ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Curvature Effect on the Capacitance of Electric Double Layers at Ionic Liquid/Onion-Like Carbon Interfaces

View Author Information
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
§ Chemical Sciences Division and §Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
Cite this: J. Chem. Theory Comput. 2012, 8, 3, 1058–1063
Publication Date (Web):February 2, 2012
https://doi.org/10.1021/ct200914j
Copyright © 2012 American Chemical Society

    Article Views

    2129

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Recent experiments have revealed that onion-like carbons (OLCs) offer high energy density and charging/discharging rates when used as the electrodes in supercapacitors. To understand the physical origin of this phenomenon, molecular dynamics simulations were performed for a room-temperature ionic liquid near idealized spherical OLCs with radii ranging from 0.356 to 1.223 nm. We find that the surface charge density increases almost linearly with the potential applied on electric double layers (EDLs) near OLCs. This leads to a nearly flat shape of the differential capacitance versus the potential, unlike the bell or camel shape observed on planar electrodes. Moreover, our simulations reveal that the capacitance of EDLs on OLCs increases with the curvature or as the OLC size decreases, in agreement with experimental observations. The curvature effect is explained by dominance of charge overscreening over a wide potential range and increased ion density per unit area of electrode surface as the OLC becomes smaller.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details of surface charge density vs the applied potential on the EDL near OLC and the microstructures of electrical double layers in ionic liquids. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 118 publications.

    1. Qianlu Zheng, Nathaniel Hawthorne, James D. Batteas, Rosa M. Espinosa-Marzal. Surface Curvature Enhances the Electrotunability of Ionic Liquid Lubrication. Langmuir 2024, 40 (7) , 3748-3758. https://doi.org/10.1021/acs.langmuir.3c03519
    2. Patrick A. Bonnaud, Hayato Shiba. Molecular Simulations of Ionic Liquids at Charged Graphite Interfaces. The Journal of Physical Chemistry C 2023, 127 (47) , 22917-22933. https://doi.org/10.1021/acs.jpcc.3c06257
    3. Dan-Dan Li, Er-Chao Li, Xiang-Yu Ji, Yan-Ru Yang, Xiao-Dong Wang, Guang Feng. Molecular Insights into Curvature Effects on the Capacitance of Electrical Double Layers in Tricationic Ionic Liquids with Carbon Nanotube Electrodes. Langmuir 2023, 39 (1) , 588-596. https://doi.org/10.1021/acs.langmuir.2c02880
    4. Kuilin Peng, Jie Lin, Deshuai Yang, Fangjia Fu, Zhongyang Dai, Guobing Zhou, Zhen Yang. Molecular-Level Insights into Interfacial Interaction–Nanostructure Relationships of Imidazolium-Based Ionic Liquids around Carbon Nanotube Electrodes. Industrial & Engineering Chemistry Research 2022, 61 (37) , 14051-14065. https://doi.org/10.1021/acs.iecr.2c01256
    5. Jianzhong Wu. Understanding the Electric Double-Layer Structure, Capacitance, and Charging Dynamics. Chemical Reviews 2022, 122 (12) , 10821-10859. https://doi.org/10.1021/acs.chemrev.2c00097
    6. Guillaume Jeanmairet, Benjamin Rotenberg, Mathieu Salanne. Microscopic Simulations of Electrochemical Double-Layer Capacitors. Chemical Reviews 2022, 122 (12) , 10860-10898. https://doi.org/10.1021/acs.chemrev.1c00925
    7. El Hassane Lahrar, Irena Deroche, Camélia Matei Ghimbeu, Patrice Simon, Céline Merlet. Simulations of Ionic Liquids Confined in Surface-Functionalized Nanoporous Carbons: Implications for Energy Storage. ACS Applied Nano Materials 2021, 4 (4) , 4007-4015. https://doi.org/10.1021/acsanm.1c00342
    8. Yong-Lei Wang, Bin Li, Sten Sarman, Francesca Mocci, Zhong-Yuan Lu, Jiayin Yuan, Aatto Laaksonen, Michael D. Fayer. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chemical Reviews 2020, 120 (13) , 5798-5877. https://doi.org/10.1021/acs.chemrev.9b00693
    9. Yu Zhang, Peter T. Cummings. Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors. ACS Applied Materials & Interfaces 2019, 11 (45) , 42680-42689. https://doi.org/10.1021/acsami.9b09939
    10. Yu Zhang, Boris Dyatkin, Peter T. Cummings. Molecular Investigation of Oxidized Graphene: Anatomy of the Double-Layer Structure and Ion Dynamics. The Journal of Physical Chemistry C 2019, 123 (20) , 12583-12591. https://doi.org/10.1021/acs.jpcc.9b01617
    11. Sabine Schweizer, Johannes Landwehr, Bastian J. M. Etzold, Robert Horst Meißner, Marc Amkreutz, Peter Schiffels, Jörg-Rüdiger Hill. Combined Computational and Experimental Study on the Influence of Surface Chemistry of Carbon-Based Electrodes on Electrode–Electrolyte Interactions in Supercapacitors. The Journal of Physical Chemistry C 2019, 123 (5) , 2716-2727. https://doi.org/10.1021/acs.jpcc.8b07617
    12. Guilherme Volpe Bossa, Rachel Downing, Jacob Abrams, Bjorn K. Berntson, Sylvio May. Differential Capacitance of Electrolytes at Weakly Curved Electrodes. The Journal of Physical Chemistry C 2019, 123 (2) , 1127-1135. https://doi.org/10.1021/acs.jpcc.8b10933
    13. Rachel Downing, Guilherme Volpe Bossa, Sylvio May. The Role of Ion–Ion Correlations for the Differential Capacitance of Ionic Liquids. The Journal of Physical Chemistry C 2018, 122 (50) , 28537-28544. https://doi.org/10.1021/acs.jpcc.8b09756
    14. Chenguang Zhang, Ke Ma, Naiqin Zhao, Zhihao Yuan. A Core–Shell Strategy for Improving Alloy Catalyst Activity for Continual Growth of Hollow Carbon Onions. Crystal Growth & Design 2018, 18 (12) , 7470-7480. https://doi.org/10.1021/acs.cgd.8b01249
    15. Cheng Zhan, Tuan Anh Pham, Maira R. Cerón, Patrick G. Campbell, Vedasri Vedharathinam, Minoru Otani, De-en Jiang, Juergen Biener, Brandon C. Wood, Monika Biener. Origins and Implications of Interfacial Capacitance Enhancements in C60-Modified Graphene Supercapacitors. ACS Applied Materials & Interfaces 2018, 10 (43) , 36860-36865. https://doi.org/10.1021/acsami.8b10349
    16. Alireza Moradzadeh, Mohammad H. Motevaselian, Sikandar Y. Mashayak, Narayana R. Aluru. Coarse-Grained Force Field for Imidazolium-Based Ionic Liquids. Journal of Chemical Theory and Computation 2018, 14 (6) , 3252-3261. https://doi.org/10.1021/acs.jctc.7b01293
    17. Cheng Lian, Kun Liu, Honglai Liu, and Jianzhong Wu . Impurity Effects on Charging Mechanism and Energy Storage of Nanoporous Supercapacitors. The Journal of Physical Chemistry C 2017, 121 (26) , 14066-14072. https://doi.org/10.1021/acs.jpcc.7b04869
    18. Ke Ma, Xuewei Wang, Jan Forsman, and Clifford E. Woodward . Molecular Dynamic Simulations of Ionic Liquid’s Structural Variations from Three to One Layers inside a Series of Slit and Cylindrical Nanopores. The Journal of Physical Chemistry C 2017, 121 (25) , 13539-13548. https://doi.org/10.1021/acs.jpcc.7b03319
    19. Srinivasa Rao Varanasi and Suresh K. Bhatia . Optimal Electrode Mass Ratio in Nanoporous Carbon Electrochemical Supercapacitors. The Journal of Physical Chemistry C 2016, 120 (49) , 27925-27933. https://doi.org/10.1021/acs.jpcc.6b07759
    20. C. Lian, K. Liu, K. L. Van Aken, Y. Gogotsi, D. J. Wesolowski, H. L. Liu, D. E. Jiang, and J. Z. Wu . Enhancing the Capacitive Performance of Electric Double-Layer Capacitors with Ionic Liquid Mixtures. ACS Energy Letters 2016, 1 (1) , 21-26. https://doi.org/10.1021/acsenergylett.6b00010
    21. Cheng Lian, De-en Jiang, Honglai Liu, and Jianzhong Wu . A Generic Model for Electric Double Layers in Porous Electrodes. The Journal of Physical Chemistry C 2016, 120 (16) , 8704-8710. https://doi.org/10.1021/acs.jpcc.6b00964
    22. Boris Dyatkin, Yu Zhang, Eugene Mamontov, Alexander I. Kolesnikov, Yongqiang Cheng, Harry M. Meyer, III, Peter T. Cummings, and Yury Gogotsi . Influence of Surface Oxidation on Ion Dynamics and Capacitance in Porous and Nonporous Carbon Electrodes. The Journal of Physical Chemistry C 2016, 120 (16) , 8730-8741. https://doi.org/10.1021/acs.jpcc.6b01204
    23. Cheng Zhan and De-en Jiang . Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes. The Journal of Physical Chemistry Letters 2016, 7 (5) , 789-794. https://doi.org/10.1021/acs.jpclett.6b00047
    24. Yinghua Qiu and Yunfei Chen . Capacitance Performance of Sub-2 nm Graphene Nanochannels in Aqueous Electrolyte. The Journal of Physical Chemistry C 2015, 119 (42) , 23813-23819. https://doi.org/10.1021/acs.jpcc.5b06401
    25. Jenel Vatamanu and Dmitry Bedrov . Capacitive Energy Storage: Current and Future Challenges. The Journal of Physical Chemistry Letters 2015, 6 (18) , 3594-3609. https://doi.org/10.1021/acs.jpclett.5b01199
    26. Arik Yochelis, Maibam Birla Singh, and Iris Visoly-Fisher . Coupling Bulk and Near-Electrode Interfacial Nanostructuring in Ionic Liquids. Chemistry of Materials 2015, 27 (12) , 4169-4179. https://doi.org/10.1021/acs.chemmater.5b00780
    27. Ke Ma and Clifford E. Woodward , Jan Forsman . Classical Density Functional Study on Interfacial Structure and Differential Capacitance of Ionic Liquids near Charged Surfaces. The Journal of Physical Chemistry C 2014, 118 (29) , 15825-15834. https://doi.org/10.1021/jp504001u
    28. Maxim V. Fedorov and Alexei A. Kornyshev . Ionic Liquids at Electrified Interfaces. Chemical Reviews 2014, 114 (5) , 2978-3036. https://doi.org/10.1021/cr400374x
    29. Song Li, Katherine L. Van Aken, John K. McDonough, Guang Feng, Yury Gogotsi, and Peter T. Cummings . The Electrical Double Layer of Dicationic Ionic Liquids at Onion-like Carbon Surface. The Journal of Physical Chemistry C 2014, 118 (8) , 3901-3909. https://doi.org/10.1021/jp409888f
    30. Nav Nidhi Rajput, Joshua Monk, and Francisco R. Hung . Ionic Liquids Confined in a Realistic Activated Carbon Model: A Molecular Simulation Study. The Journal of Physical Chemistry C 2014, 118 (3) , 1540-1553. https://doi.org/10.1021/jp408617j
    31. Jennifer M. Black, Deron Walters, Aleksander Labuda, Guang Feng, Patrick C. Hillesheim, Sheng Dai, Peter T. Cummings, Sergei V. Kalinin, Roger Proksch, and Nina Balke . Bias-Dependent Molecular-Level Structure of Electrical Double Layer in Ionic Liquid on Graphite. Nano Letters 2013, 13 (12) , 5954-5960. https://doi.org/10.1021/nl4031083
    32. Céline Cannes, Hubert Cachet, Catherine Debiemme-Chouvy, Claude Deslouis, Jacques de Sanoit, Claire Le Naour, and Veronika A. Zinovyeva . Double Layer at [BuMeIm][Tf2N] Ionic Liquid–Pt or −C Material Interfaces. The Journal of Physical Chemistry C 2013, 117 (44) , 22915-22925. https://doi.org/10.1021/jp407665q
