ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Role of Many-Body Effects in Describing Low-Lying Excited States of π-Conjugated Chromophores: High-Level Equation-of-Motion Coupled-Cluster Studies of Fused Porphyrin Systems

View Author Information
William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, United States
Cray, Incorporated, 380 Jackson St. Suite 210, St. Paul, Minnesota 55101, United States
High Performance Computing, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
E-mail: [email protected] (K.K.), [email protected] (E.A.).
Cite this: J. Chem. Theory Comput. 2011, 7, 7, 2200–2208
Publication Date (Web):May 27, 2011
https://doi.org/10.1021/ct200217y
Copyright © 2011 American Chemical Society

    Article Views

    671

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)

    Abstract

    The unusual photophysical properties of the π-conjugated chromophores make them potential building blocks of various molecular devices. In particular, significant narrowing of the HOMO–LUMO gaps can be observed as an effect of functionalization chromophores with polycyclic aromatic hydrocarbons (PAHs). In this paper we present equation-of-motion coupled cluster (EOMCC) calculations for vertical excitation energies of several functionalized forms of porphyrins. The results for free-base porphyrin (FBP) clearly demonstrate significant differences between functionalization of FBP with one- (anthracene) and two-dimensional (coronene) structures. We also compare the EOMCC results with the experimentally available results for anthracene fused zinc–porphyrin. The impact of various types of correlation effects is illustrated on several benchmark models, where the comparison with the experiment is possible. In particular, we demonstrate that for all excited states considered in this paper, all of them being dominated by single excitations, the inclusion of triply excited configurations is crucial for attaining qualitative agreement with experiment. We also demonstrate the parallel performance of the most computationally intensive part of the completely renormalized EOMCCSD(T) approach (CR-EOMCCSD(T)) across 120 000 cores.

    Cited By

    This article is cited by 21 publications.

    1. Daniel Mejia-Rodriguez, Edoardo Aprà, Jochen Autschbach, Nicholas P. Bauman, Eric J. Bylaska, Niranjan Govind, Jeff R. Hammond, Karol Kowalski, Alexander Kunitsa, Ajay Panyala, Bo Peng, John J. Rehr, Huajing Song, Sergei Tretiak, Marat Valiev, Fernando D. Vila. NWChem: Recent and Ongoing Developments. Journal of Chemical Theory and Computation 2023, Article ASAP.
    2. Katharina Boguslawski. Targeting Doubly Excited States with Equation of Motion Coupled Cluster Theory Restricted to Double Excitations. Journal of Chemical Theory and Computation 2019, 15 (1) , 18-24. https://doi.org/10.1021/acs.jctc.8b01053
    3. Marcin Stępień, Elżbieta Gońka, Marika Żyła, and Natasza Sprutta . Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. Chemical Reviews 2017, 117 (4) , 3479-3716. https://doi.org/10.1021/acs.chemrev.6b00076
    4. Han-Shi Hu and Karol Kowalski . Excitation Energies with Cost-Reduced Variant of the Active-Space EOMCCSDT Method: The EOMCCSDt-3̅ Approach. Journal of Chemical Theory and Computation 2013, 9 (11) , 4761-4768. https://doi.org/10.1021/ct400501z
    5. Kiran Bhaskaran-Nair, Wenjing Ma, Sriram Krishnamoorthy, Oreste Villa, Hubertus J. J. van Dam, Edoardo Aprà, and Karol Kowalski . Noniterative Multireference Coupled Cluster Methods on Heterogeneous CPU–GPU Systems. Journal of Chemical Theory and Computation 2013, 9 (4) , 1949-1957. https://doi.org/10.1021/ct301130u
    6. Thomas J. Watson, Jr., Victor F. Lotrich, Peter G. Szalay, Ajith Perera, and Rodney J. Bartlett . Benchmarking for Perturbative Triple-Excitations in EE-EOM-CC Methods. The Journal of Physical Chemistry A 2013, 117 (12) , 2569-2579. https://doi.org/10.1021/jp308634q
    7. E. Aprà, E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma, M. Valiev, H. J. J. van Dam, Y. Alexeev, J. Anchell, V. Anisimov, F. W. Aquino, R. Atta-Fynn, J. Autschbach, N. P. Bauman, J. C. Becca, D. E. Bernholdt, K. Bhaskaran-Nair, S. Bogatko, P. Borowski, J. Boschen, J. Brabec, A. Bruner, E. Cauët, Y. Chen, G. N. Chuev, C. J. Cramer, J. Daily, M. J. O. Deegan, T. H. Dunning, M. Dupuis, K. G. Dyall, G. I. Fann, S. A. Fischer, A. Fonari, H. Früchtl, L. Gagliardi, J. Garza, N. Gawande, S. Ghosh, K. Glaesemann, A. W. Götz, J. Hammond, V. Helms, E. D. Hermes, K. Hirao, S. Hirata, M. Jacquelin, L. Jensen, B. G. Johnson, H. Jónsson, R. A. Kendall, M. Klemm, R. Kobayashi, V. Konkov, S. Krishnamoorthy, M. Krishnan, Z. Lin, R. D. Lins, R. J. Littlefield, A. J. Logsdail, K. Lopata, W. Ma, A. V. Marenich, J. Martin del Campo, D. Mejia-Rodriguez, J. E. Moore, J. M. Mullin, T. Nakajima, D. R. Nascimento, J. A. Nichols, P. J. Nichols, J. Nieplocha, A. Otero-de-la-Roza, B. Palmer, A. Panyala, T. Pirojsirikul, B. Peng, R. Peverati, J. Pittner, L. Pollack, R. M. Richard, P. Sadayappan, G. C. Schatz, W. A. Shelton, D. W. Silverstein, D. M. A. Smith, T. A. Soares, D. Song, M. Swart, H. L. Taylor, G. S. Thomas, V. Tipparaju, D. G. Truhlar, K. Tsemekhman, T. Van Voorhis, Á. Vázquez-Mayagoitia, P. Verma, O. Villa, A. Vishnu, K. D. Vogiatzis, D. Wang, J. H. Weare, M. J. Williamson, T. L. Windus, K. Woliński, A. T. Wong, Q. Wu, C. Yang, Q. Yu, M. Zacharias, Z. Zhang, Y. Zhao, R. J. Harrison. NWChem: Past, present, and future. The Journal of Chemical Physics 2020, 152 (18) https://doi.org/10.1063/5.0004997
    8. Paweł Tecmer, Cristina E. González-Espinoza. Electron correlation effects of the ThO and ThS molecules in the spinor basis. A relativistic coupled cluster study of ground and excited states properties. Physical Chemistry Chemical Physics 2018, 20 (36) , 23424-23432. https://doi.org/10.1039/C8CP00048D
    9. Andrew J. Wallace, Bryce E. Williamson, Deborah L. Crittenden. Coupled cluster calculations provide a one-to-one mapping between calculated and observed transition energies in the electronic absorption spectrum of zinc phthalocyanine. International Journal of Quantum Chemistry 2017, 117 (8) , e25350. https://doi.org/10.1002/qua.25350
    10. Katharina Boguslawski. Targeting excited states in all-trans polyenes with electron-pair states. The Journal of Chemical Physics 2016, 145 (23) https://doi.org/10.1063/1.4972053
    11. Piotr Piecuch, Jared A. Hansen, Adeayo O. Ajala. Benchmarking the completely renormalised equation-of-motion coupled-cluster approaches for vertical excitation energies. Molecular Physics 2015, 113 (19-20) , 3085-3127. https://doi.org/10.1080/00268976.2015.1076901
    12. Jesse J. Lutz, Piotr Piecuch. Performance of the completely renormalized equation-of-motion coupled-cluster method in calculations of excited-state potential cuts of water. Computational and Theoretical Chemistry 2014, 1040-1041 , 20-34. https://doi.org/10.1016/j.comptc.2014.05.008
    13. Paweł Tecmer, Niranjan Govind, Karol Kowalski, Wibe A. de Jong, Lucas Visscher. Reliable modeling of the electronic spectra of realistic uranium complexes. The Journal of Chemical Physics 2013, 139 (3) https://doi.org/10.1063/1.4812360
    14. Péter G. Szalay. Can coupled‐cluster methods be used to describe excited states of the building blocks of DNA?. International Journal of Quantum Chemistry 2013, 113 (14) , 1821-1827. https://doi.org/10.1002/qua.24392
    15. Ryoichi Fukuda, Masahiro Ehara. Theoretical Study on the Excited Electronic States of Coronene and Its π-Extended Molecules Using the Symmetry-Adapted Cluster-Configuration Interaction Method. Bulletin of the Chemical Society of Japan 2013, 86 (4) , 445-451. https://doi.org/10.1246/bcsj.20120317
    16. D. Danovich, S. Shaik, H. Chen. Theoretical Toolkits for Inorganic and Bioinorganic Complexes: Their Applications and Insights. 2013, 1-57. https://doi.org/10.1016/B978-0-08-097774-4.00901-3
    17. Karol Kowalski, Kiran Bhaskaran-Nair, Jiří Brabec, Jiří Pittner. Coupled Cluster Theories for Strongly Correlated Molecular Systems. 2013, 237-271. https://doi.org/10.1007/978-3-642-35106-8_9
    18. Sean Hogan, Jeff R. Hammond, Andrew A. Chien. An evaluation of difference and threshold techniques for efficient checkpoints. 2012, 1-6. https://doi.org/10.1109/DSNW.2012.6264674
    19. Masaaki Saitow, Yuji Mochizuki. Excited state calculation for free-base and metalloporphyrins with the partially renormalized polarization propagator approach. Chemical Physics Letters 2012, 525-526 , 144-149. https://doi.org/10.1016/j.cplett.2011.12.063
    20. Jan P. Lewtak, Daniel T. Gryko. Synthesis of π-extended porphyrins via intramolecular oxidative coupling. Chemical Communications 2012, 48 (81) , 10069. https://doi.org/10.1039/c2cc31279d
    21. T.P. Straatsma, E.J. Bylaska, H.J.J. van Dam, N. Govind, W.A. de Jong, K. Kowalski, M. Valiev. Advances in Scalable Computational Chemistry. 2011, 151-177. https://doi.org/10.1016/B978-0-444-53835-2.00007-9

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect