ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

An Efficient a Posteriori Treatment for Dispersion Interaction in Density-Functional-Based Tight Binding

View Author Information
Institut für Physikalische Chemie und Elektrochemie, TU Dresden, D-01062 Dresden, Germany, Steacie Institute for Molecular Sciences, NRC, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada, and Departamento de Química-ICEx, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Brazil
Cite this: J. Chem. Theory Comput. 2005, 1, 5, 841–847
Publication Date (Web):June 30, 2005
https://doi.org/10.1021/ct050065y
Copyright © 2005 American Chemical Society

    Article Views

    1883

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (125 KB)

    Abstract

    The performance of density functional theory (DFT) (VWN-LDA, PBE-GGA, and B3LYP hybrid functionals), density-functional-based tight binding (DFTB), and ab initio methods [HF, MP2, CCSD, and CCSD(T)] for the treatment of London dispersion is investigated. Although highly correlated ab initio methods are capable of describing this phenomenon, if they are used with rather large basis sets, DFT methods are found to be inadequate for the description of H2/PAH (polycyclic aromatic hydrocarbon) interactions. As an alternative approach, an a posteriori addition of a van der Waals term to DFTB is proposed. This method provides results for H2/PAH interactions in close agreement with MP2 and higher-level ab initio methods. Bulk properties of graphite also compare well with the experimental data.

     Institut für Physikalische Chemie und Elektrochemie, TU Dresden.

    *

     Corresponding author e-mail:  thomas.heine@ chemie.tu-dresden.de.

     Steacie Institute for Molecular Sciences, NRC.

    §

     Universidade Federal de Minas Gerais.

    Cited By

    This article is cited by 266 publications.

    1. Andriy Zhugayevych, Wenbo Sun, Tammo van der Heide, Carlos R. Lien-Medrano, Thomas Frauenheim, Sergei Tretiak. Benchmark Data Set of Crystalline Organic Semiconductors. Journal of Chemical Theory and Computation 2023, 19 (22) , 8481-8490. https://doi.org/10.1021/acs.jctc.3c00861
    2. Zhonghua Liu, Famin Yu, Rui Wang, Wanrong Huang, Rui-Qin Zhang, Yan Xue, Zhigang Wang. Modulation of Graphene Interlayer Spacing by Superatoms. The Journal of Physical Chemistry C 2023, 127 (8) , 4334-4340. https://doi.org/10.1021/acs.jpcc.2c08437
    3. Megan Y. Deshaye Zoe A. Pollard Alessandro Banducci Alyssa Goodey Chanatkran Prommin Narissa Kanlayakan Nawee Kungwan Tim Kowalczyk . Accessible and Efficient Modeling of Chromophores with Time-Independent Excited-State Density Functional Tight-Binding: Concepts and Applications. , 125-144. https://doi.org/10.1021/bk-2022-1429.ch008
    4. Taiji Nakamura, Tomoko Yokaichiya, Dmitri G. Fedorov. Analysis of Guest Adsorption on Crystal Surfaces Based on the Fragment Molecular Orbital Method. The Journal of Physical Chemistry A 2022, 126 (6) , 957-969. https://doi.org/10.1021/acs.jpca.1c10229
    5. Dmitri G. Fedorov, Taiji Nakamura. Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. The Journal of Physical Chemistry Letters 2022, 13 (6) , 1596-1601. https://doi.org/10.1021/acs.jpclett.2c00040
    6. Yang Li, Yucun Liu, Junming Yuan, Yiming Luo, Qiuli Jiang, Fanfan Wang, Jingwei Meng. Molecular Dynamics Simulations of the Thermal Decomposition of 3,4-Bis(3-nitrofurazan-4-yl)furoxan. ACS Omega 2021, 6 (49) , 33470-33481. https://doi.org/10.1021/acsomega.1c04166
    7. Álvaro Rodríguez Méndez, Leonardo Medrano Sandonas, Arezoo Dianat, Rafael Gutierrez, Gianaurelio Cuniberti. An Atomistic Study of the Thermoelectric Signatures of CNT Peapods. The Journal of Physical Chemistry C 2021, 125 (25) , 13721-13731. https://doi.org/10.1021/acs.jpcc.1c02611
    8. Paula Pla, Clément Dubosq, Mathias Rapacioli, Evgeny Posenitskiy, Manuel Alcamí, Aude Simon. Hydrogenation of C24 Carbon Clusters: Structural Diversity and Energetic Properties. The Journal of Physical Chemistry A 2021, 125 (24) , 5273-5288. https://doi.org/10.1021/acs.jpca.1c02359
    9. Guangrui Liu, Beibei Tian, Su-Huai Wei, Chaoyang Zhang. Polymorph-Dependent Initial Thermal Decay Mechanism of Energetic Materials: A Case of 1,3,5,7-Tetranitro-1,3,5,7-Tetrazocane. The Journal of Physical Chemistry C 2021, 125 (18) , 10057-10067. https://doi.org/10.1021/acs.jpcc.1c01056
    10. Andrey V. Shernyukov, George E. Salnikov, Dmitry A. Rudakov, Alexander M. Genaev. Noncatalytic Bromination of Icosahedral Dicarboranes: The Key Role of Anionic Bromine Clusters Facilitating Br Atom Insertion into the B–H σ-Bond. Inorganic Chemistry 2021, 60 (5) , 3106-3116. https://doi.org/10.1021/acs.inorgchem.0c03392
    11. Chiara Panosetti, Simon B. Anniés, Cristina Grosu, Stefan Seidlmayer, Christoph Scheurer. DFTB Modeling of Lithium-Intercalated Graphite with Machine-Learned Repulsive Potential. The Journal of Physical Chemistry A 2021, 125 (2) , 691-699. https://doi.org/10.1021/acs.jpca.0c09388
    12. Glen R. Jenness, Caitlin G. Bresnahan, Manoj K. Shukla. Adventures in DFTB: Toward an Automatic Parameterization Scheme. Journal of Chemical Theory and Computation 2020, 16 (11) , 6894-6903. https://doi.org/10.1021/acs.jctc.0c00842
    13. Santanu Roy, Gregory K. Schenter, Joseph A. Napoli, Marcel D. Baer, Thomas E. Markland, Christopher J. Mundy. Resolving Heterogeneous Dynamics of Excess Protons in Aqueous Solution with Rate Theory. The Journal of Physical Chemistry B 2020, 124 (27) , 5665-5675. https://doi.org/10.1021/acs.jpcb.0c02649
    14. Elias Van Den Broeck, Bart Verbraeken, Karen Dedecker, Pieter Cnudde, Louis Vanduyfhuys, Toon Verstraelen, Kristof Van Hecke, Valentin Victor Jerca, Saron Catak, Richard Hoogenboom, Veronique Van Speybroeck. Cation−π Interactions Accelerate the Living Cationic Ring-Opening Polymerization of Unsaturated 2-Alkyl-2-oxazolines. Macromolecules 2020, 53 (10) , 3832-3846. https://doi.org/10.1021/acs.macromol.0c00865
    15. Maicon Pierre Lourenço, Egon Campos dos Santos, Lars G. M. Pettersson, Hélio Anderson Duarte. Accurate SCC-DFTB Parametrization for Bulk Water. Journal of Chemical Theory and Computation 2020, 16 (3) , 1768-1778. https://doi.org/10.1021/acs.jctc.9b00816
    16. Léo Dontot, Fernand Spiegelman, Mathias Rapacioli. Structures and Energetics of Neutral and Cationic Pyrene Clusters. The Journal of Physical Chemistry A 2019, 123 (44) , 9531-9543. https://doi.org/10.1021/acs.jpca.9b07007
    17. Zheng-Hua He, Yao-Yao Huang, Guang-Fu Ji, Jun Chen, Qiang Wu. Electron Properties and Thermal Decomposition Behaviors for HMX/HTPB Plastic-Bonded Explosives. The Journal of Physical Chemistry C 2019, 123 (39) , 23791-23799. https://doi.org/10.1021/acs.jpcc.9b04759
    18. Moumita Kar, Ritabrata Sarkar, Sougata Pal, Pranab Sarkar. Edge-Modified Phosphorene Antidot Nanoflakes and Their van der Waals Heterojunctions for Solar Cell Applications. The Journal of Physical Chemistry C 2019, 123 (34) , 20748-20756. https://doi.org/10.1021/acs.jpcc.9b05307
    19. Guangrui Liu, Ying Xiong, Ruijun Gou, Chaoyang Zhang. Difference in the Thermal Stability of Polymorphic Organic Crystals: A Comparative Study of the Early Events of the Thermal Decay of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) Polymorphs under the Volume Constraint Condition. The Journal of Physical Chemistry C 2019, 123 (27) , 16565-16576. https://doi.org/10.1021/acs.jpcc.9b04126
    20. Rui-xue Chen, Adélia J. A. Aquino, Andrew C.-H. Sue, Thomas Niehaus, Hans Lischka. Characterization of Charge Transfer in Excited States of Extended Clusters of π-Stacked Donor and Acceptor Complexes in Lock-Arm Supramolecular Ordering. The Journal of Physical Chemistry A 2019, 123 (21) , 4532-4542. https://doi.org/10.1021/acs.jpca.9b02208
    21. Kazunari Yoshizawa, Hiroyuki Murata, Hiromasa Tanaka. Density-Functional Tight-Binding Study on the Effects of Interfacial Water in the Adhesion Force between Epoxy Resin and Alumina Surface. Langmuir 2018, 34 (47) , 14428-14438. https://doi.org/10.1021/acs.langmuir.8b02490
    22. Yunsong Li, Yue Qi. Transferable Self-Consistent Charge Density Functional Tight-Binding Parameters for Li–Metal and Li-Ions in Inorganic Compounds and Organic Solvents. The Journal of Physical Chemistry C 2018, 122 (20) , 10755-10764. https://doi.org/10.1021/acs.jpcc.8b01839
    23. Jan Řezáč . Empirical Self-Consistent Correction for the Description of Hydrogen Bonds in DFTB3. Journal of Chemical Theory and Computation 2017, 13 (10) , 4804-4817. https://doi.org/10.1021/acs.jctc.7b00629
    24. Yoshifumi Nishimura, Takao Tsuneda, Takeshi Sato, Michio Katouda, and Stephan Irle . Quantum Chemical Estimation of Acetone Physisorption on Graphene Using Combined Basis Set and Size Extrapolation Schemes. The Journal of Physical Chemistry C 2017, 121 (16) , 8999-9010. https://doi.org/10.1021/acs.jpcc.6b13002
    25. Kseniia A. Korchagina, Aude Simon, Mathias Rapacioli, Fernand Spiegelman, and Jérôme Cuny . Structural Characterization of Sulfur-Containing Water Clusters Using a Density-Functional Based Tight-Binding Approach. The Journal of Physical Chemistry A 2016, 120 (45) , 9089-9100. https://doi.org/10.1021/acs.jpca.6b08251
    26. Yunsong Li, Kevin Leung, and Yue Qi . Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer. Accounts of Chemical Research 2016, 49 (10) , 2363-2370. https://doi.org/10.1021/acs.accounts.6b00363
    27. Florian Günther, Sibylle Gemming, and Gotthard Seifert . Hopping-Based Charge Transfer in Diketopyrrolopyrrole-Based Donor–Acceptor Polymers: A Theoretical Study. The Journal of Physical Chemistry C 2016, 120 (18) , 9581-9587. https://doi.org/10.1021/acs.jpcc.6b01310
    28. Anders S. Christensen, Tomáš Kubař, Qiang Cui, and Marcus Elstner . Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications. Chemical Reviews 2016, 116 (9) , 5301-5337. https://doi.org/10.1021/acs.chemrev.5b00584
    29. Yoshio Nishimoto, Hiroya Nakata, Dmitri G. Fedorov, and Stephan Irle . Large-Scale Quantum-Mechanical Molecular Dynamics Simulations Using Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. The Journal of Physical Chemistry Letters 2015, 6 (24) , 5034-5039. https://doi.org/10.1021/acs.jpclett.5b02490
    30. Xinjiang Wang, Ruiqiang Guo, Dongyan Xu, JaeDong Chung, Massoud Kaviany, and Baoling Huang . Anisotropic Lattice Thermal Conductivity and Suppressed Acoustic Phonons in MOF-74 from First Principles. The Journal of Physical Chemistry C 2015, 119 (46) , 26000-26008. https://doi.org/10.1021/acs.jpcc.5b08675
    31. Augusto F. Oliveira, Pier Philipsen, and Thomas Heine . DFTB Parameters for the Periodic Table, Part 2: Energies and Energy Gradients from Hydrogen to Calcium. Journal of Chemical Theory and Computation 2015, 11 (11) , 5209-5218. https://doi.org/10.1021/acs.jctc.5b00702
    32. Christopher B. Cannella and Nir Goldman . Carbyne Fiber Synthesis within Evaporating Metallic Liquid Carbon. The Journal of Physical Chemistry C 2015, 119 (37) , 21605-21611. https://doi.org/10.1021/acs.jpcc.5b03781
    33. Yunsong Li, Xinjiang Wang, Dongyan Xu, Jae Dong Chung, Massoud Kaviany, and Baoling Huang . H2O Adsorption/Desorption in MOF-74: Ab Initio Molecular Dynamics and Experiments. The Journal of Physical Chemistry C 2015, 119 (23) , 13021-13031. https://doi.org/10.1021/acs.jpcc.5b02069
    34. A. Domínguez, T. A. Niehaus, and T. Frauenheim . Accurate Hydrogen Bond Energies within the Density Functional Tight Binding Method. The Journal of Physical Chemistry A 2015, 119 (14) , 3535-3544. https://doi.org/10.1021/acs.jpca.5b01732
    35. Xingchen Liu and Dennis R. Salahub . Molybdenum Carbide Nanocatalysts at Work in the in Situ Environment: A Density Functional Tight-Binding and Quantum Mechanical/Molecular Mechanical Study. Journal of the American Chemical Society 2015, 137 (12) , 4249-4259. https://doi.org/10.1021/jacs.5b01494
    36. Thomas Heine . Transition Metal Chalcogenides: Ultrathin Inorganic Materials with Tunable Electronic Properties. Accounts of Chemical Research 2015, 48 (1) , 65-72. https://doi.org/10.1021/ar500277z
    37. Jan-Ole Joswig, Tommy Lorenz, Tsegabirhan Berhane Wendumu, Sibylle Gemming, and Gotthard Seifert . Optics, Mechanics, and Energetics of Two-Dimensional MoS2 Nanostructures from a Theoretical Perspective. Accounts of Chemical Research 2015, 48 (1) , 48-55. https://doi.org/10.1021/ar500318p
    38. Yoshio Nishimoto, Dmitri G. Fedorov, and Stephan Irle . Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method. Journal of Chemical Theory and Computation 2014, 10 (11) , 4801-4812. https://doi.org/10.1021/ct500489d
    39. Shihao Wang, Laurent MacKay, and Guillaume Lamoureux . Development of Semiempirical Models for Proton Transfer Reactions in Water. Journal of Chemical Theory and Computation 2014, 10 (8) , 2881-2890. https://doi.org/10.1021/ct500164h
    40. Hanning Chen . Functional Mode Electron-Transfer Theory. The Journal of Physical Chemistry B 2014, 118 (27) , 7586-7593. https://doi.org/10.1021/jp504418c
    41. Rosalba Juarez-Mosqueda, Mahdi Ghorbani-Asl, Agnieszka Kuc, and Thomas Heine . Electromechanical Properties of Carbon Nanotubes. The Journal of Physical Chemistry C 2014, 118 (25) , 13936-13944. https://doi.org/10.1021/jp502267d
    42. Maicon P. Lourenço, Luciana Guimarães, Maurício Chagas da Silva, Claudio de Oliveira, Thomas Heine, and Hélio A. Duarte . Nanotubes With Well-Defined Structure: Single- and Double-Walled Imogolites. The Journal of Physical Chemistry C 2014, 118 (11) , 5945-5953. https://doi.org/10.1021/jp411086f
    43. Zhengbang Wang, Jinxuan Liu, Binit Lukose, Zhigang Gu, Peter G. Weidler, Hartmut Gliemann, Thomas Heine, and Christof Wöll . Nanoporous Designer Solids with Huge Lattice Constant Gradients: Multiheteroepitaxy of Metal–Organic Frameworks. Nano Letters 2014, 14 (3) , 1526-1529. https://doi.org/10.1021/nl404767k
    44. Timothy J. Giese, Haoyuan Chen, Ming Huang, and Darrin M. York . Parametrization of an Orbital-Based Linear-Scaling Quantum Force Field for Noncovalent Interactions. Journal of Chemical Theory and Computation 2014, 10 (3) , 1086-1098. https://doi.org/10.1021/ct401035t
    45. Antonio Gamboa, Mathias Rapacioli, and Fernand Spiegelman . Automatic Differentiation of the Energy within Self-consistent Tight-Binding Methods. Journal of Chemical Theory and Computation 2013, 9 (9) , 3900-3907. https://doi.org/10.1021/ct400214b
    46. Mohammad Wahiduzzaman, Augusto F. Oliveira, Pier Philipsen, Lyuben Zhechkov, Erik van Lenthe, Henryk A. Witek, and Thomas Heine . DFTB Parameters for the Periodic Table: Part 1, Electronic Structure. Journal of Chemical Theory and Computation 2013, 9 (9) , 4006-4017. https://doi.org/10.1021/ct4004959
    47. Riccardo Petraglia and Clemence Corminboeuf . A Caveat on SCC-DFTB and Noncovalent Interactions Involving Sulfur Atoms. Journal of Chemical Theory and Computation 2013, 9 (7) , 3020-3025. https://doi.org/10.1021/ct4003948
    48. Andrey N. Enyashin and Alexander L. Ivanovskii . Structural and Electronic Properties and Stability of MXenes Ti2C and Ti3C2 Functionalized by Methoxy Groups. The Journal of Physical Chemistry C 2013, 117 (26) , 13637-13643. https://doi.org/10.1021/jp401820b
    49. Tae Hoon Choi, Ruibin Liang, C. Mark Maupin, and Gregory A. Voth . Application of the SCC-DFTB Method to Hydroxide Water Clusters and Aqueous Hydroxide Solutions. The Journal of Physical Chemistry B 2013, 117 (17) , 5165-5179. https://doi.org/10.1021/jp400953a
    50. Hannah R. Leverentz, Helena W. Qi, and Donald G. Truhlar . Assessing the Accuracy of Density Functional and Semiempirical Wave Function Methods for Water Nanoparticles: Comparing Binding and Relative Energies of (H2O)16 and (H2O)17 to CCSD(T) Results. Journal of Chemical Theory and Computation 2013, 9 (2) , 995-1006. https://doi.org/10.1021/ct300848z
    51. Miho Isegawa, Luke Fiedler, Hannah R. Leverentz, Yingjie Wang, Santhanamoorthi Nachimuthu, Jiali Gao, and Donald G. Truhlar . Polarized Molecular Orbital Model Chemistry 3. The PMO Method Extended to Organic Chemistry. Journal of Chemical Theory and Computation 2013, 9 (1) , 33-45. https://doi.org/10.1021/ct300509d
    52. Steve Kaminski, Michael Gaus, and Marcus Elstner . Improved Electronic Properties from Third-Order SCC-DFTB with Cost Efficient Post-SCF Extensions. The Journal of Physical Chemistry A 2012, 116 (48) , 11927-11937. https://doi.org/10.1021/jp307264f
    53. L. Houben, A. N. Enyashin, Y. Feldman, R. Rosentsveig, D. G. Stroppa, and M. Bar-Sadan . Diffraction from Disordered Stacking Sequences in MoS2 and WS2 Fullerenes and Nanotubes. The Journal of Physical Chemistry C 2012, 116 (45) , 24350-24357. https://doi.org/10.1021/jp3080139
    54. Binit Lukose, Mohammad Wahiduzzaman, Agnieszka Kuc, and Thomas Heine . Mechanical, Electronic, and Adsorption Properties of Porous Aromatic Frameworks. The Journal of Physical Chemistry C 2012, 116 (43) , 22878-22884. https://doi.org/10.1021/jp3067102
    55. Xin Liu, Xiulian Pan, Wanling Shen, Pengju Ren, Xiuwen Han, and Xinhe Bao . NMR Study of Preferential Endohedral Adsorption of Methanol in Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry C 2012, 116 (14) , 7803-7809. https://doi.org/10.1021/jp300138x
    56. Andrey N. Enyashin, Lena Yadgarov, Lothar Houben, Igor Popov, Marc Weidenbach, Reshef Tenne, Maya Bar-Sadan, and Gotthard Seifert . New Route for Stabilization of 1T-WS2 and MoS2 Phases. The Journal of Physical Chemistry C 2011, 115 (50) , 24586-24591. https://doi.org/10.1021/jp2076325
    57. Mathias Rapacioli, Fernand Spiegelman, Anthony Scemama, and André Mirtschink. Modeling Charge Resonance in Cationic Molecular Clusters: Combining DFT-Tight Binding with Configuration Interaction. Journal of Chemical Theory and Computation 2011, 7 (1) , 44-55. https://doi.org/10.1021/ct100412f
    58. T. Todorova and B. Delley. Molecular Crystals: A Test System for Weak Bonding. The Journal of Physical Chemistry C 2010, 114 (48) , 20523-20530. https://doi.org/10.1021/jp1049759
    59. Guilherme Ferreira de Lima, Hélio Anderson Duarte, and Josefredo R. Pliego, Jr. . Dynamical Discrete/Continuum Linear Response Shells Theory of Solvation: Convergence Test for NH4+ and OH− Ions in Water Solution Using DFT and DFTB Methods. The Journal of Physical Chemistry B 2010, 114 (48) , 15941-15947. https://doi.org/10.1021/jp110202e
    60. Lujian Peng and James R. Morris . Prediction of Hydrogen Adsorption Properties in Expanded Graphite Model and in Nanoporous Carbon. The Journal of Physical Chemistry C 2010, 114 (36) , 15522-15529. https://doi.org/10.1021/jp104595m
    61. Kevin E. Riley, Michal Pitoňák, Petr Jurečka, and Pavel Hobza . Stabilization and Structure Calculations for Noncovalent Interactions in Extended Molecular Systems Based on Wave Function and Density Functional Theories. Chemical Reviews 2010, 110 (9) , 5023-5063. https://doi.org/10.1021/cr1000173
    62. Bassem Assfour, Stefano Leoni and Gotthard Seifert. Hydrogen Adsorption Sites in Zeolite Imidazolate Frameworks ZIF-8 and ZIF-11. The Journal of Physical Chemistry C 2010, 114 (31) , 13381-13384. https://doi.org/10.1021/jp101958p
    63. C. Mark Maupin, Bálint Aradi and Gregory A. Voth. The Self-Consistent Charge Density Functional Tight Binding Method Applied to Liquid Water and the Hydrated Excess Proton: Benchmark Simulations. The Journal of Physical Chemistry B 2010, 114 (20) , 6922-6931. https://doi.org/10.1021/jp1010555
    64. Tae Hoon Choi and Kenneth D. Jordan. Application of the SCC-DFTB Method to H+(H2O)6, H+(H2O)21, and H+(H2O)22. The Journal of Physical Chemistry B 2010, 114 (20) , 6932-6936. https://doi.org/10.1021/jp912289e
    65. Steven E. Wheeler, Anne J. McNeil, Peter Müller, Timothy M. Swager and K. N. Houk . Probing Substituent Effects in Aryl−Aryl Interactions Using Stereoselective Diels−Alder Cycloadditions. Journal of the American Chemical Society 2010, 132 (10) , 3304-3311. https://doi.org/10.1021/ja903653j
    66. Andrey N. Enyashin, Maya Bar-Sadan, Jeremy Sloan, Lothar Houben and Gotthard Seifert . Nanoseashells and Nanooctahedra of MoS2: Routes to Inorganic Fullerenes. Chemistry of Materials 2009, 21 (23) , 5627-5636. https://doi.org/10.1021/cm9021326
    67. Claudio A. Morgado, Petr Jurečka, Daniel Svozil, Pavel Hobza and Jiří Šponer . Balance of Attraction and Repulsion in Nucleic-Acid Base Stacking: CCSD(T)/Complete-Basis-Set-Limit Calculations on Uracil Dimer and a Comparison with the Force-Field Description. Journal of Chemical Theory and Computation 2009, 5 (6) , 1524-1544. https://doi.org/10.1021/ct9000125
    68. Milen Stefanov, Andrey N. Enyashin, Thomas Heine and Gotthard Seifert . Nanolubrication: How Do MoS2-Based Nanostructures Lubricate?. The Journal of Physical Chemistry C 2008, 112 (46) , 17764-17767. https://doi.org/10.1021/jp808204n
    69. Yun Ding, Ye Mei and John Z. H. Zhang . Quantum Mechanical Studies of Residue-Specific Hydrophobic Interactions in p53−MDM2 Binding. The Journal of Physical Chemistry B 2008, 112 (36) , 11396-11401. https://doi.org/10.1021/jp8015886
    70. Dmitry Kazachkin, Yoshifumi Nishimura, Stephan Irle, Keiji Morokuma, Radisav D. Vidic and Eric Borguet . Interaction of Acetone with Single Wall Carbon Nanotubes at Cryogenic Temperatures: A Combined Temperature Programmed Desorption and Theoretical Study. Langmuir 2008, 24 (15) , 7848-7856. https://doi.org/10.1021/la800030y
    71. Yan Zhao and, Donald G. Truhlar. A Prototype for Graphene Material Simulation:  Structures and Interaction Potentials of Coronene Dimers. The Journal of Physical Chemistry C 2008, 112 (11) , 4061-4067. https://doi.org/10.1021/jp710918f
    72. Thomas Heine,, Hélio F. Dos Santos,, Serguei Patchkovskii, and, Hélio A. Duarte. Structure and Dynamics of β-Cyclodextrin in Aqueous Solution at the Density-Functional Tight Binding Level. The Journal of Physical Chemistry A 2007, 111 (26) , 5648-5654. https://doi.org/10.1021/jp068988s
    73. Gustavo de M. Seabra,, Ross C. Walker,, Marcus Elstner,, David A. Case, and, Adrian E. Roitberg. Implementation of the SCC-DFTB Method for Hybrid QM/MM Simulations within the Amber Molecular Dynamics Package. The Journal of Physical Chemistry A 2007, 111 (26) , 5655-5664. https://doi.org/10.1021/jp070071l
    74. Jeffrey R. Reimers,, Gemma C. Solomon,, Alessio Gagliardi,, Ante Bilić,, Noel S. Hush,, Thomas Frauenheim,, Aldo Di Carlo, and, Alessandro Pecchia. The Green's Function Density Functional Tight-Binding (gDFTB) Method for Molecular Electronic Conduction. The Journal of Physical Chemistry A 2007, 111 (26) , 5692-5702. https://doi.org/10.1021/jp070598y
    75. Matthew D. Wodrich,, Clémence Corminboeuf, and, Paul von Ragué Schleyer. Systematic Errors in Computed Alkane Energies Using B3LYP and Other Popular DFT Functionals. Organic Letters 2006, 8 (17) , 3631-3634. https://doi.org/10.1021/ol061016i
    76. Zhen Zhou,, Jijun Zhao,, Zhongfang Chen,, Xueping Gao,, Tianying Yan,, Bin Wen, and, Paul von Ragué Schleyer. Comparative Study of Hydrogen Adsorption on Carbon and BN Nanotubes. The Journal of Physical Chemistry B 2006, 110 (27) , 13363-13369. https://doi.org/10.1021/jp0622740
    77. Manuel A. V. Ribeiro da Silva,, Joana I. T. A. Cabral,, Paula Gomes, and, José R. B. Gomes. Combined Experimental and Computational Study of the Thermochemistry of Methylpiperidines. The Journal of Organic Chemistry 2006, 71 (10) , 3677-3685. https://doi.org/10.1021/jo052468w
    78. Alireza Ghasemifard, S F K S Panahi, Mahmoodreza Sharifian. Ferrimagnetic, antiferromagnetic and ferromagnetic properties in triangle multi-layer graphene nanoflake. Physica Scripta 2023, 98 (10) , 105966. https://doi.org/10.1088/1402-4896/acfa47
    79. K. Al-Mokhalelati, F. Karabet, A.W. Allaf, M. Naddaf, B. Assfour, A.G. Al Lafi. Silicone oils aided fabrication of paraffin wax coated super-hydrophobic sand: A spectroscopic study. Heliyon 2023, 9 (10) , e20874. https://doi.org/10.1016/j.heliyon.2023.e20874
    80. Tatyana I. Gorbunova, Natalia S. Kozhevnikova, Andrey N. Enyashin. The lifetime of polychlorophenyl radicals in methanol: A SCC–DFTB molecular dynamics study. Mendeleev Communications 2023, 33 (5) , 661-665. https://doi.org/10.1016/j.mencom.2023.09.023
    81. Hasnain Sajid, Matthew A. Addicoat. Computational Insights of Dimensional Organic Materials. 2023, 382-473. https://doi.org/10.1039/9781839169656-00382
    82. H. Leboucher, A. Simon, M. Rapacioli. Structures and stabilities of PAH clusters solvated by water aggregates: The case of the pyrene dimer. The Journal of Chemical Physics 2023, 158 (11) https://doi.org/10.1063/5.0139482
    83. Tommy Lorenz, Andreas Jäger, Cornelia Breitkopf. Predicting Material Properties of Methane Hydrates with Cubic Crystal Structure Using Molecular Simulations. Chemie Ingenieur Technik 2023, 95 (3) , 344-352. https://doi.org/10.1002/cite.202200160
    84. Simon Anniés, Christoph Scheurer, Chiara Panosetti. The intrinsic electrostatic dielectric behaviour of graphite anodes in Li-ion batteries—Across the entire functional range of charge. Electrochimica Acta 2023, 444 , 141966. https://doi.org/10.1016/j.electacta.2023.141966
    85. Chaoyang Zhang, Jing Huang, Rupeng Bu. Polymorphism and Polymorphic Transition in Energetic Molecular Crystals. 2023, 157-202. https://doi.org/10.1007/978-981-99-2699-2_5
    86. Mathias Rapacioli, Maysa Yusef Buey, Fernand Spiegelman. Addressing electronic and dynamical evolution of molecules and molecular clusters: DFTB simulations of energy relaxation in polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics 2023, 1 https://doi.org/10.1039/D3CP02852F
    87. Kevin Bonnot, Pierre Benoit, Sophie Hoyau, Laure Mamy, Dominique Patureau, Rémi Servien, Mathias Rapacioli, Fabienne Bessac. Accuracy of Computational Chemistry Methods to Calculate Organic Contaminant Molecular Properties. ChemistrySelect 2022, 7 (48) https://doi.org/10.1002/slct.202203586
    88. Hocheol Lim, Hansol Hong, Seonik Hwang, Song Ja Kim, Sung Yum Seo, Kyoung Tai No. Identification of Novel Natural Product Inhibitors against Matrix Metalloproteinase 9 Using Quantum Mechanical Fragment Molecular Orbital-Based Virtual Screening Methods. International Journal of Molecular Sciences 2022, 23 (8) , 4438. https://doi.org/10.3390/ijms23084438
    89. Jincheng Ji, Kun Wang, Weihua Zhu. Prediction of the crystal structure and properties of energetic LLM ‐105:oxidant cocrystals: A theoretical study. Journal of the Chinese Chemical Society 2022, 69 (4) , 618-629. https://doi.org/10.1002/jccs.202200031
    90. Taiji Nakamura, Dmitri G. Fedorov. The catalytic activity and adsorption in faujasite and ZSM-5 zeolites: the role of differential stabilization and charge delocalization. Physical Chemistry Chemical Physics 2022, 24 (13) , 7739-7747. https://doi.org/10.1039/D1CP05851G
    91. Mathias Rapacioli, Nathalie Tarrat. Periodic DFTB for Supported Clusters: Implementation and Application on Benzene Dimers Deposited on Graphene. Computation 2022, 10 (3) , 39. https://doi.org/10.3390/computation10030039
    92. Yingchao Li, Adélia J. A. Aquino, Farhan Siddique, Thomas A. Niehaus, Hans Lischka, Dana Nachtigallová. Pathways to fluorescence via restriction of intramolecular motion in substituted tetraphenylethylenes. Physical Chemistry Chemical Physics 2022, 24 (3) , 1722-1735. https://doi.org/10.1039/D1CP04848A
    93. Yu Zhu, Xinrui Yang, Famin Yu, Rui Wang, Qiang Chen, Zhanwen Zhang, Zhigang Wang. Quantum tunneling of hydrogen atom transfer affects mandrel degradation in inertial confinement fusion target fabrication. iScience 2022, 25 (1) , 103674. https://doi.org/10.1016/j.isci.2021.103674
    94. Glen R. Jenness, Levi A. Lystrom, Harley R. McAlexander, Manoj K. Shukla. Application of Computational Chemistry for Contaminant Adsorption on the Components of Soil Surfaces. 2022, 171-213. https://doi.org/10.1007/978-3-030-83244-5_5
    95. Hocheol Lim, Hyeon-Nae Jeon, Seungcheol Lim, Yuil Jang, Taehee Kim, Hyein Cho, Jae-Gu Pan, Kyoung Tai No. Evaluation of protein descriptors in computer-aided rational protein engineering tasks and its application in property prediction in SARS-CoV-2 spike glycoprotein. Computational and Structural Biotechnology Journal 2022, 20 , 788-798. https://doi.org/10.1016/j.csbj.2022.01.027
    96. Simon Anniés, Chiara Panosetti, Maria Voronenko, Dario Mauth, Christiane Rahe, Christoph Scheurer. Accessing Structural, Electronic, Transport and Mesoscale Properties of Li-GICs via a Complete DFTB Model with Machine-Learned Repulsion Potential. Materials 2021, 14 (21) , 6633. https://doi.org/10.3390/ma14216633
    97. Dmitri G. Fedorov. Electron density from the fragment molecular orbital method combined with density-functional tight-binding. Chemical Physics Letters 2021, 780 , 138900. https://doi.org/10.1016/j.cplett.2021.138900
    98. Mikhail V. Ryzhkov, Andrei N. Enyashin, Bernard Delley. First‐principles study on the plutonium ions interaction with diamide molecules in acid solutions. International Journal of Quantum Chemistry 2021, 121 (16) https://doi.org/10.1002/qua.26681
    99. S.F.K.S. Panahi, Maryam Jamaati, Afshin Namiranian. Caffeine adsorption on hybrid hBN/graphene hexagonal nanoflakes: A density functional tight binding study. Materials Science and Engineering: B 2021, 268 , 115118. https://doi.org/10.1016/j.mseb.2021.115118
    100. Mikhail V. Ryzhkov, Andrei N. Enyashin, Bernard Delley. Plutonium complexes in water: new approach to ab initio modeling. Radiochimica Acta 2021, 109 (5) , 327-342. https://doi.org/10.1515/ract-2020-0091
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect