Role of Many-Body Effects in Describing Low-Lying Excited States of π-Conjugated Chromophores: High-Level Equation-of-Motion Coupled-Cluster Studies of Fused Porphyrin Systems
Abstract
The unusual photophysical properties of the π-conjugated chromophores make them potential building blocks of various molecular devices. In particular, significant narrowing of the HOMO–LUMO gaps can be observed as an effect of functionalization chromophores with polycyclic aromatic hydrocarbons (PAHs). In this paper we present equation-of-motion coupled cluster (EOMCC) calculations for vertical excitation energies of several functionalized forms of porphyrins. The results for free-base porphyrin (FBP) clearly demonstrate significant differences between functionalization of FBP with one- (anthracene) and two-dimensional (coronene) structures. We also compare the EOMCC results with the experimentally available results for anthracene fused zinc–porphyrin. The impact of various types of correlation effects is illustrated on several benchmark models, where the comparison with the experiment is possible. In particular, we demonstrate that for all excited states considered in this paper, all of them being dominated by single excitations, the inclusion of triply excited configurations is crucial for attaining qualitative agreement with experiment. We also demonstrate the parallel performance of the most computationally intensive part of the completely renormalized EOMCCSD(T) approach (CR-EOMCCSD(T)) across 120 000 cores.
Cited By
This article is cited by 21 publications.
- Daniel Mejia-Rodriguez, Edoardo Aprà, Jochen Autschbach, Nicholas P. Bauman, Eric J. Bylaska, Niranjan Govind, Jeff R. Hammond, Karol Kowalski, Alexander Kunitsa, Ajay Panyala, Bo Peng, John J. Rehr, Huajing Song, Sergei Tretiak, Marat Valiev, Fernando D. Vila. NWChem: Recent and Ongoing Developments. Journal of Chemical Theory and Computation 2023, Article ASAP.
- Katharina Boguslawski. Targeting Doubly Excited States with Equation of Motion Coupled Cluster Theory Restricted to Double Excitations. Journal of Chemical Theory and Computation 2019, 15 (1) , 18-24. https://doi.org/10.1021/acs.jctc.8b01053
- Marcin Stępień, Elżbieta Gońka, Marika Żyła, and Natasza Sprutta . Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. Chemical Reviews 2017, 117 (4) , 3479-3716. https://doi.org/10.1021/acs.chemrev.6b00076
- Han-Shi Hu and Karol Kowalski . Excitation Energies with Cost-Reduced Variant of the Active-Space EOMCCSDT Method: The EOMCCSDt-3̅ Approach. Journal of Chemical Theory and Computation 2013, 9 (11) , 4761-4768. https://doi.org/10.1021/ct400501z
- Kiran Bhaskaran-Nair, Wenjing Ma, Sriram Krishnamoorthy, Oreste Villa, Hubertus J. J. van Dam, Edoardo Aprà, and Karol Kowalski . Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU–GPU Systems. Journal of Chemical Theory and Computation 2013, 9 (4) , 1949-1957. https://doi.org/10.1021/ct301130u
- Thomas J. Watson, Jr., Victor F. Lotrich, Peter G. Szalay, Ajith Perera, and Rodney J. Bartlett . Benchmarking for Perturbative Triple-Excitations in EE-EOM-CC Methods. The Journal of Physical Chemistry A 2013, 117 (12) , 2569-2579. https://doi.org/10.1021/jp308634q
- E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn, J. Autschbach, N. P. Bauman, J. C. Becca, D. E. Bernholdt, K. Bhaskaran-Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cauët, Y. Chen, G. N. Chuev, C. J. Cramer, J. Daily, M. J. O. Deegan, T. H. Dunning, M. Dupuis, K. G. Dyall, G. I. Fann, S. A. Fischer, A. Fonari, H. Früchtl, L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glaesemann, A. W. Götz, J. Hammond, V. Helms, E. D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B. G. Johnson, H. Jónsson, R. A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Krishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J. Logsdail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J. E. Moore, J. M. Mullin, T. Nakajima, D. R. Nascimento, J. A. Nichols, P. J. Nichols, J. Nieplocha, A. Otero-de-la-Roza, B. Palmer, A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati, J. Pittner, L. Pollack, R. M. Richard, P. Sadayappan, G. C. Schatz, W. A. Shelton, D. W. Silverstein, D. M. A. Smith, T. A. Soares, D. Song, M. Swart, H. L. Taylor, G. S. Thomas, V. Tipparaju, D. G. Truhlar, K. Tsemekhman, T. Van Voorhis, Á. Vázquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vogiatzis, D. Wang, J. H. Weare, M. J. Williamson, T. L. Windus, K. Woliński, A. T. Wong, Q. Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, R. J. Harrison. NWChem: Past, present, and future. The Journal of Chemical Physics 2020, 152 (18) https://doi.org/10.1063/5.0004997
- Paweł Tecmer, Cristina E. González-Espinoza. Electron correlation effects of the ThO and ThS molecules in the spinor basis. A relativistic coupled cluster study of ground and excited states properties. Physical Chemistry Chemical Physics 2018, 20 (36) , 23424-23432. https://doi.org/10.1039/C8CP00048D
- Andrew J. Wallace, Bryce E. Williamson, Deborah L. Crittenden. Coupled cluster calculations provide a one-to-one mapping between calculated and observed transition energies in the electronic absorption spectrum of zinc phthalocyanine. International Journal of Quantum Chemistry 2017, 117 (8) , e25350. https://doi.org/10.1002/qua.25350
- Katharina Boguslawski. Targeting excited states in all-trans polyenes with electron-pair states. The Journal of Chemical Physics 2016, 145 (23) https://doi.org/10.1063/1.4972053
- Piotr Piecuch, Jared A. Hansen, Adeayo O. Ajala. Benchmarking the completely renormalised equation-of-motion coupled-cluster approaches for vertical excitation energies. Molecular Physics 2015, 113 (19-20) , 3085-3127. https://doi.org/10.1080/00268976.2015.1076901
- Jesse J. Lutz, Piotr Piecuch. Performance of the completely renormalized equation-of-motion coupled-cluster method in calculations of excited-state potential cuts of water. Computational and Theoretical Chemistry 2014, 1040-1041 , 20-34. https://doi.org/10.1016/j.comptc.2014.05.008
- Paweł Tecmer, Niranjan Govind, Karol Kowalski, Wibe A. de Jong, Lucas Visscher. Reliable modeling of the electronic spectra of realistic uranium complexes. The Journal of Chemical Physics 2013, 139 (3) https://doi.org/10.1063/1.4812360
- Péter G. Szalay. Can coupled‐cluster methods be used to describe excited states of the building blocks of DNA?. International Journal of Quantum Chemistry 2013, 113 (14) , 1821-1827. https://doi.org/10.1002/qua.24392
- Ryoichi Fukuda, Masahiro Ehara. Theoretical Study on the Excited Electronic States of Coronene and Its π-Extended Molecules Using the Symmetry-Adapted Cluster-Configuration Interaction Method. Bulletin of the Chemical Society of Japan 2013, 86 (4) , 445-451. https://doi.org/10.1246/bcsj.20120317
- D. Danovich, S. Shaik, H. Chen. Theoretical Toolkits for Inorganic and Bioinorganic Complexes: Their Applications and Insights. 2013, 1-57. https://doi.org/10.1016/B978-0-08-097774-4.00901-3
- Karol Kowalski, Kiran Bhaskaran-Nair, Jiří Brabec, Jiří Pittner. Coupled Cluster Theories for Strongly Correlated Molecular Systems. 2013, 237-271. https://doi.org/10.1007/978-3-642-35106-8_9
- Sean Hogan, Jeff R. Hammond, Andrew A. Chien. An evaluation of difference and threshold techniques for efficient checkpoints. 2012, 1-6. https://doi.org/10.1109/DSNW.2012.6264674
- Masaaki Saitow, Yuji Mochizuki. Excited state calculation for free-base and metalloporphyrins with the partially renormalized polarization propagator approach. Chemical Physics Letters 2012, 525-526 , 144-149. https://doi.org/10.1016/j.cplett.2011.12.063
- Jan P. Lewtak, Daniel T. Gryko. Synthesis of π-extended porphyrins via intramolecular oxidative coupling. Chemical Communications 2012, 48 (81) , 10069. https://doi.org/10.1039/c2cc31279d
- T.P. Straatsma, E.J. Bylaska, H.J.J. van Dam, N. Govind, W.A. de Jong, K. Kowalski, M. Valiev. Advances in Scalable Computational Chemistry. 2011, 151-177. https://doi.org/10.1016/B978-0-444-53835-2.00007-9