    33. Guang Feng, Song Li, Volker Presser, and Peter T. Cummings . Molecular Insights into Carbon Supercapacitors Based on Room-Temperature Ionic Liquids. The Journal of Physical Chemistry Letters 2013, 4 (19) , 3367-3376. https://doi.org/10.1021/jz4014163
    34. Jenel Vatamanu, Zongzhi Hu, and Dmitry Bedrov , Carlos Perez and Yury Gogotsi . Increasing Energy Storage in Electrochemical Capacitors with Ionic Liquid Electrolytes and Nanostructured Carbon Electrodes. The Journal of Physical Chemistry Letters 2013, 4 (17) , 2829-2837. https://doi.org/10.1021/jz401472c
    35. Guang Feng, Song Li, Jennifer S. Atchison, Volker Presser, and Peter T. Cummings . Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature. The Journal of Physical Chemistry C 2013, 117 (18) , 9178-9186. https://doi.org/10.1021/jp403547k
    36. De-en Jiang and Jianzhong Wu . Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors. The Journal of Physical Chemistry Letters 2013, 4 (8) , 1260-1267. https://doi.org/10.1021/jz4002967
    37. Song Li, Guang Feng, Pasquale F. Fulvio, Patrick, C. Hillesheim, Chen Liao, Sheng Dai, and Peter T. Cummings . Molecular Dynamics Simulation Study of the Capacitive Performance of a Binary Mixture of Ionic Liquids near an Onion-like Carbon Electrode. The Journal of Physical Chemistry Letters 2012, 3 (17) , 2465-2469. https://doi.org/10.1021/jz3009387
    38. Peng Wu, Jingsong Huang, Vincent Meunier, Bobby G. Sumpter, and Rui Qiao . Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores. The Journal of Physical Chemistry Letters 2012, 3 (13) , 1732-1737. https://doi.org/10.1021/jz300506j
    39. Jenel Vatamanu, Oleg Borodin, Dmitry Bedrov, and Grant D. Smith . Molecular Dynamics Simulation Study of the Interfacial Structure and Differential Capacitance of Alkylimidazolium Bis(trifluoromethanesulfonyl)imide [Cnmim][TFSI] Ionic Liquids at Graphite Electrodes. The Journal of Physical Chemistry C 2012, 116 (14) , 7940-7951. https://doi.org/10.1021/jp301399b
    40. Houqing Pan, Xin Jiao, Wenchao Zhang, Longlong Fan, Zhihao Yuan, Chenguang Zhang. Supercapacitor with Ultra-High power and energy density enabled by Nitrogen/Oxygen-Doped interconnected hollow carbon Nano-Onions. Chemical Engineering Journal 2024, 484 , 149663. https://doi.org/10.1016/j.cej.2024.149663
    41. Hongyan He, Yanlei Wang, Mi Wang, Kun Li. Layered structure and property of the ionic liquid-electrode interface. 2024, 714-724. https://doi.org/10.1016/B978-0-323-85669-0.00124-0
    42. Liang Zeng, Jiaxing Peng, Jinkai Zhang, Xi Tan, Xiangyu Ji, Shiqi Li, Guang Feng. Molecular dynamics simulations of electrochemical interfaces. The Journal of Chemical Physics 2023, 159 (9) https://doi.org/10.1063/5.0160729
    43. Dipankar Roy, Andriy Kovalenko. Multiscale Methods Framework with the 3D-RISM-KH Molecular Solvation Theory for Supramolecular Structures, Nanomaterials, and Biomolecules: Where Are We Going?. Thermo 2023, 3 (3) , 375-395. https://doi.org/10.3390/thermo3030023
    44. Henrique de Araujo Chagas, Eudes Eterno Fileti, Guilherme Colherinhas. Comparing supercapacitors with graphene/graphyne electrodes and [Bmim][PF6], [Emim][BF4], [Ch][Gly] and [Pyr][Tfsi] ionic liquids using molecular dynamics. Journal of Molecular Liquids 2023, 379 , 121703. https://doi.org/10.1016/j.molliq.2023.121703
    45. Weili Zhang, Yang Lu, Lei Wan, Pan Zhou, Yingchun Xia, Shuaishuai Yan, Xiaoxia Chen, Hangyu Zhou, Hao Dong, Kai Liu. Engineering a passivating electric double layer for high performance lithium metal batteries. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29761-z
    46. Samuel Varner, Zhen-Gang Wang. Effects of dilution in ionic liquid supercapacitors. Physical Chemistry Chemical Physics 2022, 24 (44) , 27362-27374. https://doi.org/10.1039/D2CP03398D
    47. Hao Liu, Hua Wang, Zhiyuan Wang, Yongchang Ma, Chenguang Zhang. From pollution to wealth: Soot-graphene hybrid structure as supercapacitor electrode for high-performance alternating current filtering. Diamond and Related Materials 2022, 129 , 109397. https://doi.org/10.1016/j.diamond.2022.109397
    48. Jiale Ma, Songtao Zhao, Zhenyu Li. New crowding states of ionic liquid induced by configuration change of ion adsorption on charged electrode. Electrochimica Acta 2022, 425 , 140692. https://doi.org/10.1016/j.electacta.2022.140692
    49. Henrique de Araujo Chagas, Eudes Eterno Fileti, Guilherme Colherinhas. A molecular dynamics study of graphyne-based electrode and biocompatible ionic liquid for supercapacitor applications. Journal of Molecular Liquids 2022, 360 , 119494. https://doi.org/10.1016/j.molliq.2022.119494
    50. Mahnaz Azimzadeh Sani, Nicholas G. Pavlopoulos, Simone Pezzotti, Alessandra Serva, Paolo Cignoni, Julia Linnemann, Mathieu Salanne, Marie‐Pierre Gaigeot, Kristina Tschulik. Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular‐Level Insights into the Electrical Double Layer. Angewandte Chemie International Edition 2022, 61 (5) https://doi.org/10.1002/anie.202112679
    51. Mahnaz Azimzadeh Sani, Nicholas G. Pavlopoulos, Simone Pezzotti, Alessandra Serva, Paolo Cignoni, Julia Linnemann, Mathieu Salanne, Marie‐Pierre Gaigeot, Kristina Tschulik. Unexpectedly High Capacitance of the Metal Nanoparticle/Water Interface: Molecular‐Level Insights into the Electrical Double Layer. Angewandte Chemie 2022, 134 (5) https://doi.org/10.1002/ange.202112679
    52. Jiale Ma, Songtao Zhao, Zhenyu Li. New Crowding States of Ionic Liquid Induced by Configuration Change of Ion Adsorption on Charged Electrode. SSRN Electronic Journal 2022, 114 https://doi.org/10.2139/ssrn.4072779
    53. Liang Zeng, Taizheng Wu, Ting Ye, Tangming Mo, Rui Qiao, Guang Feng. Modeling galvanostatic charge–discharge of nanoporous supercapacitors. Nature Computational Science 2021, 1 (11) , 725-731. https://doi.org/10.1038/s43588-021-00153-5
    54. Jhih‐Hong Lyu, Chiun‐Chang Lee, Tai‐Chia Lin. Near‐ and far‐field expansions for stationary solutions of Poisson‐Nernst‐Planck equations. Mathematical Methods in the Applied Sciences 2021, 44 (13) , 10837-10860. https://doi.org/10.1002/mma.7453
    55. Ezat Keshavarzi, Sediqeh Rabiei-Jildani, Mahsa Abareghi. A new regularity used to predict the camel-bell shape transition in the capacitance curve of electric double layer capacitors. Journal of Applied Electrochemistry 2021, 51 (8) , 1229-1240. https://doi.org/10.1007/s10800-021-01571-z
    56. Leying Qing, Ting Long, Hongping Yu, Yu Li, Weiqiang Tang, Bo Bao, Shuangliang Zhao. Quantifying ion desolvation effects on capacitances of nanoporous electrodes with liquid electrolytes. Chemical Engineering Science 2021, 240 , 116662. https://doi.org/10.1016/j.ces.2021.116662
    57. Jianglong Du, Haolan Tao, Jie Yang, Cheng Lian, Sen Lin, Honglai Liu. Understanding electrokinetic thermodynamics in nanochannels. Chinese Journal of Chemical Engineering 2021, 31 , 33-41. https://doi.org/10.1016/j.cjche.2020.09.041
    58. Jie Yang, Alejandro Gallegos, Cheng Lian, Shengwei Deng, Honglai Liu, Jianzhong Wu. Curvature effects on electric-double-layer capacitance. Chinese Journal of Chemical Engineering 2021, 31 , 145-152. https://doi.org/10.1016/j.cjche.2020.10.039
    59. Katlego Makgopa, Letlhogonolo F. Mabena, Cheslin G. Brink, Given N. Chauke, Malesela D. Teffu, Kwena D. Modibane, Mpitloane J. Hato. Nanostructured Carbon-Based Electrode Materials for Supercapacitor Applications. 2021, 317-355. https://doi.org/10.1007/978-981-15-7610-2_14
    60. Andrew J. Wain, Edmund J.F. Dickinson. Nanoscale characteristics of electrochemical systems. 2021, 1-48. https://doi.org/10.1016/B978-0-12-820055-1.00008-3
    61. Alexander J. Pak, Gyeong S. Hwang. Fundamentals of Capacitive Charge Storage in Carbon-Based Supercapacitors. 2021, 559-586. https://doi.org/10.1007/978-3-030-18778-1_24
    62. Chenguang Zhang, Jian Meng, Ke Ma, Xin Jiao, Zhihao Yuan. A three-dimensional structure of ternary carbon for high performance supercapacitor. Diamond and Related Materials 2020, 109 , 108075. https://doi.org/10.1016/j.diamond.2020.108075
    63. Chenguang Zhang, Haozhe Du, Ke Ma, Zhihao Yuan. Ultrahigh‐Rate Supercapacitor Based on Carbon Nano‐Onion/Graphene Hybrid Structure toward Compact Alternating Current Filter. Advanced Energy Materials 2020, 10 (43) https://doi.org/10.1002/aenm.202002132
    64. . Peter Cummings – a pillar in the field of statistical mechanics and molecular simulation. Molecular Physics 2019, 3479-3483. https://doi.org/10.1080/00268976.2019.1684664
    65. Li Yin, Shu Li, Xiaohong Liu, Tianying Yan. Ionic liquid electrolytes in electric double layer capacitors. Science China Materials 2019, 62 (11) , 1537-1555. https://doi.org/10.1007/s40843-019-9458-3
    66. K. Rudharachari Maiyelvaganan, Shanmugasundaram Kamalakannan, Muthuramalingam Prakash. Adsorption of ionic liquids on carbonaceous surfaces: The effect of curvature on selective anion⋯π and cation⋯π interactions. Applied Surface Science 2019, 495 , 143538. https://doi.org/10.1016/j.apsusc.2019.143538
    67. Wan-Yu Tsai, Jeremy Come, Wei Zhao, Runxi Wang, Guang Feng, Bishnu Prasad Thapaliya, Sheng Dai, Liam Collins, Nina Balke. Hysteretic order-disorder transitions of ionic liquid double layer structure on graphite. Nano Energy 2019, 60 , 886-893. https://doi.org/10.1016/j.nanoen.2019.04.022
    68. Sylvio May. Differential capacitance of the electric double layer: mean-field modeling approaches. Current Opinion in Electrochemistry 2019, 13 , 125-131. https://doi.org/10.1016/j.coelec.2018.12.002
    69. Chiun-Chang Lee. Thin layer analysis of a non-local model for the double layer structure. Journal of Differential Equations 2019, 266 (1) , 742-802. https://doi.org/10.1016/j.jde.2018.07.055
    70. Ajay Muralidharan, Lawrence R. Pratt, Gary G. Hoffman, Mangesh I. Chaudhari, Susan B. Rempe. Molecular Simulation Results on Charged Carbon Nanotube Forest‐Based Supercapacitors. ChemSusChem 2018, 11 (12) , 1927-1932. https://doi.org/10.1002/cssc.201800323
    71. Zheng Bo, Changwen Li, Huachao Yang, Kostya Ostrikov, Jianhua Yan, Kefa Cen. Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations. Nano-Micro Letters 2018, 10 (2) https://doi.org/10.1007/s40820-018-0188-2
    72. Nan Chen, Haiqin Zhang, Li Li, Renjie Chen, Shaojun Guo. Ionogel Electrolytes for High‐Performance Lithium Batteries: A Review. Advanced Energy Materials 2018, 8 (12) https://doi.org/10.1002/aenm.201702675
    73. Jinyuan Yang, Zheng Bo, Huachao Yang, Hualei Qi, Jing Kong, Jianhua Yan, Kefa Cen. Reliability of Constant Charge Method for Molecular Dynamics Simulations on EDLCs in Nanometer and Sub-Nanometer Spaces. ChemElectroChem 2017, 4 (10) , 2486-2493. https://doi.org/10.1002/celc.201700447
    74. Pengfei Lu, Qiaobo Dai, Liangyu Wu, Xiangdong Liu. Structure and Capacitance of Electrical Double Layers at the Graphene–Ionic Liquid Interface. Applied Sciences 2017, 7 (9) , 939. https://doi.org/10.3390/app7090939
    75. Cheng Zhan, Cheng Lian, Yu Zhang, Matthew W. Thompson, Yu Xie, Jianzhong Wu, Paul R. C. Kent, Peter T. Cummings, De‐en Jiang, David J. Wesolowski. Computational Insights into Materials and Interfaces for Capacitive Energy Storage. Advanced Science 2017, 4 (7) , 1700059. https://doi.org/10.1002/advs.201700059
    76. Mathieu Salanne. Ionic Liquids for Supercapacitor Applications. Topics in Current Chemistry 2017, 375 (3) https://doi.org/10.1007/s41061-017-0150-7
    77. Naoya Nishi, Shunsuke Yasui, Atsunori Hashimoto, Tetsuo Sakka. Anion dependence of camel-shape capacitance at the interface between mercury and ionic liquids studied using pendant drop method. Journal of Electroanalytical Chemistry 2017, 789 , 108-113. https://doi.org/10.1016/j.jelechem.2017.02.001
    78. Katherine L. Van Aken, Yury Gogotsi. Recent Developments and Prospects of Nanostructured Supercapacitors. 2017, 391-404. https://doi.org/10.1002/9783527696109.ch17
    79. Andriy Kovalenko. Multiscale Modeling of Solvation. 2017, 95-139. https://doi.org/10.1007/978-3-662-46657-5_5
    80. Jan Forsman, Clifford E. Woodward. Classical Density Functional Theory of Polymer Fluids. 2017, 101-136. https://doi.org/10.1007/978-981-10-2502-0_4
    81. Émilie Bordes, Anabela J. L. Costa, Joanna Szala-Bilnik, Jean-Michel Andanson, José M. S. S. Esperança, Margarida F. Costa Gomes, José N. Canongia Lopes, Agílio A. H. Pádua. Polycyclic aromatic hydrocarbons as model solutes for carbon nanomaterials in ionic liquids. Phys. Chem. Chem. Phys. 2017, 19 (40) , 27694-27703. https://doi.org/10.1039/C7CP04932C
    82. Mingbing Wu, Wei Li, Song Li, Guang Feng. Capacitive performance of amino acid ionic liquid electrolyte-based supercapacitors by molecular dynamics simulation. RSC Advances 2017, 7 (46) , 28945-28950. https://doi.org/10.1039/C7RA00443E
    83. Jenel Vatamanu, Oleg Borodin, Marco Olguin, Gleb Yushin, Dmitry Bedrov. Charge storage at the nanoscale: understanding the trends from the molecular scale perspective. Journal of Materials Chemistry A 2017, 5 (40) , 21049-21076. https://doi.org/10.1039/C7TA05153K
    84. Jenel Vatamanu, Mihaela Vatamanu, Oleg Borodin, Dmitry Bedrov. A comparative study of room temperature ionic liquids and their organic solvent mixtures near charged electrodes. Journal of Physics: Condensed Matter 2016, 28 (46) , 464002. https://doi.org/10.1088/0953-8984/28/46/464002
    85. Cheng Zhong, Wenbin Hu. Electrolytes for Electrochemical Supercapacitors. 2016, 31-254. https://doi.org/10.1201/b21497-3
    86. Chenguang Zhang, Jiajun Li, Chunsheng Shi, Chunnian He, Enzuo Liu, Naiqin Zhao. Self-anchored catalysts for substrate-free synthesis of metal-encapsulated carbon nano-onions and study of their magnetic properties. Nano Research 2016, 9 (4) , 1159-1172. https://doi.org/10.1007/s12274-016-1010-4
    87. Dario Marrocchelli, Céline Merlet, Mathieu Salanne. Molecular Dynamics Simulations of Electrochemical Energy Storage Devices. 2016, 61-89. https://doi.org/10.1007/978-1-4471-5677-2_3
    88. Innocent S. Ike, Sunny Iyuke. Mathematical Modelling and Simulation of Supercapacitors. 2016, 515-562. https://doi.org/10.1007/978-3-319-26082-2_15
    89. Gengping Jiang, Chi Cheng, Dan Li, Jefferson Zhe Liu. Molecular dynamics simulations of the electric double layer capacitance of graphene electrodes in mono-valent aqueous electrolytes. Nano Research 2016, 9 (1) , 174-186. https://doi.org/10.1007/s12274-015-0978-5
    90. Zheng Bo, Huachao Yang, Shuo Zhang, Jinyuan Yang, Jianhua Yan, Kefa Cen. Molecular Insights into Aqueous NaCl Electrolytes Confined within Vertically-oriented Graphenes. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep14652
    91. Xiaohong Liu, Yuanyuan Wang, Shu Li, Tianying Yan. Effects of anion on the electric double layer of imidazolium-based ionic liquids on graphite electrode by molecular dynamics simulation. Electrochimica Acta 2015, 184 , 164-170. https://doi.org/10.1016/j.electacta.2015.10.064
    92. Innocent S. Ike, Iakovos Sigalas, Sunny Iyuke, Kenneth I. Ozoemena. RETRACTED: An overview of mathematical modeling of electrochemical supercapacitors/ultracapacitors. Journal of Power Sources 2015, 273 , 264-277. https://doi.org/10.1016/j.jpowsour.2014.09.071
    93. Chuiyan Kong, Weizhong Qian, Chao Zheng, Wei Fei. Enhancing 5 V capacitor performance by adding single walled carbon nanotubes into an ionic liquid electrolyte. Journal of Materials Chemistry A 2015, 3 (31) , 15858-15862. https://doi.org/10.1039/C5TA04167H
    94. O. M. Yakymchuk, O. M. Perepelytsina, A. D. Rud, I. M. Kirian, M. V. Sydorenko. Impact of carbon nanomaterials on the formation of multicellular spheroids by tumor cells. physica status solidi (a) 2014, 211 (12) , 2778-2784. https://doi.org/10.1002/pssa.201431358
    95. Alexei A. Kornyshev, Lu-Peng Yang. An unusual non-Tafel dependence for electron transfer reactions in ionic liquids at large electrode polarisations: Fiction or reality?. Electrochemistry Communications 2014, 48 , 173-177. https://doi.org/10.1016/j.elecom.2014.09.005
    96. Yining Han, Shanghui Huang, Tianying Yan. A mean-field theory on the differential capacitance of asymmetric ionic liquid electrolytes. Journal of Physics: Condensed Matter 2014, 26 (28) , 284103. https://doi.org/10.1088/0953-8984/26/28/284103
    97. Katherine L Van Aken, John K McDonough, Song Li, Guang Feng, Suresh M Chathoth, Eugene Mamontov, Pasquale F Fulvio, Peter T Cummings, Sheng Dai, Yury Gogotsi. Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes. Journal of Physics: Condensed Matter 2014, 26 (28) , 284104. https://doi.org/10.1088/0953-8984/26/28/284104
    98. Song Li, Guang Feng, Peter T Cummings. Interfaces of dicationic ionic liquids and graphene: a molecular dynamics simulation study. Journal of Physics: Condensed Matter 2014, 26 (28) , 284106. https://doi.org/10.1088/0953-8984/26/28/284106
    99. Xikai Jiang, Jingsong Huang, Hui Zhao, Bobby G Sumpter, Rui Qiao. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions. Journal of Physics: Condensed Matter 2014, 26 (28) , 284109. https://doi.org/10.1088/0953-8984/26/28/284109
    100. S. I. Moseenkov, V. L. Kuznetsov, A. V. Ishchenko. Change in sizes of carbon aggregates and primary particles of the onion-like carbon synthesized by high-temperature annealing of nanodiamond. Russian Chemical Bulletin 2014, 63 (3) , 599-604. https://doi.org/10.1007/s11172-014-0479-9
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect