ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Effect of Dot Size on Exciton Binding Energy and Electron–Hole Recombination Probability in CdSe Quantum Dots

View Author Information
Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
Cite this: J. Chem. Theory Comput. 2013, 9, 10, 4351–4359
Publication Date (Web):September 5, 2013
https://doi.org/10.1021/ct400485s
Copyright © 2013 American Chemical Society

    Article Views

    2970

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Exciton binding energy and electron–hole recombination probability are presented as two important metrics for investigating effect of dot size on electron–hole interaction in CdSe quantum dots. Direct computation of electron–hole recombination probability is challenging because it requires an accurate mathematical description of the electron–hole wave function in the neighborhood of the electron–hole coalescence point. In this work, we address this challenge by solving the electron–hole Schrodinger equation using the electron–hole explicitly correlated Hartree–Fock (eh-XCHF) method. The calculations were performed for a series of CdSe clusters ranging from Cd20Se19 to Cd74608Se74837 that correspond to dot diameter range 1–20 nm. The calculated exciton binding energies and electron–hole recombination probabilities were found to decrease with increasing dot size. Both of these quantities were found to scale as Ddotn with respect to the dot diameter D. One of the key insights from this study is that the electron–hole recombination probability decreases at a much faster rate than the exciton binding energy as a function of dot size. It was found that an increase in the dot size by a factor of 16.1, resulted in a decrease in the exciton binding energy and electron–hole recombination probability by a factor of 12.9 and 4.55 × 105, respectively.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 76 publications.

    1. Carlos Romero-Pérez, Natalia Fernández Delgado, Miriam Herrera-Collado, Mauricio E. Calvo, Hernán Míguez. Ultrapure Green High Photoluminescence Quantum Yield from FAPbBr3 Nanocrystals Embedded in Transparent Porous Films. Chemistry of Materials 2023, 35 (14) , 5541-5549. https://doi.org/10.1021/acs.chemmater.3c00934
    2. Atreyo Mukherjee, Haripriya Kannan, Le Thanh Triet Ho, Zhihang Han, Jann Stavro, Adrian Howansky, Neha Nooman, Kim Kisslinger, Sébastien Léveillé, Orhan Kizilkaya, Xiangyu Liu, Håvard Mølnås, Shlok Joseph Paul, Dong Hyun Sung, Elisa Riedo, Abdul Rumaiz, Dragica Vasileska, Wei Zhao, Ayaskanta Sahu, Amir H. Goldan. Vertical Architecture Solution-Processed Quantum Dot Photodetectors with Amorphous Selenium Hole Transport Layer. ACS Photonics 2023, 10 (1) , 134-146. https://doi.org/10.1021/acsphotonics.2c01353
    3. Sandip Aryal, Joseph Frimpong, Zhen-Fei Liu. Comparative Study of Covalent and van der Waals CdS Quantum Dot Assemblies from Many-Body Perturbation Theory. The Journal of Physical Chemistry Letters 2022, 13 (43) , 10153-10161. https://doi.org/10.1021/acs.jpclett.2c02856
    4. Kenan Elibol, Peter A. van Aken. Hybrid Graphene-Supported Aluminum Plasmonics. ACS Nano 2022, 16 (8) , 11931-11943. https://doi.org/10.1021/acsnano.2c01730
    5. Melissa Guarino-Hotz, Jeremy L. Barnett, Liem B. Pham, Allison A. Win, Vivien L. Cherrette, Jin Z. Zhang. Tuning between Methylammonium Lead Bromide Perovskite Magic-Sized Clusters and Quantum Dots through Ligand Assisted Reprecipitation at Elevated Temperatures. The Journal of Physical Chemistry C 2022, 126 (32) , 13854-13862. https://doi.org/10.1021/acs.jpcc.2c04384
    6. Yuxin Shi, Zhibin Wang, Ting Meng, Ting Yuan, Ruihao Ni, Yunchao Li, Xiaohong Li, Yang Zhang, Zhan’ao Tan, Shengbin Lei, Louzhen Fan. Red Phosphorescent Carbon Quantum Dot Organic Framework-Based Electroluminescent Light-Emitting Diodes Exceeding 5% External Quantum Efficiency. Journal of the American Chemical Society 2021, 143 (45) , 18941-18951. https://doi.org/10.1021/jacs.1c07054
    7. Wenke Li, Xiujian Zhao, Chao Liu, François-Xavier Coudert. Influence of Glass Composition on the Luminescence Mechanisms of CdSe Quantum-Dot-Doped Glasses. The Journal of Physical Chemistry C 2021, 125 (34) , 18916-18926. https://doi.org/10.1021/acs.jpcc.1c04665
    8. Christopher Melnychuk, Philippe Guyot-Sionnest. Multicarrier Dynamics in Quantum Dots. Chemical Reviews 2021, 121 (4) , 2325-2372. https://doi.org/10.1021/acs.chemrev.0c00931
    9. Riccardo Marin, Daniel Jaque. Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence. Chemical Reviews 2021, 121 (3) , 1425-1462. https://doi.org/10.1021/acs.chemrev.0c00692
    10. Brendan Smith, Mohammad Shakiba, Alexey V. Akimov. Nonadiabatic Dynamics in Si and CdSe Nanoclusters: Many-Body vs Single-Particle Treatment of Excited States. Journal of Chemical Theory and Computation 2021, 17 (2) , 678-693. https://doi.org/10.1021/acs.jctc.0c01009
    11. Hui Wang, Wenxiu Liu, Xin He, Peng Zhang, Xiaodong Zhang, Yi Xie. An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis. Journal of the American Chemical Society 2020, 142 (33) , 14007-14022. https://doi.org/10.1021/jacs.0c06966
    12. Daniel Rossi, Hua Wang, Yitong Dong, Tian Qiao, Xiaofeng Qian, Dong Hee Son. Light-Induced Activation of Forbidden Exciton Transition in Strongly Confined Perovskite Quantum Dots. ACS Nano 2018, 12 (12) , 12436-12443. https://doi.org/10.1021/acsnano.8b06649
    13. Michael G. Bayne, Jeremy A. Scher, Benjamin H. Ellis, Arindam Chakraborty. Linked-Cluster Formulation of Electron–Hole Interaction Kernel in Real-Space Representation without Using Unoccupied States. Journal of Chemical Theory and Computation 2018, 14 (7) , 3656-3666. https://doi.org/10.1021/acs.jctc.8b00123
    14. Pravin S. Shinde, Xiaoniu Peng, Jue Wang, Yanxiao Ma, Louis E. McNamara, Nathan I. Hammer, Arunava Gupta, Shanlin Pan. Rapid Screening of Photoanode Materials Using Scanning Photoelectrochemical Microscopy Technique and Formation of Z-Scheme Solar Water Splitting System by Coupling p- and n-type Heterojunction Photoelectrodes. ACS Applied Energy Materials 2018, 1 (5) , 2283-2294. https://doi.org/10.1021/acsaem.8b00381
    15. Tayirjan Taylor Isimjan, Partha Maity, Jordi Llorca, Toseef Ahmed, Manas R. Parida, Omar F. Mohammed, and Hicham Idriss . Comprehensive Study of All-Solid-State Z-Scheme Photocatalytic Systems of ZnO/Pt/CdZnS. ACS Omega 2017, 2 (8) , 4828-4837. https://doi.org/10.1021/acsomega.7b00767
    16. Enrico Berardo, Ferdinand Kaplan, Kiran Bhaskaran-Nair, William A. Shelton, Michiel J. van Setten, Karol Kowalski, and Martijn A. Zwijnenburg . Benchmarking the Fundamental Electronic Properties of small TiO2 Nanoclusters by GW and Coupled Cluster Theory Calculations. Journal of Chemical Theory and Computation 2017, 13 (8) , 3814-3828. https://doi.org/10.1021/acs.jctc.7b00538
    17. Benjamin H. Ellis and Arindam Chakraborty . Investigation of Many-Body Correlation in Biexcitonic Systems Using Electron–Hole Multicomponent Coupled-Cluster Theory. The Journal of Physical Chemistry C 2017, 121 (2) , 1291-1298. https://doi.org/10.1021/acs.jpcc.6b09443
    18. Tim J. Puchtler, Tong Wang, Christopher X. Ren, Fengzai Tang, Rachel A. Oliver, Robert A. Taylor, and Tongtong Zhu . Ultrafast, Polarized, Single-Photon Emission from m-Plane InGaN Quantum Dots on GaN Nanowires. Nano Letters 2016, 16 (12) , 7779-7785. https://doi.org/10.1021/acs.nanolett.6b03980
    19. Abdelaziz Boulesbaa, Kai Wang, Masoud Mahjouri-Samani, Mengkun Tian, Alexander A. Puretzky, Ilia Ivanov, Christopher M. Rouleau, Kai Xiao, Bobby G. Sumpter, and David B. Geohegan . Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures. Journal of the American Chemical Society 2016, 138 (44) , 14713-14719. https://doi.org/10.1021/jacs.6b08883
    20. Jeremy A. Scher, Jennifer M. Elward, and Arindam Chakraborty . Shape Matters: Effect of 1D, 2D, and 3D Isovolumetric Quantum Confinement in Semiconductor Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (43) , 24999-25009. https://doi.org/10.1021/acs.jpcc.6b06728
    21. Svetlana V. Kilina, Patrick K. Tamukong, and Dmitri S. Kilin . Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives. Accounts of Chemical Research 2016, 49 (10) , 2127-2135. https://doi.org/10.1021/acs.accounts.6b00196
    22. Atanu Jana, Katie N. Lawrence, Meghan B. Teunis, Manik Mandal, Amar Kumbhar, and Rajesh Sardar . Investigating the Control by Quantum Confinement and Surface Ligand Coating of Photocatalytic Efficiency in Chalcopyrite Copper Indium Diselenide Nanocrystals. Chemistry of Materials 2016, 28 (4) , 1107-1120. https://doi.org/10.1021/acs.chemmater.5b04521
    23. Benjamin H. Ellis, Somil Aggarwal, and Arindam Chakraborty . Development of the Multicomponent Coupled-Cluster Theory for Investigation of Multiexcitonic Interactions. Journal of Chemical Theory and Computation 2016, 12 (1) , 188-200. https://doi.org/10.1021/acs.jctc.5b00879
    24. Xi Zhu, Gregory A. Chass, Leong-Chuan Kwek, Andrey L. Rogach, and Haibin Su . Excitonic Character in Optical Properties of Tetrahedral CdX (X = S, Se, Te) Clusters. The Journal of Physical Chemistry C 2015, 119 (52) , 29171-29177. https://doi.org/10.1021/acs.jpcc.5b09751
    25. Svetlana Kilina, Dmitri Kilin, and Sergei Tretiak . Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chemical Reviews 2015, 115 (12) , 5929-5978. https://doi.org/10.1021/acs.chemrev.5b00012
    26. Heejae Chung, Hyekyoung Choi, Dongho Kim, Sohee Jeong, and Jiwon Kim . Size Dependence of Excitation-Energy-Related Surface Trapping Dynamics in PbS Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (13) , 7517-7524. https://doi.org/10.1021/acs.jpcc.5b01810
    27. Jennifer M. Elward and Arindam Chakraborty . Effect of Heterojunction on Exciton Binding Energy and Electron–Hole Recombination Probability in CdSe/ZnS Quantum Dots. Journal of Chemical Theory and Computation 2015, 11 (2) , 462-471. https://doi.org/10.1021/ct500548x
    28. Nikolay S. Makarov, Pick Chung Lau, Christopher Olson, Kirill A. Velizhanin, Kyril M. Solntsev, Khanh Kieu, Svetlana Kilina, Sergei Tretiak, Robert A. Norwood, Nasser Peyghambarian, and Joseph W. Perry . Two-Photon Absorption in CdSe Colloidal Quantum Dots Compared to Organic Molecules. ACS Nano 2014, 8 (12) , 12572-12586. https://doi.org/10.1021/nn505428x
    29. Jennifer M. Elward, Flaviyan Jerome Irudayanathan, Shikha Nangia, and Arindam Chakraborty . Optical Signature of Formation of Protein Corona in the Firefly Luciferase-CdSe Quantum Dot Complex. Journal of Chemical Theory and Computation 2014, 10 (12) , 5224-5228. https://doi.org/10.1021/ct500681m
    30. Meghan B. Teunis, Sukanta Dolai, and Rajesh Sardar . Effects of Surface-Passivating Ligands and Ultrasmall CdSe Nanocrystal Size on the Delocalization of Exciton Confinement. Langmuir 2014, 30 (26) , 7851-7858. https://doi.org/10.1021/la501533t
    31. Aijing Li, Xinpeng Chen, Yurong Sun, Jin Cheng, Ping Yao, Tieling Xing, Guoqiang Chen. Photocatalytic activity and mechanism of PCN@GO/AgNPs heterojunction in Rhodamine B degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 679 , 132651. https://doi.org/10.1016/j.colsurfa.2023.132651
    32. Hua Li, Chao Ding, Dong Liu, Shota Yajima, Kei Takahashi, Shuzi Hayase, Qing Shen. Efficient Charge Transfer in MAPbI3 QDs/TiO2 Heterojunctions for High-Performance Solar Cells. Nanomaterials 2023, 13 (7) , 1292. https://doi.org/10.3390/nano13071292
    33. Ambikesh Soni, Gagan Kant Tripathi, Priyavand Bundela, Pradeep Kumar Khiriya, Purnima Swarup Khare. Synthesis and characterization of assorted pH CdSe quantum dots by solvo-thermal method to determine its dye-degradation application. Optical and Quantum Electronics 2023, 55 (3) https://doi.org/10.1007/s11082-022-04536-4
    34. Shuang Wang, Qiong Li, Kai Ge, Yongfang Yang, Yue Zhang, Mingwang Pan, Lei Zhu. Ferroelectric nano-heterojunctions for piezoelectricity-enhanced photocatalysis. Separation and Purification Technology 2023, 305 , 122433. https://doi.org/10.1016/j.seppur.2022.122433
    35. Jaume Noguera-Gómez, Ismael Fernández-Guillen, Pablo F. Betancur, Vladimir S. Chirvony, Pablo P. Boix, Rafael Abargues. Low-demanding in situ crystallization method for tunable and stable perovskite nanoparticle thin films. Matter 2022, 5 (10) , 3541-3552. https://doi.org/10.1016/j.matt.2022.07.017
    36. Yi-Xiang Chen, Dan Zhou, Xiao-Jiao Guo, Xiu Yang, Si-Rui Zhao, Yi Lu, Jin-Ku Liu. Improved anticorrosion performance of mixed valence Mn-modified ZnO dilute magnetic solid solution with multilevel self-assembled network structure. Nano Research 2022, 15 (7) , 6590-6600. https://doi.org/10.1007/s12274-022-4278-6
    37. Giulia Alves dos Santos, Renato Grigolon Capelo, Chao Liu, Danilo Manzani. In-situ synthesis of luminescent CdS quantum dots embedded in phosphate glass. Journal of Non-Crystalline Solids 2022, 587 , 121599. https://doi.org/10.1016/j.jnoncrysol.2022.121599
    38. Geonho Lee, Sang Yoon Lee, Sangshin Park, Seong Hyun Jang, Hyung-Ki Park, In Choi, Jongwook Park, Jun Choi. Highly effective surface defect passivation of perovskite quantum dots for excellent optoelectronic properties. Journal of Materials Research and Technology 2022, 18 , 4145-4155. https://doi.org/10.1016/j.jmrt.2022.04.080
    39. Derek S. Wang, İnci Anali, Susanne F. Yelin. Entangled photons from composite cascade emitters. Optics Express 2022, 30 (7) , 11317. https://doi.org/10.1364/OE.452935
    40. Jeet Chakraborty, Ipsita Nath, Francis Verpoort. A physicochemical introspection of porous organic polymer photocatalysts for wastewater treatment. Chemical Society Reviews 2022, 51 (3) , 1124-1138. https://doi.org/10.1039/D1CS00916H
    41. Yi-Xiang Chen, Dan Zhou, Xiao-Jiao Guo, Xiu Yang, Si-Rui Zhao, Yi Lu, Jin-Ku Liu. Design and Anticorrosion Prediction of Functional Dilute Magnetic Solid Solution Materials. SSRN Electronic Journal 2022, 2 https://doi.org/10.2139/ssrn.4004037
    42. Ambreen Ashar, Sadia Noor, Zeeshan Ahmad Bhutta. Mineralization of Recalcitrant Pollutants from Wastewater by Solar Nano-photocatalysis. 2021, 357-390. https://doi.org/10.1039/9781839165399-00357
    43. Jiaojian Shi, Weiwei Sun, Hendrik Utzat, Ardavan Farahvash, Frank Y. Gao, Zhuquan Zhang, Ulugbek Barotov, Adam P. Willard, Keith A. Nelson, Moungi G. Bawendi. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses. Nature Nanotechnology 2021, 16 (12) , 1355-1361. https://doi.org/10.1038/s41565-021-01016-w
    44. Muhammad Ali Raza, Feng Li, Meidan Que, Liangliang Zhu, Xi Chen. Photocatalytic reduction of CO 2 by halide perovskites: recent advances and future perspectives. Materials Advances 2021, 2 (22) , 7187-7209. https://doi.org/10.1039/D1MA00703C
    45. S. A. Safwan, Nagwa El Meshad. Stability of Excited Exciton States in Semiconductor Quantum Dots Under a Lateral Electric Field. International Journal of Nanoscience 2021, 20 (04) https://doi.org/10.1142/S0219581X21500393
    46. Mingfei Sun, Jian Wang, Qicong Li, Xiaohao Jia, Zhitao Huang, Jiaqian Sun, Kaiwen Chu, Kong Liu, Peng Jin, Zhijie Wang, Shengchun Qu. Two photon pumped nanowire laser based on all inorganic perovskite with high exciton binding energy grown by physical vapor deposition. Journal of Physics D: Applied Physics 2021, 54 (27) , 275103. https://doi.org/10.1088/1361-6463/abf53a
    47. Mychele Jorns, Dimitri Pappas. A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials 2021, 11 (6) , 1448. https://doi.org/10.3390/nano11061448
    48. M. Ramya, T. K. Nideep, V. P. N. Nampoori, M. Kailasnath. The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study. Journal of Materials Science: Materials in Electronics 2021, 32 (3) , 3167-3179. https://doi.org/10.1007/s10854-020-05065-0
    49. Patrick Brosseau, Samuel Palato, Hélène Seiler, Harry Baker, Patanjali Kambhampati. Fifth-order two-quantum absorptive two-dimensional electronic spectroscopy of CdSe quantum dots. The Journal of Chemical Physics 2020, 153 (23) https://doi.org/10.1063/5.0021381
    50. Yingbo Zhao, Vivian Wang, Ali Javey. Molecular Materials with Short Radiative Lifetime for High-Speed Light-Emitting Devices. Matter 2020, 3 (6) , 1832-1844. https://doi.org/10.1016/j.matt.2020.09.009
    51. Yan He, Sumei Hu, Weiling Zhu, Gang Ouyang. Size-dependent exciton binding energy in semiconductor nanostructures. Journal of Physics D: Applied Physics 2020, 53 (12) , 125101. https://doi.org/10.1088/1361-6463/ab5f2f
    52. Seogjoo J. Jang. Introduction. 2020, 1-20. https://doi.org/10.1016/B978-0-08-102335-8.00009-0
    53. . Bibliography. 2020, 219-222. https://doi.org/10.1016/B978-0-08-102335-8.00020-X
    54. Chao Ding, Feng Liu, Yaohong Zhang, Daisuke Hirotani, Xing Rin, Shuzi Hayase, Takashi Minemoto, Taizo Masuda, Ruixiang Wang, Qing Shen. Photoexcited hot and cold electron and hole dynamics at FAPbI3 perovskite quantum dots/metal oxide heterojunctions used for stable perovskite quantum dot solar cells. Nano Energy 2020, 67 , 104267. https://doi.org/10.1016/j.nanoen.2019.104267
    55. Jejiron Maheswari Baruah, Sanjeeb Kalita, Jyoti Narayan. Green chemistry synthesis of biocompatible ZnS quantum dots (QDs): their application as potential thin films and antibacterial agent. International Nano Letters 2019, 9 (2) , 149-159. https://doi.org/10.1007/s40089-019-0270-x
    56. S. Mukherjee, A. Pradhan, S. Mukherjee, T. Maitra, S. Sengupta, B. Satpati, S. Chakrabarti, A. Nayak, S. Bhunia. Tuning of near infrared excitonic emission from InAs quantum dots by controlling the sub-monolayer coverage. Journal of Luminescence 2019, 210 , 311-321. https://doi.org/10.1016/j.jlumin.2019.01.063
    57. A. Chafai, I. Essaoudi, A. Ainane, F. Dujardin, R. Ahuja. Binding energy of an exciton in a GaN/AlN nanodot: Role of size and external electric field. Physica B: Condensed Matter 2019, 559 , 23-28. https://doi.org/10.1016/j.physb.2019.01.047
    58. ShinYoung Jeong, Jihoon Kyhm, Soon‐Kyu Cha, Do Kyung Hwang, Byeong‐Kwon Ju, Joon‐Suh Park, Seong Jun Kang, Il Ki Han. High‐Speed Colloidal Quantum Dot Photodiodes via Accelerating Charge Separation at Metal–Oxide Interface. Small 2019, 15 (13) https://doi.org/10.1002/smll.201900008
    59. Sumaiya Parveen, Kamal Kumar Paul, Ruma Das, P.K. Giri. Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template. Journal of Colloid and Interface Science 2019, 539 , 619-633. https://doi.org/10.1016/j.jcis.2018.12.105
    60. Subhash Chand, Ekta Sharma, Pankaj Sharma. Phase change induced quantization in NIR emitting Ag2S nanocrystals: Structural and optical response for solar energy applications. Journal of Alloys and Compounds 2019, 770 , 1173-1180. https://doi.org/10.1016/j.jallcom.2018.08.133
    61. Fanglong Yuan, Ting Yuan, Laizhi Sui, Zhibin Wang, Zifan Xi, Yunchao Li, Xiaohong Li, Louzhen Fan, Zhan’ao Tan, Anmin Chen, Mingxing Jin, Shihe Yang. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-04635-5
    62. Sovan Kumar Patra, Sibsankar Rahut, Jayanta Kumar Basu. Enhanced Z-scheme photocatalytic activity of a π-conjugated heterojunction: MIL-53(Fe)/Ag/g-C 3 N 4. New Journal of Chemistry 2018, 42 (23) , 18598-18607. https://doi.org/10.1039/C8NJ04080J
    63. Yingcai Fan, Bo Yang, Xiaohan Song, Xiaofei Shao, Mingwen Zhao. Direct Z-scheme photocatalytic overall water splitting on 2D CdS/InSe heterostructures. Journal of Physics D: Applied Physics 2018, 51 (39) , 395501. https://doi.org/10.1088/1361-6463/aad8a2
    64. Piotr Schillak. Excitonic States and Photoluminescence Spectra of a Quantum Dot Molecule Exposed to the External Static Electric Field. physica status solidi (b) 2018, 255 (9) https://doi.org/10.1002/pssb.201800231
    65. Elena V. Shornikova, Louis Biadala, Dmitri R. Yakovlev, Victor F. Sapega, Yuri G. Kusrayev, Anatolie A. Mitioglu, Mariana V. Ballottin, Peter C. M. Christianen, Vasilii V. Belykh, Mikhail V. Kochiev, Nikolai N. Sibeldin, Aleksandr A. Golovatenko, Anna V. Rodina, Nikolay A. Gippius, Alexis Kuntzmann, Ye Jiang, Michel Nasilowski, Benoit Dubertret, Manfred Bayer. Addressing the exciton fine structure in colloidal nanocrystals: the case of CdSe nanoplatelets. Nanoscale 2018, 10 (2) , 646-656. https://doi.org/10.1039/C7NR07206F
    66. Lan Yang, Ke Wei, Zhongjie Xu, Feiming Li, Runze Chen, Xin Zheng, Xiangai Cheng, Tian Jiang. Nonlinear absorption and temperature-dependent fluorescence of perovskite FAPbBr_3 nanocrystal. Optics Letters 2018, 43 (1) , 122. https://doi.org/10.1364/OL.43.000122
    67. Peng Han, Gabriel Bester. Force field potentials for the vibrational properties of II-VI semiconductor nanostructures. Physical Review B 2017, 96 (19) https://doi.org/10.1103/PhysRevB.96.195436
    68. Mengling Xia, Chao Liu, Jianjun Han, Xiujian Zhao. Formation of CdS/Cd 1−x Zn x S sandwich-structured quantum dots with high quantum efficiency in silicate glasses. Journal of Luminescence 2017, 186 , 30-33. https://doi.org/10.1016/j.jlumin.2017.01.040
    69. Jie Ding, Zan Dai, Fan Qin, Huiping Zhao, Shuai Zhao, Rong Chen. Z-scheme BiO1-xBr/Bi2O2CO3 photocatalyst with rich oxygen vacancy as electron mediator for highly efficient degradation of antibiotics. Applied Catalysis B: Environmental 2017, 205 , 281-291. https://doi.org/10.1016/j.apcatb.2016.12.018
    70. Xu‐Bing Li, Bin Liu, Min Wen, Yu‐Ji Gao, Hao‐Lin Wu, Mao‐Yong Huang, Zhi‐Jun Li, Bin Chen, Chen‐Ho Tung, Li‐Zhu Wu. Hole‐Accepting‐Ligand‐Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy. Advanced Science 2016, 3 (4) https://doi.org/10.1002/advs.201500282
    71. Jusheng Lu, Yanfei Shen, Songqin Liu. Enhanced light-driven catalytic performance of cytochrome P450 confined in macroporous silica. Chemical Communications 2016, 52 (49) , 7703-7706. https://doi.org/10.1039/C6CC03867K
    72. Artsiom Antanovich, Anatol Prudnikau, Valerij Gurin, Mikhail Artemyev. Cd/Hg cationic substitution in magic-sized CdSe clusters: Optical characterization and theoretical studies. Chemical Physics 2015, 455 , 32-40. https://doi.org/10.1016/j.chemphys.2015.04.004
    73. A. A. Zarubanov, K. S. Zhuravlev. Photoluminescence kinetics in CdS nanoclusters formed by the Langmuir-Blodgett technique. Semiconductors 2015, 49 (3) , 380-386. https://doi.org/10.1134/S1063782615030252
    74. Qingguo Meng, Stanley P. May, Mary T. Berry, Dmitri S. Kilin. Time-resolved electronic and optical properties of a thiolate-protected Au 38 nanocluster. Molecular Physics 2015, 113 (3-4) , 408-417. https://doi.org/10.1080/00268976.2014.999838
    75. Poonam Gaur, B. P. Malik, Dimple Sharma, Arun Gaur. Preparation of Zinc-Doped CdSe Nanoparticles and Determination of Their Nonlinear Optical Properties using Z-Scan Technique in Thick Media. Nano 2015, 10 (02) , 1550018. https://doi.org/10.1142/S1793292015500186
    76. Peng Zhou, Jiaguo Yu, Mietek Jaroniec. All‐Solid‐State Z‐Scheme Photocatalytic Systems. Advanced Materials 2014, 26 (29) , 4920-4935. https://doi.org/10.1002/adma.201400288

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect