacoumar, B.; Emslie, D. J. H.; Clendenning, S. B.; Blackwell, J. M.; Britten, J. F.; Rheingold, A. Chem. Mater. 2010, 22, 4844 4853 DOI: 10.1021/cm101442e
    17. 17
      (a) Curtis, A. C.; Duff, D. G.; Edwards, P. P.; Jefferson, D. A.; Johnson, B. F. G.; Kirkland, A. I.; Wallace, A. S. J. Phys. Chem. 1988, 92, 2270 2275 DOI: 10.1021/j100319a035
      (b) Papavassiliou, C.; Kokkinakis, T. J. Phys. F: Met. Phys. 1974, 4, L67 DOI: 10.1088/0305-4608/4/3/006
    18. 18
      (a) Rothe, J.; Hormes, J.; Bonnemann, H.; Brijoux, W.; Siepen, K. J. Am. Chem. Soc. 1998, 120, 6019 6023 DOI: 10.1021/ja972748w
      (b) Montano, P. A.; Shenoy, G. K.; Alp, E. E.; Schulze, W.; Urban, J. Phys. Rev. Lett. 1986, 56, 2076 2079 DOI: 10.1103/PhysRevLett.56.2076
    19. 19
      Beale, A. M.; Weckhuysen, B. M. Phys. Chem. Chem. Phys. 2010, 12, 5562 5574 DOI: 10.1039/b925206a
    20. 20
      Creighton, J. A.; Eadon, D. G. J. Chem. Soc., Faraday Trans. 1991, 87, 3881 3891 DOI: 10.1039/ft9918703881
    21. 21
      Sawant, A.; Ko, M. K.; Parameswaran, V.; Lee, S.; Kulik, C. J. Fuel Sci. Technol. 1987, 5, 77 88 DOI: 10.1080/08843758708915847
    22. 22
      (a) Selvam, N. C. S.; Narayanan, S.; Kennedy, L. J.; Vijaya, J. J. J. Environ. Sci. 2013, 25, 2157 2167 DOI: 10.1016/S1001-0742(12)60277-0
      (b) Huang, M.; Xu, C.; Wu, Z.; Huang, Y.; Lin, J.; Wu, J. Dyes Pigm. 2008, 77, 327 334 DOI: 10.1016/j.dyepig.2007.01.026
    23. 23
      (a) Fujitani, T.; Saito, M. Catal. Lett. 1994, 25, 271 276 DOI: 10.1007/BF00816307
      (b) Yurieva, T. M.; Plyasova, L. M.; Makarova, O. V.; Krieger, T. A. J. Mol. Catal. A: Chem. 1996, 113, 455 468 DOI: 10.1016/S1381-1169(96)00272-5
      (c) Chinchen, G. C.; Spencer, M. S.; Waugh, K. C.; Whan, D. A. J. Chem. Soc., Faraday Trans. 1987, 83, 2193 2212 DOI: 10.1039/f19878302193
      (d) Chinchen, G. C.; Waugh, K. C.; Whan, D. A. Appl. Catal. 1986, 25, 101 107 DOI: 10.1016/S0166-9834(00)81226-9
    24. 24
      (a) Behrens, M. J. Catal. 2009, 267, 24 29 DOI: 10.1016/j.jcat.2009.07.009
      (b) Behrens, M.; Zander, S.; Kurr, P.; Jacobsen, N.; Senker, J.; Koch, G.; Ressler, T.; Fischer, R. W.; Schlögl, R. J. Am. Chem. Soc. 2013, 135, 6061 6068 DOI: 10.1021/ja310456f
    25. 25
      Grandjean, D.; Castricum, H. L.; Van Den Heuvel, J. C.; Weckhuysen, B. M. J. Phys. Chem. B 2006, 110, 16892 16901 DOI: 10.1021/jp055820i
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The following file is available free of charge on the ACS Publications website at DOI: 10.1021/cs502038y.

    • Experimental details, 15 figures, 4 tables of results; additional references (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE